Site MapHelpFeedbackChapter Overview
Chapter Overview
(See related pages)

A mechanical vibration is the motion of a particle or a body which oscillates about a position of equilibrium. Most vibrations in machines and structures are undesirable because of the increased stresses and energy losses which accompany them. They should therefore be eliminated or reduced as much as possible by appropriate design. The analysis of vibrations has become increasingly important in recent years owing to the current trend toward higher-speed machines and lighter structures. There is every reason to expect that this trend will continue and that an even greater need for vibration analysis will develop in the future.

The analysis of vibrations is a very extensive subject to which entire texts have been devoted. Our present study will therefore be limited to the simpler types of vibrations, namely, the vibrations of a body or a system of bodies with one degree of freedom.

A mechanical vibration generally results when a system is displaced from a position of stable equilibrium. The system tends to return to this position under the action of restoring forces (either elastic forces, as in the case of a mass attached to a spring, or gravitational forces, as in the case of a pendulum). But the system generally reaches its original position with a certain acquired velocity which carries it beyond that position. Since the process can be repeated indefinitely, the system keeps moving back and forth across its position of equilibrium. The time interval required for the system to complete a full cycle of motion is called the period of the vibration. The number of cycles per unit time defines the frequency, and the maximum displacement of the system from its position of equilibrium is called the amplitude of the vibration.

When the motion is maintained by the restoring forces only, the vibration is said to be a free vibration (Secs. 19.2 to 19.6). When a periodic force is applied to the system, the resulting motion is described as a forced vibration (Sec. 19.7). When the effects of friction can be neglected, the vibrations are said to be undamped. However, all vibrations are actually damped to some degree. If a free vibration is only slightly damped, its amplitude slowly decreases until, after a certain time, the motion comes to a stop. But if damping is large enough to prevent any true vibration, the system then slowly regains its original position (Sec. 19.8). A damped forced vibration is maintained as long as the periodic force which produces the vibration is applied. The amplitude of the vibration, however, is affected by the magnitude of the damping forces (Sec. 19.9).








Beer: Vector Mechanics for EngOnline Learning Center

Home > Chapter 19 > Chapter Overview