Site MapHelpFeedbackChapter Overview
Chapter Overview
(See related pages)

We have assumed so far that the attraction exerted by the earth on a rigid body could be represented by a single force W. This force, called the force of gravity or the weight of the body, was to be applied at the center of gravity of the body (Sec. 3.2). Actually, the earth exerts a force on each of the particles forming the body. The action of the earth on a rigid body should thus be represented by a large number of small forces distributed over the entire body. You will learn in this chapter, however, that all of these small forces can be replaced by a single equivalent force W. You will also learn how to determine the center of gravity, that is, the point of application of the resultant W, for bodies of various shapes.

In the first part of the chapter, two-dimensional bodies, such as flat plates and wires contained in a given plane, are considered. Two concepts closely associated with the determination of the center of gravity of a plate or a wire are introduced: the concept of the centroid of an area or a line and the concept of the first moment of an area or a line with respect to a given axis.

You will also learn that the computation of the area of a surface of revolution or of the volume of a body of revolution is directly related to the determination of the centroid of the line or area used to generate that surface or body of revolution (Theorems of Pappus- Guldinus). And, as is shown in Secs. 5.8 and 5.9, the determination of the centroid of an area simplifies the analysis of beams subjected to distributed loads and the computation of the forces exerted on submerged rectangular surfaces, such as hydraulic gates and portions of dams.

In the last part of the chapter, you will learn how to determine the center of gravity of a three-dimensional body as well as the centroid of a volume and the first moments of that volume with respect to the coordinate planes.








Beer: Vector Mechanics for EngOnline Learning Center

Home > Chapter 5 > Chapter Overview