Site MapHelpFeedbackLearning Objectives
Learning Objectives
(See related pages)

Concepts and Skills to Review

  • quantization (Section 27.1)
  • the photon (Section 27.3)
  • double-slit interference experiment (Section 25.4)
  • diffraction and the resolution of optical instruments (Section 25.8)
  • intensity of an EM wave (Section 22.6)
  • x-ray diffraction (Section 25.9)
  • atomic energy levels and the Bohr model (Section 27.7)
  • calculating wavelengths and frequencies of standing waves (Section 11.10)
Mastering the Concepts
  • In quantum physics the two descriptions, particle and wave, are complementary. The wavelength of a particle is called its de Broglie wavelength:

    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663836/28_01.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (3.0K)</a>

  • The uncertainty principle sets limits on how precisely we can simultaneously determine the position and momentum of a particle:

    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663836/28_02.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (4.0K)</a>
  • If a system is in a quantum state for a time interval Dt, then the uncertainty in the energy of that state is related to the lifetime of that state by the energy-time uncertainty principle:

    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663836/28_03.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (4.0K)</a>

  • Confined particles have wave functions that are standing waves. Confinement leads to the quantization of de Broglie wavelengths and energies.

  • A particle in a one-dimensional box has wavelengths analogous to those of a standing wave on a string:

    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663836/28_04.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (5.0K)</a>

  • The square of the magnitude of the wave function is proportional to the probability of locating the particle in a given region of space.

  • The quantum state of the electron in an atom can be described by four quantum numbers:
    principal quantum number n = 1, 2, 3, . . .
    orbital angular momentum quantum number <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663836/Ch28_04.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (3.0K)</a>
    magnetic quantum number <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663836/Ch28_05.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (4.0K)</a>
    spin magnetic quantum number <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663836/28_05.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

  • According to the exclusion principle, no two electrons in an atom can be in the same quantum state.

  • The set of electron states with the same value of n is called a shell. A subshell is a unique combination of n and <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663836/28__08.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (0.0K)</a> Spectroscopic notation for a subshell is the numerical value of n followed by a letter representing the value of <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663836/28__08.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (0.0K)</a>

  • In a solid, the electron states form bands of closely spaced energy levels. Band gaps are ranges of energy in which there are no electron energy levels. Conductors, semiconductors, and insulators are distinguished by their band structure.

  • If an electron is in a higher energy level and a lower level is vacant, an incident photon of energy DE can stimulate the emission of a photon. The photon emitted by the atom is identical to the incident photon.

  • Lasers are based on stimulated emission. In order for stimulated emission to occur more often than absorption, a population inversion must exist (the state of higher energy must be more populated than the state of lower energy).

  • The wave function of a confined particle extends into regions where, according to classical physics, the particle can never go because it has insufficient energy. If the classically forbidden region is of finite length, tunneling can occur.








GiambattistaOnline Learning Center

Home > Chapter 28 > Learning Objectives