student view | instructor view | information center view | Home
Fundamentals of Digital Logic with VHDL Design, 3/e
information center...
Sample Chapter 7
Table of Contents
About the Authors
Book Preface
Overview
Feature Summary
Computer Science C...
Errata

Feedback
Help Center




Feature Summary

Chapter 1 provides a general introduction to the process of designing digital systems. It discusses the key steps in the design process and explains how CAD tools can be used to automate many of the required tasks. It also introduces the binary numbers.

Chapter 2 introduces the basic aspects of logic circuits. It shows how Boolean algebra is used to represent such circuits. It also gives the reader a first glimpse at VHDL, as an example of a hardware description language that may be used to specify the logic circuits.

The electronic aspects of digital circuits are presented in Chapter 3. This chapter shows how the basic gates are built using transistors and presents various factors that affect circuit performance. The emphasis is on the latest technologies, with particular focus on CMOS technology and programmable logic devices.

Chapter 4 deals with the synthesis of combinational circuits. It covers all aspects of the synthesis process, starting with an initial design and performing the optimization steps needed to generate a desired final circuit. It shows how CAD tools are used for this purpose.

Chapter 5 concentrates on circuits that perform arithmetic operations. It begins with a discussion of how numbers are represented in digital systems and then shows how such numbers can be manipulated using logic circuits. This chapter illustrates how VHDL can be used to specify the desired functionality and how CAD tools provide a mechanism for developing the required circuits.

Chapter 6 presents combinational circuits that are used as building blocks. It includes the encoder, decoder, and multiplexer circuits. These circuits are very convenient for illustrating the application of many VHDL constructs, giving the reader an opportunity to discover more advanced features of VHDL.

Storage elements are introduced in Chapter 7. The use of flip-flops to realize regular structures, such as shift registers and counters, is discussed. VHDL-specified designs of these structures are included. The chapter also shows how larger systems, such as a simple processor, may be designed.

Chapter 8 gives a detailed presentation of synchronous sequential circuits (finite state machines). It explains the behavior of these circuits and develops practical design techniques for both manual and automated design.

Asynchronous sequential circuits are discussed in Chapter 9. While this treatment is not exhaustive, it provides a good indication of the main characteristics of such circuits. Even though the asynchronous circuits are not used extensively in practice, they should be studied because they provide an excellent vehicle for gaining a deeper understanding of the operation of digital circuits in general. They illustrate the consequences of propagation delays and race conditions that may be inherent in the structure of a circuit.

Chapter 10 is a discussion of a number of practical issues that arise in the design of real systems. It highlights problems often encountered in practice and indicates how they can be overcome. Examples of larger circuits illustrate a hierarchical approach in designing digital systems. Complete VHDL code for these circuits is presented.

Chapter 11 introduces the topic of testing. A designer of logic circuits has to be aware of the need to test circuits and should be conversant with at least the most basic aspects of testing.

Chapter 12 presents a complete CAD flow that the designer experiences when designing, implementing, and testing a digital circuit.

Appendix A provides a complete summary of VHDL features. Although use of VHDL is integrated throughout the book, this appendix provides a convenient reference that the reader can consult from time to time when writing VHDL code.

Appendices B, C, and D contain a sequence of tutorials on the Quartus II CAD tools. This material is suitable for self-study; it shows the student in a step-by-step manner how to use the CAD software provided with the book.

Appendix E gives detailed information about the devices used in illustrative examples.