Site MapHelpFeedbackOptimal Risky Portfolios
Optimal Risky Portfolios


  1. The expected return of a portfolio is the weighted average of the component security expected returns with the investment proportions as weights.

  2. The variance of a portfolio is the weighted sum of the elements of the covariance matrix with the product of the investment proportions as weights. Thus the variance of each asset is weighted by the square of its investment proportion. The covariance of each pair of assets appears twice in the covariance matrix; thus the portfolio variance includes twice each covariance weighted by the product of the investment proportions in each of the two assets.

  3. Even if the covariances are positive, the portfolio standard deviation is less than the weighted average of the component standard deviations, as long as the assets are not perfectly positively correlated. Thus portfolio diversification is of value as long as assets are less than perfectly correlated.

  4. The greater an asset's covariance with the other assets in the portfolio, the more it contributes to portfolio variance. An asset that is perfectly negatively correlated with a portfolio can serve as a perfect hedge. The perfect hedge asset can reduce the portfolio variance to zero.

  5. The efficient frontier is the graphical representation of a set of portfolios that maximize expected return for each level of portfolio risk. Rational investors will choose a portfolio on the efficient frontier.

  6. A portfolio manager identifies the efficient frontier by first establishing estimates for asset expected returns and the covariance matrix. This input list is then fed into an optimization program that reports as outputs the investment proportions, expected returns, and standard deviations of the portfolios on the efficient frontier.

  7. In general, portfolio managers will arrive at different efficient portfolios because of differences in methods and quality of security analysis. Managers compete on the quality of their security analysis relative to their management fees.

  8. If a risk-free asset is available and input lists are identical, all investors will choose the same portfolio on the efficient frontier of risky assets: the portfolio tangent to the CAL. All investors with identical input lists will hold an identical risky portfolio, differing only in how much each allocates to this optimal portfolio and to the risk-free asset. This result is characterized as the separation principle of portfolio construction.

  9. Diversification is based on the allocation of a fixed portfolio across several assets, limiting the exposure to any one source of risk. Adding additional risky assets to a portfolio, thereby increasing the total amounts invested, does not reduce dollar risk, even if it makes the rate of return more predictable. This is because that uncertainty is applied to a larger investment base. Nor does investing over longer horizons reduce risk. Increasing the investment horizon is analogous to investing in more assets. It increases total risk. Analogously, the key to the insurance industry is risk sharing—the spreading of risk across many investors, each of whom takes on only a small exposure to any given source of risk. Risk pooling—the assumption of ever-more sources of risk—may increase rate of return predictability, but not the predictability of total dollar returns.











InvestmentsOnline Learning Center

Home > Chapter 7