The case for equality
Suppose we have two individuals with the same utility function, defined over their incomes: $U_{A}=U\left(I_{A}\right)$ and $U_{B}=U\left(I_{B}\right)$. This utility function is increasing in income, but is subject to diminishing marginal utility. That is, $U^{\prime}(I)>0$ and $U^{\prime \prime}(I)<0$. There is a fixed amount of income, I, to be distributed between persons A and B and we wish to distribute this income between them so as to maximize the combined utility $U=U_{A}+U_{B}$.

To begin, we note that B 's income is the amount left over after A gets I_{A}. That is, $I_{B}=I-I_{A}$. With this substitution, we wish to maximize $U=U\left(I_{A}\right)+U\left(I-I_{A}\right)$ with respect to I_{A}. Take the first derivative, and equate to zero: $\frac{\mathrm{d} U}{\mathrm{~d} I_{A}}=U^{\prime}\left(I_{A}\right)-U^{\prime}\left(I-I_{A}\right)=0$. As $U^{\prime \prime}(I)$ is strictly negative, this condition can hold only if $I_{A}=I-I_{A}$, or $I_{A}=1 / 2 I$. That is, maximum combined utility is achieved only when each individual gets exactly half the combined available income.

