Permutation

Formula for permutation

If I require r elements from a total number of n elements and I know that it is a permutation, I can denote it as ${ }^{n} P_{r}$ which is given by the formula:

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}
$$

Combination

Formula for combination

Repetition \mid In the case of permutations as well as combinations, once an element has been chosen, the same element cannot be chosen again.

For instance, if I have to choose two winners from amongst A, B, C, D and E, I cannot say that the two winners are A and A.

Technique for determining the number of ways something can be done with repetition

If I am given a set of elements to choose from and I have to make a selection, one of the fundamental ways of doing so is by virtue of place values. For example, if I have to find out how many 4-digited numbers can be created using the digits $4,5,6,7,8,9$, such that the numbers are greater than 5000.

First, we determine that this is a situation where repetition is allowed, as two digits in the given four-digit number can have the same value. For instance, the number could be 5975.

Since there are four-digits, I can say that there are four places that I need to fill with values

First Place	Second Place	Third Place	Fourth Place

