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Forces and Motion 
Along a Line

A
sailplane (or “glider”) is a small,
unpowered, high-performance air-
craft. A sailplane must be initially

towed a few thousand feet into the air by a
small airplane, after which it relies on
regions of upward-moving air such as
thermals and ridge currents to ascend far-
ther. Suppose a small plane requires about
120 m of runway to take off by itself.
When it is towing a sailplane, how much
more runway does it need?
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3.1 POSITION AND DISPLACEMENT

A nonzero net force acting on an object changes the object’s velocity. According to
Newton’s second law, the net force determines the acceleration of the object. In order to
see how interactions affect motion, we first need to carefully define the quantities used
to describe motion (position, displacement, velocity, and acceleration) and we must
understand the relationships among them. The description of motion using these quanti-
ties is called kinematics. When we combine kinematics with Newton’s laws, we are in
the realm of dynamics. Chapter 3 considers motion only along a straight line.

To describe motion clearly, we first need a way to say where an object is located.
Suppose that at 3:00 P.M. a train stops on an east-west track as a result of an engine
problem. The engineer wants to call the railroad office to report the problem. How can
he tell them where to find the train? He might say something like “three kilometers east
of the old trestle bridge.” Notice that he uses a point of reference: the old trestle bridge.
Then he states how far the train is from that point and in what direction. If he omits any
of the three pieces (the reference point, the distance, and the direction) then his descrip-
tion of the train’s whereabouts is ambiguous.

The same thing is done in physics. First, we choose a reference point, called the
origin. Then, to describe the location of something, we give its distance from the origin
and the direction. These two quantities, direction and distance, together describe the
position of the object. Position is a vector quantity; the direction is just as important as
the distance. The position vector is written symbolically as r�. Graphically, the position
vector can be drawn as an arrow starting at the origin and ending with the arrowhead on
the object. When more than one position vector is to be drawn, a scale is chosen so that
the length of the vector is proportional to the distance between the object and the origin.

Once the train’s engine is repaired and it gets on its way, we might want to describe
its motion. At 3:14 P.M. it leaves its initial position, 3 km east of the origin (Fig. 3.1). At
3:56 P.M. the train is 26 km west of the origin, which is 29 km to the west of its initial
position. Displacement is defined as the change of position; it is written ∆r��, where the
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• net force: vector 
addition (Section 2.4)

• free-body diagrams 
(Section 2.4)

• gravitational 
force (Section 2.5)

• internal and external forces
(Section 2.4)

Concepts & Skills to Review

Making The Connection:
motion of a train

W E

26 km west 3 km east
rf r0

trestle
bridge

initial position
3:14 P.M.

3 km 10 km–26 km origin

0

26 km west 3 km west
rf –r0 

29 km west
∆r ∆r = rf – r0

final position
3:56 P.M.

Figure 3.1 Initial (r��0) and final (r��f) position vectors for a train; the displacement vector ∆r�� is found by subtracting the vector for the initial position
from the vector for the final position. 
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symbol ∆ means the change in, or the final value minus the initial value. If the initial
and final positions are r��0 and r��f, then 

3.1 Position and Displacement 63

Conceptual Example 3.1

A Relay Race
A relay race is run along a straight line track of
length L running south to north. The first runner
starts at the south end of the track and passes the

baton to a teammate at the north end of the track. The teammate
races back to the start line and passes the baton to a third team-
mate who races 1/3 of the way northward to a finish line. What
is the baton’s displacement during the race?

Strategy The displacement of the baton is the vector from
the starting point to the finish point; it is the vector sum of the
displacements of each runner.

Solution The displacement is the vector sum of the three sepa-
rate displacements that occurred during the race (Fig. 3.2). Since
the first two displacements are equal in magnitude but in opposite
directions, their vector sum is zero. The total displacement is then
equal to the 3rd displacement, from the origin to the finish line,
located 1/3 of the way along the track north of the starting point. 

∆r�� = (∆r��1 + ∆r��2) + ∆r��3

= 0 + ∆r��3 = �
1
3

�L, directed north

Discussion Note that the displacement magnitude is less than
the total distance traveled by the baton (2 �

1
3

�L). The distance

Path followed

NS 2/3 3/31/30
Origin

Start of 
race End of 

race

End of
track

∆r3

∆r2

∆r1
Figure 3.2
Baton displacements during race; vector
sum of displacements

Displacement

∆r�� = r��f – r��0 (3-1)

The symbol ∆ stands for the change
in. If the initial value of a quantity Q
is Q0 and the final value is Qf, then
∆Q = Qf – Q0. ∆Q is read “delta Q.”

Displacement depends only on the
starting and ending positions, not on
the path taken.

Since the positions are vector quantities, the operation indicated in Eq. (3-1) is a vector
subtraction. To subtract a vector is to add its opposite, so r��f – r��0 = r��f + (–r��0). Vectors
representing the initial and final positions are shown as arrows in Fig. 3.1 and the vector
subtraction is indicated. The displacement or change of position ∆r�� is shown; it is a
vector of magnitude 29 km pointing west. 

As a shortcut to subtract r��0 from r��f, instead of adding –r��0 to r��f, we can simply draw
an arrow from the tip of r��0 to the tip of r��f when the two vectors are drawn starting from
the same point, as in the uppermost vector diagram of Fig. 3.1. This shortcut works
because the displacement vector is the change of position; it takes us from the initial
position to the final position. Since all vectors add and subtract according to the same
rules, this same method can be used to subtract any kind of vector—as long as the vec-
tors are drawn starting with their tails at the same point.

Notice that the magnitude of the displacement vector is not necessarily equal to the
distance traveled by the train. Perhaps the train first travels 7 km to the east, putting it
10 km east of the origin, and then reverses direction and travels 36 km to the west. The
total distance traveled in that case is (7 km + 36 km) = 43 km, but the magnitude of the
displacement—which is the distance between the initial and final positions—is 29 km.
The displacement, since it is a vector quantity, must include the direction; it is 29 km to
the west.

continued on next page
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64 Chapter 3 Forces and Motion Along a Line

Vector Components
Since our universe has three spatial dimensions, positions in space are specified using
a three-dimensional coordinate system, with x-, y-, and z-axes that are mutually per-
pendicular. Any vector can be specified either by its magnitude and direction or by its
components along the x-, y-, and z-axes. The x-, y-, and z-components of vector A�� are
written with subscripts as follows: Ax, Ay, and Az. One exception to this otherwise con-
sistent notation is that the components of the position vector r�� are usually written sim-
ply as x, y, and z rather than rx, ry, and rz. The components themselves are scalars,
which have a magnitude, units, and an algebraic sign. The sign indicates the direction;
a positive x-component indicates the direction of the positive x-axis, while a negative
x-component indicates the opposite direction (the negative x-axis). Specifying the
components of a vector is as complete a description of the vector as is giving the mag-
nitude and direction. 

This chapter concentrates on motion along a straight line. If we choose one of
the axes along that line, then the position, displacement, velocity, and acceleration
vectors each have only one nonzero component. For horizontal linear motion, we
usually choose the x-axis to lie along the direction of motion. For objects that move
vertically, it is conventional to use the y-axis instead. One direction along the axis is
chosen to be positive. Customarily the direction to the right of the origin is called the
positive direction for a horizontal axis and upward is called the positive direction for
a vertical axis. If vector A�� points along the x-axis in the direction of +x (to the right),
then Ax = +|A�� |; if A�� points in the opposite direction—in the direction of –x (to the
left)—then Ax = – |A�� |. 

In Fig. 3.1 the compass arrows indicate that east is chosen as the direction for the
positive x-axis. Using components, the train of Fig. 3.1 starts at x = +3 km and is later
found at x = –26 km. The displacement (in component form) is ∆x = xf – x0 = –29 km.
The sign of the component indicates the direction. Since the positive x-axis is east, a
negative x-component means that the displacement is to the west.

The rules for adding vectors translate into adding components with their algebraic
signs. If ��C = A�� + ��B, then Cx = Ax + Bx, Cy = Ay + By, and Cz = Az + Bz. Components
become increasingly useful when adding vectors having more than one nonzero compo-
nent. We can also subtract vectors by subtracting their components, since reversing the
direction of a vector changes the sign of each of its components. 

The sign of a vector component
indicates the direction.

Conceptual Example 3.1 continued

traveled depends on the path followed, while the magnitude of
the displacement is always the shortest distance between the
two points of interest. The displacement vector shows the
straight line path from starting point to finish point.

Conceptual Practice Problem 3.1 Around the
bases
Casey hits a long fly ball over the heads of the outfielders. He
runs from home plate to first base, to second base, to third
base, and slides back to home plate safely (an inside-the-park
home run). What is Casey’s total displacement? 
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3.2 Velocity 65

Example 3.2

A Stubborn Mule
In an attempt to get a mule moving in a horizontal
direction, a farmer stands in front of the mule and
pulls on the reins with a force of 320 N to the east

while his son pushes on the mule’s hindquarters with a force of
110 N to the east. In the meantime the mule pushes on the
ground with a force of 430 N to the east (Fig. 3.3a). Use vector
components to find the sum of the horizontal forces acting on
the mule. Draw a vector diagram to verify the result. 

Strategy We are interested in the forces acting on the mule.
One force given in the problem statement is a force exerted on
the ground (by the mule). From Newton’s third law, the ground
pushes back on the mule with a force of equal magnitude and
opposite direction; therefore, we needed to know this force to
determine one of the horizontal forces acting on the mule. Other
forces acting on the mule that have not been explicitly stated are
the mule’s weight and the normal force on the mule due to the
ground. These two are vertical forces: the weight is downward
and the normal force is upward; these forces do not concern us
since they have no effect on the horizontal motion of the mule.
Therefore, we are left with three horizontal forces to sum. When
finding vector components, we must first choose a direction for
the positive x-axis. Here we choose east as the +x-direction. 

Given: Force on mule by farmer: ��Fmf = 320 N to the east; 
force on mule by boy: ��Fmb = 110 N to the east; horizon-
tal force on g–round by mule: ��Fgm = 430 N to the east.

To find: Sum of horizontal forces on mule

Solution From Newton’s third law, the ground pushes on the
mule with a force equal and opposite to that of the mule on the
ground; therefore, the ground pushes on the mule with a force

��Fmg of 430 N to the west. The other two horizontal forces act-
ing on the mule are directed to the east. Now we can drop the
“m” subscripts since we deal only with the three forces acting
on the mule (��Fmf becomes ��Ff, etc.). The x-components of
forces directed to the east (Ffx and Fbx) are positive, since we
chose east as the +x-direction. The x-component of the one
force directed to the west (Fgx) is negative. Notice that the 
F’s are not in bold-faced type because we are now talking
about components of vectors; components are scalars. Then 
Ffx = +320 N, Fbx = +110 N, and Fgx = –430 N.

ΣFx = Ffx + Fbx + Fgx

ΣFx = 320 N + 110 N + (–430 N) = 0

The sum of the horizontal forces is zero. Drawing the vectors
to scale (Fig. 3.3b) verifies that the vector sum is zero:
��Ff + ��Fb + ��Fg = ��0.

Discussion Each force component has a sign that indicates the
direction along the x-axis in which the force acts. Adding the
three x-components with their algebraic signs gives the x-com-
ponent of the sum. If the sum of the x-components had been pos-
itive, the sum of the vectors would be to the right (east); if it had
been negative, the sum of the forces would be to the left (west). 

Practice Problem 3.2 At last, the mule
cooperates 
The mule finally starts moving and hauls the farmer’s wagon
along a straight road for 4.3 km directly east to the neighboring
farm, where a few bushels of corn are loaded onto the wagon.
Then the farmer drives the mule back along the same straight
road, heading west for 7.2 km to the market. Use vector compo-
nents to find the displacement of the mule from the starting point. 

Fmb + Fmf + Fmg = 0

Fmb Fmf

Fmg

East

(a) (b)

Figure 3.3
(a) A farmer and his son
encouraging their mule to move
and (b) the vector sum of the
horizontal forces on the mule

3.2 VELOCITY

A displacement vector indicates by how much and in what direction the position has
changed, but implies nothing about how long it took to move from one point to the other.
If we want to describe how fast something moves, we would give its speed. But we find
that a more useful quantity than speed is velocity. Speed is a measure of “how fast”: dis-
tance traveled divided by elapsed time (distance traveled per unit time). Velocity
includes the direction of motion as well as the speed: it is defined as displacement

Velocity: a vector that measures
how fast and in what direction
something moves
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66 Chapter 3 Forces and Motion Along a Line

divided by elapsed time (displacement per unit time). Speed, the magnitude of the veloc-
ity vector, is a scalar. 

Average Velocity
Figure 3.4 is a graph showing the position of the train considered in Section 3.1 as a
function of time. The positions of the train at various times are marked with a dot. The
position of the train would have to be measured at more frequent time intervals in order
to accurately trace out the shape of the graph. 

The graph of position versus time shows a curving line, but that does not mean the
train travels along a curved path. The motion of the train is constrained along a straight line
since the track runs in an east-west direction. The graph shows the x-component of the
train’s position as a function of time. 

A horizontal portion of the graph (as from t = 0 to t = 14 min) indicates that the
position is not changing during that time interval. Sloping portions of the graph indicate
that the train is moving. The steeper the graph, the faster its position changes. The slope
is a measure of the rate of change of position. A positive slope (t = 14 min to t = 23 min)
indicates motion in the +x-direction while a negative slope (t = 28 min to t = 56 min)
indicates motion in the –x-direction.

When a displacement ∆r�� occurs during a time interval ∆t, the average velocity v��av

during that time interval is: 

Time t (min)

0 10 20 30 40 50 60

Po
si

tio
n 

x 
(k

m
)

–30

–20

–10

0

10

x (km) +3
t (min) 0

+3
14

+10
23

+10
28

0
40

–26
56

Figure 3.4 Graph of position x ver-
sus time t for the train.

Average velocity

v��av � �
∆
∆
r�
t

�
� (3-2)

Average velocity is a vector because it is the product of a vector, the displacement (∆r��),
and a scalar, the inverse of the time(1/∆t). Since ∆t is always positive, the direction of the
average velocity vector must be the same as the direction of the displacement vector. In
terms of x-components,

vav,x = �
∆
∆

x
t
� (3-3)

The symbol ∆ does not stand alone and cannot be canceled in equations because it mod-
ifies the quantity that follows it; ∆x/∆t is not the same as x/t.

The average velocity does not convey detailed information about the motion during
∆t, just the net effect. During the time interval in question, the object’s motion could
change direction and speed in many ways and still have the same average velocity. For
any given displacement, the average velocity does indicate a constant speed and a
straight line direction that would result in the same displacement during the same
amount of time.

Average velocity is written v��av. 1

Making The Connection:
motion of a train
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3.2 Velocity 67

Suppose a butterfly flutters from a point O on one flower to a point D on another
flower along the dashed line path shown in Fig. 3.5 (path OABCD). The displacement of
the butterfly is the vector arrow ∆r�� from O to D. The average velocity of the butterfly is
the displacement per unit time, ∆r��/∆t; the direction of the average velocity is the same
as the direction of the displacement vector ∆r��. The average velocity does not distin-
guish the actual path of the butterfly from any other path that begins at O and ends at D
over the same time interval ∆t.

Average Velocity of Train
Find the average velocity of the train shown in Fig. 3.1 during
the time interval between 3:14 P.M., when the train is 3 km east
of the origin, and 3:56 P.M., when it is 26 km west of the origin. 

Strategy We already know the displacement ∆r�� from Fig.
3.1. The direction of the average velocity is the direction of the
displacement.

Known: Displacement ∆r�� = 29 km west; start time = 3:14 P.M.;
finish time = 3:56 P.M.

To find: v��av

Solution From Section 3.1, the displacement is 29 km to the
west: 

∆r�� = 29 km west 

The time interval is 

∆t = 56 min – 14 min = 42 min 

We convert the time interval to hours, so that we can use units
of km/h.

∆t = 42 min × �
60

1
m
h

in
� = 0.70 h

The average velocity is

vv��av = �
d
ti
i
m
sp

e
la
i
c
n
e
te
m
rv
e
a
n
l
t

� = �
∆
∆
r�
t

�
�

v��av = �
29

0
k
.
m
70

w
h
est

� = 41 km/h to the west

We can also use components to express the answer to
this question. Assuming a positive x-axis pointing east, the

x-component of the displacement vector is ∆x = –29 km,
where the negative sign indicates that the vector points to
the west. Then

vav,x = �
∆
∆

x
t
� = �

–
0
2
.
9
70

km
h

� = –41 km/h

The negative sign shows that the average velocity is directed
along the negative x-axis, or to the west.

Discussion If the train had started at the same instant of
time, 3:14 P.M., and had traveled directly west at a constant 41
km/h, it would have ended up in exactly the same place—26
km west of the trestle bridge—at 3:56 P.M. 

Had we started measuring time from when we first spot-
ted the motionless train at 3:00 P.M., instead of 3:14 P.M., we
would have found the average velocity over a different time
interval, changing the average velocity. 

The average velocity depends on the time interval con-
sidered.

Practice Problem 3.3 Average velocity of the
baton from the relay race
Consider the baton from the relay race of Conceptual
Example 3.1. For the winning team, the magnitudes of the
average velocities of the first, second, and third runners are
7.30 m/s, 7.20 m/s, and 7.80 m/s, respectively. If the length of
the track is 3.00 × 102 m, what is the average velocity of the
baton for the entire race? [Hint: Find the time spent by each
runner in completing her portion of the race.]

Example 3.3

Origin Path followed

r

O

D

CB

A

∆

r∆

t∆vav =

Figure 3.5 Path followed by a 
butterfly, fluttering from one flower to
another.
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68 Chapter 3 Forces and Motion Along a Line

In Example 3.3, the magnitude of the train’s average velocity is not equal to the total
distance traveled divided by the time interval for the complete trip. That quantity is
called the average speed:

average speed = �
dista

to
n
t
c
a
e
l t

t
i
r
m
av

e
eled

� = �
4
0
3
.7

k
0
m
h

� = 61 km/h

The distinction arises because the average velocity is the average of a vector quantity
whereas the average speed is the average of a scalar. 

Instantaneous Velocity
The speedometer of a car does not indicate the average speed, but shows how fast the
car is going at any instant in time—the instantaneous speed. When a speedometer reads
55 mi/h, it does not necessarily mean that the car will travel 55 miles in the next hour;
the car could change its speed or stop during that hour. The speedometer reading indi-
cates how far the car will travel during a very short time interval—short enough that the
speed does not change appreciably. For instance, at 55 mi/h (= 25 m/s), we can calculate
that in 0.010 s the car moves 25 m/s × 0.010 s = 0.25 m—assuming the speed does not
change significantly during that 0.010 s interval.

The instantaneous velocity is a vector quantity whose magnitude is the instanta-
neous speed and whose direction is the direction of motion. The direction of an object’s
instantaneous velocity at any point is tangent to the path of the object at that point.
Repeating the word instantaneous can get cumbersome. When we refer simply to the
velocity, we mean the instantaneous velocity. 

The mathematical definition of instantaneous velocity starts with the average
velocity during a short time interval. Then we consider shorter and shorter time inter-
vals ∆t; the corresponding displacements ∆r�� that take place during ∆t get smaller and
smaller. We let the time interval approach—but never reach—zero (Fig. 3.6). (This
mathematical process is called finding the limit and is written lim

∆t→0
.) As ∆t approaches 

zero, the average velocity during the increasingly short time interval approaches the
instantaneous velocity. 

Origin

(a) (b)

∆r = rb – ra
a

A
A

B C

D

O

b

r∆
t∆

r∆
t∆∆t→0

v = lim

vav =

Figure 3.6 (a) A small displacement
∆r�� of a butterfly from point a to point b. If
the time to travel from point a to point b is
∆t, the average velocity during that time 

interval is vv��av = �
∆
∆
r�
t

�
�. (b) As points a and 

b get closer and closer to point A, the 
displacement ∆r�� becomes tangent to the
path of travel at point A. The average
velocity during the displacement from a
to b approaches the instantaneous 
velocity at point A. 

Definition of instantaneous velocity

�v = lim
∆t→0

�
∆
∆
r�
t

�
� (3-4)

Both numerator and denominator in Eq. (3-4) approach zero, but ∆r�/∆t approaches
a limiting value that is neither undefined nor infinite; it can be but is not necessarily
zero. Suppose ∆t is small enough that the velocity is approximately constant during the
interval. If we now cut the time interval ∆t in half, the displacement during the time
interval is also cut in half (or nearly so), so ∆r��/∆t (the average velocity during the inter-
val) changes very little. 

For motion along the x-axis, we can rewrite the definition of velocity in terms of 
x-components:

vx = lim
∆t→0

�
∆
∆

x
t
� (3-5)

The rate of change of a quantity Q
(whether scalar or vector) is 

rate of change of Q = lim
∆t→0

�
∆
∆
Q
t
�

Velocity is the rate of change of
position.
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3.2 Velocity 69

Graphical Relationship between Position and Velocity
How can we determine the instantaneous velocities from a graph of position versus time?
Again, we look at the average velocity during a short time interval. For motion along the
x-axis, the displacement (in component form) is ∆x. Then the average velocity can be rep-
resented on the graph of x versus t as the slope of a line connecting two points (called a
“chord”). In Fig. 3.7a, the displacement ∆x = x3 – x1 is the “rise” of the graph and the time
interval ∆t = t3 – t1 is the “run” of the graph. The slope of the graph is the “rise over run,”
which is equal to the average velocity ∆x/∆t = vav,x for that time interval.

To find the instantaneous velocity at some time t = t2, we draw lines showing the aver-
age velocity for smaller and smaller time intervals. As the time interval is reduced (Fig.
3.7b), the average velocity changes. As ∆t → 0, the chord approaches a tangent to the graph.
Therefore, vx is the slope of the line tangent to the graph of x versus t at the chosen time.

Average and instantaneous velocities for the train can be found from the graph of
x versus t (Fig. 3.4). Instantaneous velocities are found from the slopes of the tangents
to the curve at various points. Table 3.1 shows some instantaneous velocities of the
train in km/min along with equivalent velocities in m/s.

What about the other way around? Given a graph of the velocity as a function of
time (vx versus t), how can we determine displacements? For motion along a straight
line it is most convenient to work in terms of the x-components of velocity and dis-
placement (vx and ∆x). If vx is constant during a time interval, then the average velocity
is equal to the instantaneous velocity:

vx = vav,x = �
∆
∆

x
t
�

and therefore ∆x = vx ∆t (for constant vx)

The graph of Fig. 3.8 shows vx versus t for an object moving along the x-axis with con-
stant speed v1 from time t1 to t2. The displacement ∆x during the time interval ∆t = t2 – t1 is
v1∆t. The shaded rectangle has “height” v1 and “width” ∆t. Since the area of a rectangle is
the product of the height and the width, the displacement ∆x is represented by the area of
the rectangle between the graph of vx(t) and the time axis for the time interval considered. 

Time

D
is

pl
ac

em
en

t

t1 t3t2

Slope of tangent gives
instantaneous velocity

Slope of chord
gives average
velocity over
time interval

x3
x2

x1

Slope of tangent gives
instantaneous velocity

Slope of chord
gives average
velocity over
time interval

Time

D
is

pl
ac

em
en

t

t1 t3t2

x3
x2
x1

(a) (b)

Figure 3.7 Instantaneous velocity
at time t2 is the slope of the tangent to the
curve of displacement versus time at that
time: (a) average velocity measured over
a longer time interval and (b) average
velocity measured over a shorter time
interval 

Table 3.1

Velocities Determined from the Graph of Fig. 3.4

t (min) 14 16 19 21 23 28 32 38 47 56

vx (km/min) 0 0.5 1.8 0.7 0 0 –0.5 –1.3 –2.0 –1.3

vx (m/s) 0 8.3 30 11 0 0 –8.3 –22 –33 –22

t1 t2
t

v1

vx

∆x

Figure 3.8 Displacement ∆x
between t1 and t2 is represented by the
shaded area under the vx(t) graph.

vx is the slope of the graph of x
versus t
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70 Chapter 3 Forces and Motion Along a Line

When we speak of the area under a graph, we are not talking about the literal number
of square centimeters of paper or computer screen. The figurative area under a graph usu-
ally does not have dimensions of an ordinary area ([L]2). In a graph of vx versus t, vx has
dimensions [L]/[T] and time has dimensions [T]; areas on such a graph have dimensions 

�
[
[
L
T

]
]

� × [T] = [L], which is correct for a displacement. The units of ∆x are determined by the 

units used on the axes of the graph. If vx is in meters per second and t is in seconds, then
the displacement is in meters.

What if the velocity is not constant? The displacement ∆x during a very small time
interval ∆t can be found in the same way as for constant velocity since, during a short
enough time interval, the velocity does not change appreciably. Then vx and ∆t are the
height and width of a narrow rectangle (Fig. 3.9a) and the displacement during that
short time interval is the area of the rectangle. To find the total displacement during any
time interval, the areas of all the narrow rectangles are added together. 

In Fig. 3.9b the time from t1 to t2 is subdivided into many short time intervals so
that many narrow rectangles of varying heights are formed. The width ∆t is allowed to
approach zero and the areas of the rectangles are added together. The total displacement
∆x between t1 and t2 is the sum of the areas of the rectangles. Thus, the displacement ∆x
during any time interval equals the area under the graph of vx(t) (Fig. 3.9c). If vx is
negative, x is decreasing and the displacement is negative, so we must count the area as
negative when it is below the time axis. 

The magnitude of the train’s displacement from time t = 14 min to time t = 23 min
is the area under the vx versus t graph during that time interval. In Fig. 3.10 the area

vx

(a)

∆t t t t

(b)

t1 t2

(c)

∆x

vx

t1 t2

vx

During a very
small ∆t,
∆x = vx  ∆t

Figure 3.9 Displacement ∆x is the
area under the vx versus time graph for
the time interval considered.

t (min)

60504030200 10

30

20

10

0

–10

–20

–30

vx (t)
(m/s)

Figure 3.10 Train velocity versus
time from t = 14 to 56 min using values
from Table 3.1.

∆x is the area under the graph of 
vx versus t.
The area is negative when the graph
is beneath the time axis (vx < 0).
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3.3 Acceleration 71

under the graph for that time interval is shaded. One way to estimate the area is to count
the number of grid boxes under the curve. Each box is 2 m/s in height and 5 min (300 s)
in width, so each box represents an “area” (displacement) of 2 m/s × 300 s = 600 m.
When counting the number of boxes under the curve, we make our best estimate for the
fraction of the boxes that are only partly below the curve.

The total number of shaded boxes for this time interval is about 12, so the displace-
ment magnitude is 12 × 0.60 km ≈ 7 km, as expected—during this time interval the train
went from +3 km to +10 km. To get more exact measurements of areas under a curve,
we could divide the area into a finer grid. 

The shaded area for the time interval t = 28 min to t = 56 min is below the x-axis,
indicating a negative “area” or negative displacement. During this interval the train is
headed west (in the –x-direction). The number of shaded grid boxes in this interval is
approximately 60. The magnitude of the displacement is the product of the number of
boxes times “area” of a single box and is negative since vx is negative; ∆x ≈ –(60) ×
(0.60 km) ≈ –36 km. By adding this value to the displacement during the first 14 min,
we have the total displacement from t = 0 to t = 56 min:

∆x = +7 km + (–36 km) = –29 km

which agrees with Fig. 3.1.

3.3 ACCELERATION

One goal of this chapter is to quantify changes in velocity, so we can predict the effect on
an object’s motion of a nonzero net force. Just as we defined velocity in terms of displace-
ments and time intervals, now we define acceleration in terms of changes in velocity and
time intervals. The average acceleration during a time interval ∆t is defined to be 

a��av = �
v��
t
f

f

–
–

v
t

��

0

0� = �
∆
∆
v�
t

�
� (3-6)

The velocity vector can change magnitude, direction, or both. Acceleration is a vector
quantity because it is the product of a scalar1/∆t and a vector ∆v��; the direction of the
average acceleration is the direction of the vector ∆v��. The direction of the change in
velocity ∆v�� is not necessarily the same as either the initial or the final velocity direction. 

Just as instantaneous velocity is the limit of average velocity as the time interval
approaches zero, the instantaneous acceleration is defined as the limit of the average
acceleration as the time interval approaches zero.

a�� = lim
∆t→0

�
∆
∆
v�
t

�
� (3-7)

The instantaneous acceleration is the rate of change of the velocity.
The SI units of acceleration are m/s2, read as “meters per second squared.” Just as

with instantaneous velocity, the word instantaneous is not always repeated; acceleration
without the adjective means instantaneous acceleration. 

In physics, the word acceleration does not necessarily mean speeding up. A veloc-
ity can also change by decreasing speed or by changing direction. A car going around a
curve at constant speed has a nonzero acceleration because its velocity is changing; the
change is in the direction of the velocity rather than in the magnitude. Of course, both
the magnitude and direction of the velocity can be changing simultaneously, as when a
skateboarder goes up a curved ramp. 

Acceleration is the rate of change of
velocity.
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Both velocity and acceleration measure rates of change: velocity is the rate of
change of position and acceleration is the rate of change of velocity. Therefore the
graphical relationship of acceleration to velocity is the same as the graphical relation-
ship of velocity to position: ax is the slope of a vx(t) graph and ∆vx is the area under an
ax(t) graph. On a graph of any quantity Q as a function of time, the slope of the graph
represents the instantaneous rate of change of Q. On a graph of the rate of change of Q
as a function of time, the area under the graph represents ∆Q.

72 Chapter 3 Forces and Motion Along a Line

Direction of Acceleration 
While Slowing Down

When Damon approaches a stop sign on his motor
scooter, he “decelerates” before coming to a full
stop. If he moves in the negative x-direction while

he slows down, is the scooter’s acceleration component, ax,
positive or negative?

Strategy and Solution The term “decelerate” is not a scientific
term. In common usage it means the scooter is slowing: the
scooter’s velocity is decreasing in magnitude. The acceleration
vector aa�� points in the direction of the change in the velocity vec-
tor ∆v�� during a short time interval. Since the velocity is decreas-
ing in magnitude, the direction of ∆v�� is opposite to v�� (Fig. 3.11).
The acceleration vector is in the same direction as ∆v��—the posi-
tive x-direction. Thus ax is positive (see Fig. 3.12). 

v1

v

v1v2

∆

+x

v2

Figure 3.11
The velocity vectors at two 
different times as the scooter
moves to the left with 
decreasing speed. The change
in velocity ∆v�� = v��2 – v��1 is to
the right.

t (s)

v x
 (

m
/s

)
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–2

–4
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10

Figure 3.12
In this graph of vx versus t, as Damon is stopping, vx is negative, while
ax (the slope) is positive. The value of vx is increasing, but—since it is
less than zero to begin with and is getting closer to zero as time goes
on—the speed is decreasing.

Conceptual Example 3.4

Example 3.5

Acceleration of Sports Car
A sports car can accelerate from 0 to 30.0 m/s in 
4.7 s according to the advertisements. Figure 3.13
shows data for the speed of the car as a function of

time as the sports car starts from rest and accelerates to 60.0 m/s
while traveling in a straight line headed east. 

(a) What is the average acceleration of the sports car from 0
to 30.0 m/s?

(b) What is the maximum acceleration of the car? 
(c) How far has the car traveled when it reaches 60.0 m/s? 
(d) What is the car’s average velocity during the entire 19.2 s

interval?

Strategy The velocity of the car is always in the same direc-
tion. If we choose that direction as the +x-axis, the x-component
of the car’s velocity is always positive. Therefore, vx is equal to

ax is the slope of a vx(t) graph.
∆vx is the area under an ax(t) graph.

continued on next page

Practice Problem 3.4 Continuing on his way
As Damon pulls away from the stop sign, continuing in the
–x-direction, his speed gradually increases. What is the sign 
of ax?

the car’s speed (which is the magnitude of the velocity). We can
reinterpret the graph as a graph of vx versus t.

(a) To find the average acceleration, the change in veloc-
ity for the time interval is divided by the time interval. (b) The
instantaneous acceleration is the slope of the velocity graph,
so it is maximum where the graph is steepest. At that point,
the velocity is changing at a high rate. We expect the maxi-
mum acceleration to take place early on; the magnitude of
acceleration must decrease as the velocity gets higher and
higher—there is a maximum velocity for the car, after all. (c)
The displacement is the area under the vx(t) graph. The graph
is not a simple shape such as a triangle or rectangle, so an esti-
mate of the area is made. (d) Once we have a value for the dis-
placement, we can apply the definition of average velocity.

gia24076_ch03.qxd  8/9/02  8:15 AM  Page 72



3.3 Acceleration 73

When the acceleration and the velocity of an object are both pointing in the same
direction, the object is speeding up. In terms of components, ax and vx must either both
be positive or both be negative when speed is increasing. When they are both positive,

Example 3.5 continued

Given: Graph of v(t) in Fig. 3.13

To find: (a) aaaav,x for vx = 0 to 30.0 m/s; (b) amax; (c) ∆x from vx

= 0 to 60.0 m/s; (d) vav,x from t = 0 to 19.2 s

Solution (a) During the first 4.7 s, the car is moving in a
straight line to the east, so the average component of accelera-
tion in the east direction is, by definition,

aav,x = �
∆
∆
v
t
x� = �

30
4
.0
.7

m
s
/s

� = 6.4 m/s2

The positive sign indicates the acceleration is directed to the
east. On average, then, the car’s velocity increases 6.4 m/s
each second during the first 4.7 s.

(b) The acceleration, at any instant of time, is the slope of the
tangent line to the vx(t) graph, at that time. To find the maxi-
mum acceleration, notice where the graph is steepest. In this
case, the largest slope occurs near t = 0, just as the car is start-
ing out. In Fig. 3.13, a tangent line to the vx(t) graph at t = 0
passes through t = 0. Values for the change in velocity and
change in time are read from the graph; the tangent line passes
through the two points (t = 0, vx = 0 and t = 6.0 s, vx = 55 m/s)
on the graph so that the change in velocity is 55 m/s for a
change in time of 6.0 s. The slope of this line is

amax = �
r
r
i
u
s
n
e

� = �
5
6
5
.0
m

s
/s

� = +9.2 m/s2

Since the slope is positive, the direction of the acceleration is
east.

(c) Displacement is the area under the vx(t) graph shown
shaded in Fig. 3.13. The area can be estimated by counting the
number of grid boxes under the curve. Each box is 5.0 m/s in
height and 2.0 s in width, so each represents an “area” (dis-
placement) of 10 m. When counting the number of boxes
under the curve, a best estimate is made for the fraction of the
boxes that are only partly below the curve. Approximately 75
boxes lie below the curve, so the displacement magnitude is
(75 × 10 m) = 750 m.

(d) The average velocity for the 19.2-s interval is

vav,x = �
∆
∆

x
t
�

= �
7
1
5
9
0
.2

m
s

� = 39 m/s

This result is reasonable; if the acceleration were constant, the
average velocity would be �

1
2

�(0 + 60.0 m/s) = 30.0 m/s. The actual
average velocity is somewhat higher because the acceleration is
greater at the start so less of the time interval is spent going (rela-
tively) slowly and more is spent going fast. The speed is less than
30.0 m/s for only 4.7 s, but is greater than 30.0 m/s for 14.5 s.

Discussion The graph of velocity as a function of
time is often the most helpful graph to have when solv-
ing a problem. If that graph is not given in the problem,

it is useful to sketch one. The v(t) graph shows all three kine-
matic quantities at once: the velocity is given by the points or the
curve graphed, the displacement is the area under the curve, and
the acceleration is the slope of the curve.

Practice Problem 3.5 Braking a car 
An automobile is traveling along a straight road heading to
the southeast at 24 m/s when the driver sees a deer begin to
cross the road ahead of her. She steps on the brake and brings
the car to a complete stop in an elapsed time of 8.0 s. A data
recording device, triggered by the sudden braking action,
records the following velocities and times as the car slows
(Table 3.2). Let the positive x-axis be directed to the south-
east. Plot a graph of vx versus t and find (a) the average accel-
eration as the car comes to a stop and (b) the instantaneous
acceleration at a time of 2.0 s after braking begins.

Table 3.2

Velocities and Times as Car Slows

vx (m/s) 24 17.3 12.0 8.7 6.0 3.5 2.0 0.75 0

t (s) 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

t (s)

0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0
0

10.0

20.0

vx (m/s)

30.0

40.0

50.0

60.0

vx (m/s) 0

t (s) 0

15.0

2.0

20.0

2.9

25.0

3.8

30.0

4.9

35.0

6.2

45.0

9.1

40.0

7.6

50.0

11.2

55.0

14.0

60.0

19.1

55 m/s

Tangent at t = 0

6.0 s

Figure 3.13
Speed as a function of time for a sports car.
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Figure 3.14 An astronaut playing shuffleboard (a) on Earth and (c) on the Moon. Free-body diagrams for a puck being given the same acceleration on a fric-
tionless court on (b) Earth and (d) on the Moon. The contact force on the puck due to the pushing stick (��FC) must be the same since the mass of the puck is the same.

N

FC

Fnet

W

(b)

Fnet

N
FC

W

(d)

Earth Moon

(a) (c)

74 Chapter 3 Forces and Motion Along a Line

the object is moving in the +x-direction and is speeding up. If they are both negative,
the object is moving in the –x-direction and is speeding up.

When the velocity and acceleration point in opposite directions, so that their com-
ponents have opposite signs, the object is slowing down. When vx is positive and ax is
negative, the body is moving in the positive x-direction, but it is slowing down. When
vx is negative and ax is positive, the body is moving in the negative x-direction and is
slowing down (its speed is decreasing). 

The acceleration does not contain any information about the initial velocity.
Acceleration is the rate of change of velocity. Can an object have a velocity of zero and a
nonzero acceleration at the same time? Yes, but the velocity does not remain zero. A ball
thrown straight up into the air has a velocity of zero at its highest point. Its acceleration is
not zero at that point; if it were, the ball would not fall back down. On the way up, the ball’s
velocity is upward and decreasing in magnitude. At the highest point, the velocity is zero
but then the ball starts moving downward. On the way down, the velocity is downward and
increasing in magnitude. For the entire flight of the ball, its acceleration is downward. 

We can define the upward direction as positive or negative as we like; the choice is arbi-
trary, but we must remain consistent throughout a particular problem. For vertical motion,
upward is usually defined as the positive y-direction. For a ball thrown into the air, vy is posi-
tive on the way up and negative on the way down; ay is negative and constant throughout the
motion—on the way up, at the highest point, and on the way down. Since vy and ay have
opposite signs on the way up, the ball is slowing down (the velocity is decreasing in magni-
tude). On the downward trip, vy and ay have the same sign so the ball’s speed is increasing.

3.4 NEWTON’S SECOND LAW:
FORCE AND ACCELERATION

According to Newton’s second law, the acceleration of an object is proportional to the net
force on it and is in the same direction. The larger the net force, the larger the acceleration.
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If the net force is zero, the acceleration is zero and the object moves with constant veloc-
ity—possibly zero velocity, but not necessarily. Newton’s second law also says that the
acceleration is inversely proportional to the object’s mass. The same net force acting on
two different objects causes a smaller acceleration on the object with greater mass. Mass
is a measure of an object’s inertia—the amount of resistance to changes in velocity.

Mass and weight measure different physical properties. The mass of a body is a
measure of its inertia, while weight is a measure of the gravitational force acting on it.
Imagine taking a shuffleboard puck to the Moon. Since the Moon’s gravitational field is
weaker than the Earth’s, the puck’s weight ��W would be smaller. A smaller normal force
��N would be required to hold it up. On the other hand, the puck’s mass, an intrinsic prop-
erty, is the same. Neglecting the effects of friction, an astronaut playing shuffleboard on
the Moon would have to exert the same horizontal force on the puck as on Earth to give
it the same acceleration (Fig. 3.14).

Newton’s law relating net force and acceleration is 

3.4 Newton’s Second Law: Force and Acceleration 75

Newton’s Second Law

��Fnet = ma�� (3-8)

or

Σ��F = ma��

where Σ, the Greek capital letter sigma, stands for the sum of. Σ��F means the sum of all
the forces acting on a system. The order of the symbols in Eq. (3-8) does not reflect a
cause-and-effect relationship; the net force causes the acceleration, not the other way
around. The SI unit of force, the newton, is defined in terms of SI base units so that a 
1-N net force acting on a 1-kg mass produces an acceleration of 1 m/s2; therefore,

1 N = 1 kg•m/s2

When calculating the net force on a system, only external forces need be consid-
ered. According to Newton’s third law, internal forces always add to zero.

Example 3.6

Coupling Force on First 
and Last Freight Cars

A train engine pulls out of a station along a straight
track with five identical freight cars behind it, each
of which weigh 90.0 kN. The train reaches a speed

of 15.0 m/s within 5.00 min of starting out. Assuming the
acceleration is constant, with what magnitude of force must

the coupling between cars pull forward on the first and last of
the freight cars? Ignore friction and air resistance. Assume g =
9.80 N/kg.

Strategy A sketch of the situation is shown in Fig. 3.15a.
We can calculate the acceleration of the train from the initial
and final velocities and the elapsed time. Then we can relate
the acceleration to the net force using Newton’s second law.

T5 T1

N5

W5

a

(a)

(b)

x
y

1
Engine

2345

5

N1–5

W1–5

(c)

1-5

T5 T4 T3 T2 T1

Figure 3.15
(a) An engine pulling five 
identical freight cars. The
entire train has a constant
acceleration �a to the right. 
(b) FBD for car 5. (c) FBD 
for cars 1–5.

continued on next page
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Example 3.7

Two Blocks Hanging on a Pulley
In Fig. 3.16a, two blocks are connected by a massless, flexible
cord that does not stretch; the cord passes over a massless, fric-
tionless pulley. If the masses are m1 = 26.0 kg and m2 = 42.0 kg,

what are the accelerations of each block and the tension in the
cord? The gravitational field strength is 9.80 N/kg.

Strategy Since m2 is greater than m1, the downward pull of
gravity is stronger on the right side than on the left. We expect
m2 to accelerate downward and m1 to accelerate upward.

Since the cord does not stretch, the accelerations of the two
blocks are equal in magnitude. If the accelerations had different
magnitudes, then soon the two blocks would be moving with
different speeds. That could only happen if the cord either
stretches or contracts. The fixed length of the cord constrains the
blocks to move with equal speeds (in opposite directions) at all
times, so the magnitudes of their accelerations must be equal.

The tension in the cord must be the same everywhere
along the cord since the masses of the cord and pulley are neg-
ligible and the pulley turns without friction.

We treat each block as a separate system, draw free-body
diagrams for each, and then apply Newton’s second law to
each. It is convenient to choose the positive y-direction differ-
ently for the two blocks. For each, we choose the +y-axis in
the direction of the acceleration. Doing so means that ay has
the same magnitude and sign for the two.

(b)

m2

+y

(a)

m1

m1g

T

a
1

+y

m2g

T

a
2

Figure 3.16
(a) Two hanging blocks connected on either side of a frictionless 
pulley by a massless, flexible cord that does not stretch. (b) Free-body
diagrams for the hanging blocks. continued on next page

Example 3.6 continued

To find the force of the first coupling, we can consider all five
cars to be one system so that we do not have to worry about
the force exerted on the first car by the second car. Once we
identify a system, we draw a free-body diagram before apply-
ing Newton’s second law.

Given: W = weight of each freight car = 90.0 kN = 9.00 × 104N;
vx = 15.0 m/s at t = 5.00 min = 300 s; v0x = 0 since the
train starts from rest; ax = constant

To find: tensions T1 and T5

Solution The acceleration of the train is 

ax = �
∆
∆
v
t
x� = �

15
3
.
0
0
0
m
s
/s

� = 0.0500 m/s2

First consider the last freight car (car 5). If we ignore fric-
tion and air resistance, the only forces acting are the force ��T5 due
to the tension in the coupling, the normal force ��N5, and the car’s
weight ��W5; an FBD is shown in Fig. 3.15b. The normal force
and the weight are vertical and act in opposite directions. They
must be equal in magnitude; the vertical component of the net
force is zero since the vertical component of the acceleration is
zero. Then the net force is equal to the tension in the coupling.
The mass of the car is m = W/g, where g = 9.80 N/kg = 9.80
m/s2. Then, from Newton’s second law,

T5 = ΣFx = max = �
W
g
� ax

T5 = 9.00 × 104 Ν ×�0.
9
0
.
5
8
0
0
0
m
m
/s
/
2
s2

� = 459 N

For the tension in the first coupling, consider the five cars
as one system. Fig. 3.15c shows an FBD in which cars 1–5 are
treated as a single object. Again, the vertical forces on the sys-
tem add to zero. The only external horizontal force is the force
��T1 due to the tension in the first coupling. The mass of the sys-
tem is five times the mass of one car. Therefore,

T1 = ΣFx = max = (5 × 9.00 × 104 Ν) ×�0.
9
0
.
5
8
0
0
0
m
m
/s
/
2
s2

� = 2.30 kN

Discussion The solution to this problem is much simpler
when Newton’s second law is applied to a system comprised of
all five cars, rather than to each car individually. Although the
problem can be solved by looking at individual cars, to find the
tension in the first coupler you would have to draw five free-
body diagrams (one for each car) and apply Newton’s second
law five times. That’s because each car, except the fifth, is
acted on by the unequal tensions in the couplers on either side.
You’d have to first find the tension in the fifth coupler, then in
the fourth, then the third, and so on.

Practice Problem 3.6 Coupling force between
first and second freight cars
With what force does the coupling between the first and sec-
ond cars pull forward on the second car? [Hint: Try two meth-
ods. One of them is to draw an FBD for the first car and apply
Newton’s third law as well as the second.]
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These steps are helpful in most problems that involve Newton’s second law.

Example 3.7 continued

Given: m1 = 26.0 kg and m2 = 42.0 kg

To find: ay; T

Solution Figure 3.16b shows free-body diagrams for the
two blocks. Two forces act on each: gravity and the pull of the
cord. The acceleration vectors are drawn next to the free-body
diagrams. Thus we know the direction of the net force: it is
always the same as the direction of the acceleration. Then we
know that the tension must be greater than m1g to give block 1
an upward acceleration and less than m2g to give block 2 a
downward acceleration. The +y-axes are drawn for each block
to be in the direction of the acceleration.

From the free-body diagram of block 1, the pull of the
cord is in the +y-direction and the gravitational force is in the
–y-direction. Then 

ΣFy = T – m1g = m1ay

For block 2, the pull of the cord is in the –y-direction and the
gravitational force is in the +y-direction. Therefore,

ΣFy = m2g – T = m2ay

Both T and ay are identical in these two equations. We
then have a system of two equations with two unknowns.
Adding the equations, we obtain

m2g – m1g = m2ay + m1ay

Solving for ay we find

ay = �
(m

m
2

2

–
+

m
m

1

1

)g
�

Substituting numerical values,

ay = = �
1
6
6
8
.
.
0
0

k
k
g
g

� × 9.80 N/kg

ay = 2.31 m/s2

since

1 �
k
N
g
� = 1 �

kg•
k
m
g

/s2

� = 1 m/s2

The blocks have the same magnitude acceleration. For block
1 the acceleration points upward and for block 2 it points
downward.

(42.0 kg – 26.0 kg) × 9.80 N/kg
����

42.0 kg + 26.0 kg

To find T we can substitute the expression for ay into
either of the two original equations. Using the first equation,

T – m1g = m1�
(m

m
2

2

–
+

m
m

1

1

)g
�

Solving for T yields

T = �
m
2

1

m
+
1m

m
2

2
�g

Substituting,

T = × 9.80 N/kg = 315 N

Discussion A few quick checks:

• ay is positive, which means that the accelerations are in
the directions we expect. 

• The tension (315 N) is between m1g (255 N) and m2g
(412 N) as expected.

• The units and dimensions are correct for all equations.

It is also instructive to examine what happens to the
expressions for ay and T for special cases of hanging blocks
with: equal masses, masses just slightly unequal, or one mass
much greater than the other. We often have intuition about
what should happen in such special cases. See Practice
Problem 3.7 for some examples.

Note that we did not find out which way the blocks
move. We found the directions of their accelerations. If

the blocks start out at rest, then the block of mass m2 moves
downward and the block of mass m1 moves upward. However,
if initially m2 is moving up and m1 down, they continue to
move in those directions, slowing down since their accelera-
tions are opposite to their velocities. Eventually, they come to
rest and then reverse directions.

Practice Problem 3.7 Equal and slightly 
unequal masses
Suppose that the blocks attached to the pulley are of equal
mass (m1 = m2). What do the expressions for ay and T yield
in that case? Can you explain why that must be correct?
What if the blocks are only slightly unequal so that their
masses m2 – m1 << m2 ≈ m1? What is the tension in that case?
What about the magnitude of the acceleration? 

2 × 26.0 kg × 42.0 kg
���

68.0 kg

Problem-Solving Strategies for Newton’s Second Law

• Decide what objects will have Newton’s second law applied to them.

• Identify all the interactions affecting that object.

• Draw a free-body diagram to show all the forces acting on the object.

• Find the net force by adding the forces as vectors.

• Use Newton’s second law to relate the net force to the acceleration.

C
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Forces acting on an object determine the motion of the object. The sum of the forces
is the net force, which causes an acceleration. The acceleration is a measure of the rate of
change of the object’s velocity. To describe the motion, one other piece of information is
required: the object’s initial velocity. From the initial velocity and the changes in veloc-
ity caused by the forces acting, the velocity at any later time can be calculated. The
velocity is the rate of change of the position. This strategy for finding the velocity is a tri-
umph of Newton’s method of analyzing and then predicting the motion based on the ini-
tial conditions and the forces acting on the object.
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Example 3.8

Forward Acceleration of a Grocery Cart
Alfredo is shopping at the supermarket (Fig. 3.17a).
Alfredo’s mass is 72 kg and the mass of his shopping
cart plus groceries is 46 kg. At some particular

instant, Alfredo’s foot pushes backward on the floor with a force
of 147 N. What is the acceleration of the cart at that instant? The
forces that oppose the forward motion of the cart—friction in the
rotation of the cart wheels, air resistance, and so on—add to 5 N.

Strategy To simplify this problem we may choose a system
composed of Alfredo and the cart; they move together with the
same acceleration. Two horizontal external forces act on the
system: the forces opposing the motion of the cart, �f, and a
force of the floor pushing forward on Alfredo’s foot. There is no
motion in the vertical direction so the net vertical force is zero;
the weight of the system is equal to the normal force with which
the floor pushes up on the system. We apply both Newton’s
third law and Newton’s second law to solve this problem. 

Given: Alfredo’s mass: m1 = 72 kg
cart + groceries mass: m2 = 46 kg
force on floor by Alfredo: ��FfA= 147 N to the left
force opposing motion of cart: ��f = 5 N to the left

To find: a��

Solution From Newton’s third law, we know that the floor
pushes forward on the system with the same force that
Alfredo pushes backward on the floor. 

��FAf = –��FfA

Since ��FfA is to the left, ��FAf is to the right and of magnitude 147 N.
We draw a free-body diagram (Fig. 3.17b), showing the external
forces acting on the system. Since the vertical acceleration 
component is zero, the free-body diagram indicates that the
weight of the system is balanced by an equal normal force. There
may be a nonzero horizontal acceleration component. The +x-axis
direction is chosen to the right, in the forward direction of the cart.

From Newton’s second law for the vertical direction,

ΣFy = N – (m1 + m2)g = may = 0

and for the horizontal direction,
ΣFx = FAf – ƒ = max

Solving for the acceleration,

ax = �
m
F

1

A

+
f –

m
f

2
�

Substituting the given values,

ax = �
7
1
2
4
k
7
g
N
+

–
4
5
6

N
kg

� = �
1
1
1
4
8
2

k
N
g

� = 1.20 m/s2

The direction of the acceleration is to the right.

f

f

N

(m1 + m2) gF fA

FAf

(a) (b)

Figure 3.17
(a) Alfredo pushes backward
on the floor with force ��FfA

and a force �f opposes the for-
ward motion of the cart; 
(b) a free-body diagram for 
the system of Alfredo and 
cart + groceries.

continued on next page
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3.5 Motion with Constant Acceleration 79

3.5 MOTION WITH CONSTANT ACCELERATION

If the net force acting on an object is constant, then the acceleration of the object is also
constant, both in magnitude and direction. Uniform acceleration is a synonym for con-
stant acceleration.

Three essential relationships between position, velocity, and acceleration can be
used to solve any constant acceleration problem. We write these relationships using
these conventions:

• For motion along the x-axis, write position, velocity, and acceleration in terms of
their x-components (x, vx, ax).

• At a time t = 0, we designate the initial position and velocity as x0 and v0x.

• At a later time t > 0, the position and velocity are x and vx.

Just as the origin of a coordinate system can be chosen at any convenient point in space,
the time at which t = 0 can be freely chosen to be any instant in time—whatever makes
the problem easiest to solve.

The three essential relationships are: First, since the acceleration is constant, the
change in velocity over a given time interval ∆t is just the acceleration—the rate of
change of velocity—times the elapsed time:

∆vx = vx – v0x = ax ∆t for ax constant (3-9)

Second, the displacement is the average velocity times the time interval: 

∆x = x – x0 = vav,x ∆t (3-10)

Equation (3-10) is true whether the acceleration is constant or not; it comes directly
from the definition of average velocity.

Third, since the velocity changes linearly with time, the average velocity is given by 

vav,x = �
v0x

2
+ vx� for ax constant (3-11)

Equation (3-11) is not true in general, but it is true for constant acceleration. To see
why, refer to the velocity versus time graph in Fig. 3.18a. The graph is linear because
the acceleration is constant. The displacement during any time interval is represented
by the area under the v(t) graph. The average velocity is found by forming a rectangle
with an area equal to the area under the curve in Fig. 3.18a, because the average veloc-
ity should give the same displacement in the same time interval. Fig. 3.18b shows that,
to make the area of one colored triangle equal to the area of the other, the average veloc-
ity must be exactly halfway between the initial and final velocities.

If the acceleration is not constant, there is no reason why the average velocity would
have to be exactly halfway between the initial and the final velocity. As an illustration,
imagine a trip where you drive along a straight highway at 80 km/h for 50 min and then
at 60 km/h for 30 min. Your acceleration is zero for the entire trip except during the few
seconds while you slowed from 80 km/h to 60 km/h. The magnitude of your average
velocity would not be 70 km/h. You spent more time going 80 km/h than you did going

vx

v0x

t1 t2

(a)

vx

v0x

t1 t2

(b)

vav,x

Figure 3.18 Finding average
velocity with the aid of a graph

Example 3.8 continued

Discussion By choosing the system to be composed of
Alfredo and the cart and groceries, we did not have to worry
about the forces internal to the system. Alfredo pushes on the
cart handle while the cart handle pushes back on Alfredo’s
hands—these are two internal forces within the system that
cancel each other. The only forces that are of concern for the
motion of the system as a whole are the external forces,
shown in Fig. 3.17b, that act on the system.

Practice Problem 3.8 Alfredo’s pushing force 
What is the force with which Alfredo’s hands push on the gro-
cery cart? [Hint: Choose a new system so that Alfredo is
external to the system and consider forces acting external to
the chosen system.]
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80 Chapter 3 Forces and Motion Along a Line

Other relationships can be formed between the various quantities (displacement,
velocity, acceleration, and time interval), but it is usually better to start with the three
basic relationships and work from there. Any constant acceleration problem can be
solved using just these three, and they are not difficult to remember—two of them are
really definitions. 

Two such relationships that are often useful shortcuts can be derived from Eqs. (3-9)
through (3-11) (see Problems 37 and 38). They are

Example 3.9

Displacement of Motorboat
A motorboat accelerates from rest at a dock with a constant
acceleration of magnitude 2.8 m/s2. After traveling directly to
the east for 140 m the motor is throttled down so that the boat
slows down at 1.2 m/s2 while still moving east until its speed
is 16 m/s. Just as the boat attains the velocity of 16 m/s, it
passes a buoy due east of the dock. What is the total displace-
ment of the motorboat from the dock at that time?

∆x = x – x0 = v0xt + �
1
2

�axt
2 (3-12)

v2
x – v 2

0x = 2ax∆x (3-13)

Note that ∆t is replaced by t because the time interval begins at t = 0 and ∆t = t.
Equation (3-12) is useful when the final velocity is not known, while Eq. (3-13) is use-
ful when the elapsed time is not known. 

We can interpret Eq. (3-12) graphically. Figure 3.19 shows a vx(t) graph for constant-
acceleration motion. The displacement that occurs between t = 0 and a later time t is the
area under the graph for that time interval. Partition this area into a rectangle plus a trian-
gle. The area of the rectangle is 

height × base = v0xt

The height of the triangle is the change in velocity, which is equal to axt. The area of the
triangle is 

�
1
2

� × height × base = �
1
2

� × axt × t = �
1
2

� axt
2

Adding these “areas” gives Eq. (3-12).
Equations (3-9) through (3-13) are called kinematic equations for motion with con-

stant acceleration, since they deal with the relationships between position, velocity,
acceleration, and time, but not with forces.

vx

v0x

v0x

0 t

∆vx = ax ∆t

∆t

Figure 3.19 Graphical interpreta-
tion of Eq. (3-12)

continued on next page

If ax is constant during the entire time interval from t = 0 until a later time t, 
when the time interval is from t = 0 until a later time t, ∆t = t – 0 = t

∆vx = vx – v0x = ax ∆t 

∆x = x – x0 = vav, x ∆t

vav,x = �
v0x

2
+ vx�

60 km/h, so the magnitude of your average velocity would be greater than 70 km/h (see
Problem 16). 

To summarize:

Strategy This problem involves two different values of accel-
eration, so it must be divided into two subproblems. The kine-
matic equations for constant acceleration cannot be applied to a
time interval during which the acceleration changes. But for
each of two time intervals, the acceleration of the boat is con-
stant. The two subproblems are connected by the position and
velocity of the boat at the instant that the acceleration changes. 

For the first subproblem, the boat speeds up with a con-
stant acceleration of 2.8 m/s2 to the east. We know the acceler-
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Example 3.9 continued

(2) For the second interval the initial velocity is the final
velocity for the first interval: v0x = +28 m/s. Then

v2
x – v2

0x = 2ax ∆x

This time we solve for the displacement.

∆x = �
v2

x

2
–
a
v

x

2
0x�

∆x = = +220 m 

And the total displacement is 

∆x = ∆x1 + ∆x2 = 140 m + 220 m = +360 m

The boat is 360 m east of the dock.

Discussion This problem is solved by applying the same
kinematic equation twice, once to find a velocity and once to
find a displacement. The natural division of the problem into
two parts occurs because the boat has two different constant
accelerations during two different time periods. 

In problems that can be subdivided in this way, the final
velocity found in the first part becomes the initial velocity for
the second part. The same is true for position.

Practice Problem 3.9 Time to reach buoy and
average velocities
(a) What is the time required by the boat in the previous
example to reach the buoy? (b) Find the average velocity for
the entire trip from the dock to the buoy.

(16 m/s)2 – (28 m/s)2

���
2 × (–1.2 m/s2)

Visualizing Motion with Constant Acceleration
In Fig. 3.20 three carts move in the same direction with three different values of con-
stant acceleration. The position of each cart is depicted as it would appear in a strobo-
scopic photograph with one picture taken every second.

The yellow cart has zero acceleration and therefore constant velocity. During each
1.0-s time interval its displacement is the same: 1.0 m/s × 1.0 s = 1.0 m to the right.

The red cart has a constant acceleration of 0.2 m/s2 to the right. Although m/s2 is
normally read “meters per second squared,” it can be useful to think of it as “m/s per sec-
ond”: the cart’s velocity changes by 0.2 m/s during each 1.0-s time interval. In this case,

x (m)

Positions of the carts at 1.0 s intervals

0 1 2 3 4 5 6 7 8

ax = 0.2 m/s2,
v0x = 1.0 m/s

ax = –0.2 m/s2,
v0x = 2.0 m/s

ax = 0,
v0x = 1.0 m/s

1.0 m/s 1.0 m/s 1.0 m/s 1.0 m/s 1.0 m/s1.0 m/s

1.0 m/s 1.2 m/s 1.4 m/s 1.6 m/s 1.8 m/s 2.0 m/s

2.0 m/s 1.8 m/s 1.6 m/s 1.4 m/s 1.2 m/s 1.0 m/s
Figure 3.20 Each cart is shown as
if stroboscopic photographs were taken
with time intervals of 1.0 s between
flashes. The arrows above each cart indi-
cate velocity vectors as the strobe flashes
occur. 

Adding the displacements for the two time intervals gives
the total displacement.

Solution (1) To find vx without knowing the time, the most
convenient kinematic equation is

v2
x – v2

0x = 2ax ∆x

Solving for vx,

vx = �v2
0x + 2�ax ∆x�

vx = �0 + 2 ×� 2.8 m/�s2 × 14�0 m� = +28 m/s

First subproblem: v0x = 0; ax = +2.8 m/s2

∆x = 140 m; find vx

For the second subproblem, we know acceleration, final
velocity, and we have just found initial velocity from the first
subproblem. Since the boat is slowing down, its acceleration
is in the direction opposite its velocity; therefore ax is nega-
tive. From these three quantities we can find the displacement
of the boat during the second time interval. 

Second subproblem: v0x comes from first subproblem

ax = –1.2 m/s2; vx = +16 m/s; find ∆x

ation, the displacement (140 m east), and the initial velocity:
the boat starts from rest, so the initial velocity is zero. We
need to calculate the final velocity, which then becomes the
initial velocity for the second subproblem. The boat is always
headed to the east, so we let east be the positive x-direction. 
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82 Chapter 3 Forces and Motion Along a Line

acceleration is in the same direction as the velocity, so the velocity increases (Fig. 3.21a).
The displacement of the cart during successive 1.0-s time intervals gets larger and larger. 

The blue cart experiences a constant acceleration of 0.2 m/s2 in the –x-direction—
the direction opposite to the velocity. The magnitude of the velocity then decreases
(Fig. 3.21b); during each one-second interval the speed decreases by 0.2 m/s. Now the
displacements during one-second intervals get smaller and smaller. 

Figure 3.22 shows graphs of x(t), vx(t), and ax(t) for each of the carts. The accelera-
tion graphs are horizontal since each of the carts has a constant acceleration. All three vx

graphs are straight lines. Since ax is the rate of change of vx, the slope of the vx graph at
any value of t is ax at that value of t. With constant acceleration, the slope is the same
everywhere and the graph is linear. Note that a positive ax does mean that vx is increas-
ing, but not necessarily that the speed is increasing; if vx is negative then a positive ax

indicates a decreasing speed. (See Conceptual Example 3.4 and Fig. 3.12.) Speed is
increasing when the acceleration and velocity are in the same direction (ax and vx both
positive or both negative). Speed is decreasing when acceleration and velocity are in
opposite directions—when ax and vx have opposite signs. 

The position graph is linear for the yellow cart because it has constant velocity. For
the red cart the slope of the x(t) graph increases, showing that vx is increasing; for the
blue cart the slope of the x(t) graph decreases, showing that vx is decreasing. 

∆v = a ∆t

(a)

(b)

v

v + ∆v

v + ∆v
∆v = a ∆t

v

Figure 3.21 (a) If the acceleration
is parallel to the velocity, then the change
in velocity (∆v�� = a�� ∆t) is also parallel to
the velocity. The result is an increase in
the magnitude of the velocity: the object
speeds up. (b) If the acceleration is
antiparallel (parallel but pointed in oppo-
site direction) to the velocity, then the
change in velocity (∆v�� = a�� ∆t) is also
antiparallel to the velocity. The result is a
decrease in the magnitude of the veloc-
ity: the object slows down. 
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0
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Figure 3.22 Plots of position,
velocity, and acceleration along the 
x-axis for the carts of Fig. 3.20.
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Example 3.11

Two Blocks, One Sliding 
and One Hanging
A block of mass m1 = 3.0 kg rests on a frictionless horizontal
surface. A second block of mass m2 = 2.0 kg hangs from a flex-
ible cord of negligible mass that runs over an ideal pulley and
then is connected to the first block (Fig. 3.23a). The blocks are
released from rest. (a) Find the accelerations of the two blocks
after they are released. (b) Find the tension in the cord connect-
ing the blocks. (c) What is the velocity of the first block 1.2 s
after the release of the blocks, assuming the first block does not
run out of room on the table and the second block does not
land on the floor? (d) What is the minimum distance from the
pulley for block 1 to be located so that it can attain the velocity
found in part (c)? 

Strategy We consider each block as a separate system and
draw a free-body diagram for each. The tension in the cord is
the same at both ends of the cord since the cord and pulley are
ideal. We choose the +x-axis to the right and the +y-axis up.
To find the accelerations of the blocks (which are equal in
magnitude if the cord length is fixed) and the tension in the
cord, we apply Newton’s second law. Then we use kinematic
equations for constant acceleration to answer (c) and (d).

Given: m1 = 3.0 kg; m2 = 2.0 kg; v��0 = 0 for both; ∆t = 1.2 s

Solution (a) Figure 3.23b shows free-body diagrams for the
two blocks. Block 1 slides along the table surface, so the verti-
cal component of acceleration is zero; the normal force must

m2g

(a) (b)

m1

m2
m1g

N
T

T
1 2

+y

+x

Figure 3.23
(a) Two blocks connected by a cord, one supported by
a frictionless table and one hanging freely and 
(b) free-body diagrams for blocks 1 and 2 with force
magnitudes labeled.

continued on next page

Example 3.10

Drag-Racing Spaceships
Two spaceships are moving from the same starting point in
the +x-direction with constant accelerations. In component
form, the silver spaceship starts with an initial velocity of
+2.00 km/s and has an acceleration of +0.400 km/s2. The
black spaceship starts with a velocity of +6.00 km/s and has
an acceleration of –0.400 km/s2. Find the time at which the
silver spaceship just overtakes the black spaceship. 

Strategy We can find the positions of the spaceships at later
times from the initial velocities and the accelerations. At first,
the black spaceship is moving faster, so it pulls out ahead.
Later, the silver ship overtakes the black ship when their
positions are equal.

Solution The position of either spaceship at a later time is
given by

x = x0 + v0xt + �
1
2

�at2

We set the positions of the spaceships equal to each other 
(xsilver = xblack) and solve algebraically for the time at which
this occurs. The initial positions are the same: x0s = x0b = x0.

x0 + v0sxt + �
1
2

�asxt
2 = x0 + v0bxt + �

1
2

�abxt
2

Subtracting x0 from each side, moving all terms to one side,
and factoring out one power of t yields 

t(v0sx + �
1
2

�asxt – v0bx – �
1
2

�abxt) = 0

One solution of the equation is t = 0 (the two spaceships at the
same initial position). That is not the solution we seek, so the
expression in the parentheses must be equal to zero. Solving for t,

t = �
2(v

a
0

b

s

x

x

–
–

a
v

s

0

x

bx)� = = 10.0 s

The silver spaceship overtakes the black spaceship at t = 10.0 s.

Discussion Quick check: the two ships must have the same
displacement at t = 10.0 s. 

∆xs = v0sxt + �
1
2

�asxt
2

= 2.00 km/s × 10.0 s + �
1
2

� × 0.400 km/s2 × (10.0 s)2 = 40.0 km

∆xb = v0bxt + �
1
2

�abxt
2

= 6.00 km/s × 10.0 s + �
1
2

� × (–0.400 km/s2) × (10.0 s)2

= 40.0 km

Practice Problem 3.10 Time to reach 
same velocity
Find the time at which the two spaceships have the same velocity. 

2(2.00 km/s – 6.00 km/s
���
–0.400 km/s2 – 0.400 km/s2
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Example 3.11 continued

be equal in magnitude to the weight. With the two vertical
forces canceling, the only remaining force is horizontal: the
pull of the cord.

ΣF1x = T = m1a1x

Only vertical forces act on block 2. From the free-body dia-
gram for block 2, we write Newton’s second law: 

ΣF2y = T – m2g = m2a2y

The two accelerations have the same magnitude. The acceler-
ation of block 1 is in the +x-direction while that of block 2 is
in the –y-direction. Therefore we substitute

a1x = a and a2y = –a

where a is the magnitude of the acceleration. 
Substituting T = m1a and a2y = –a into the second equation,

m1a – m2g = –m2a

Now we solve for a:

a = �
m1

m
+

2

m2
�g

Substituting the known quantities

a = �
3.0 k

2
g
.0
+

k
2
g
.0 kg

� × 9.8 m/s2 = 3.9 m/s2

The acceleration of block 1 is 3.9 m/s2 to the right and that of
block 2 is 3.9 m/s2 downward.

(b) The tension is now found from the acceleration:

T = m1a = 3.0 kg × 3.9 m/s2 = 12 N

(c) Next we find the velocity of block 1 after 1.2 s. The prob-
lem gives the initial velocity, v0x = 0 at t = 0, and the elapsed
time, ∆t = t = 1.2 s.

vx = v0x + axt

vx = 0 + 3.9 m/s2 × 1.2 s = 4.7 m/s

The positive sign indicates that block 1 moves to the right

(d) To find the minimum distance from the pulley, we find the
distance traveled during 1.2 s after starting from rest

∆x = v0xt + �
1
2

�axt
2

∆x = 0 + �
1
2

� �3.9 m/s2 × (1.2s)2� = 2.8 m

Discussion An algebraic expression for the tension is

T = m1a = �
m

m

1

1

+
m

m
2

2
�g

An algebraic expression can lead to insights that are lost when
a numerical answer is calculated (see Practice Problem 3.11).

Practice Problem 3.11 A quick check
Check the expressions for acceleration and tension in the spe-
cial case m1 >> m2. [Hint: What is the sum m1 + m2 approxi-
mately equal to if m1 >> m2?]

Example 3.12

Towing a Glider
A small plane of mass 760 kg requires 120 m of
runway to take off by itself (120 m is the horizon-
tal displacement of the plane just before it lifts off

the runway, not the entire length of the runway). (a) When the
plane is towing a 330-kg glider, how much runway does it
need? (b) If the final speed of the plane just before it lifts off
the runway is 28 m/s, what is the tension in the tow cable
while the plane and glider are moving along the runway?

Strategy The plane’s engines produce thrust—the forward
force on the plane due to the air. There is also a backward force
on the plane due to the air: drag. The drag force increases as
the plane’s speed increases, but it is much less than the thrust.
A small backward force is exerted on the rolling tires by the
runway. As a simplified model we assume that the sum of the
horizontal forces on the plane (thrust plus drag plus runway) is
constant.

As the glider is towed along the runway, the tension in
the cable pulls forward on the sailplane and backward on the
plane. Ignoring the small mass of the cable, the tension is the
same at both ends. Drag on the glider is negligible—it is
designed to have very little drag.

Since the plane and glider are moving along the runway,
the vertical component of acceleration is zero. We need not be
concerned with gravity and with lift (the upward force on the
aircraft’s wings due to the air) since they add to zero to pro-
duce zero vertical acceleration.

Solution (a) When the plane takes off by itself, we assume a
constant horizontal net force. From Newton’s second law,

ΣFx = m1a1x

where m1 is the plane’s mass and a1x is its horizontal accelera-
tion component.

When the glider is towed, we can consider the plane,
glider, and cable to be a single system. The net horizontal
force on the system is the same as ΣFx above. The tension in
the cable is an internal force; the glider produces no thrust;
and we ignore drag on the glider. Therefore

m1a1x = (m1 + m2)a2x

where m2 is the glider’s mass and a2x is the horizontal accelera-
tion component of the plane and glider system. The same net
force applied to a larger mass produces a smaller acceleration:

continued on next page

C
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Example 3.12 continued

a2x < a1x. Rearranging the last equation shows that the accelera-
tion is inversely proportional to the total mass:

�
a
a

2

1x

x� = �
m1

m
+

1

m2
�

How is the acceleration related to the runway distance?
The plane must get to the same final speed in order to lift off
the runway. From

v2
x – v2

0x = 2ax ∆x

with the same values of vx and v0x in both cases, we see that
∆x is inversely proportional to ax; a smaller acceleration
means a longer runway distance is required. Since the acceler-
ation is inversely proportional to the total mass, and the run-
way distance is inversely proportional to the acceleration, the
runway distance is directly proportional to the total mass:

�
∆
∆

x
x

2

1
� = �

a
a

1

2

x

x
� = �

m1

m
+

1

m2� = �
1
7
0
6
9
0
0
k
k
g
g

� = 1.43

∆x2 = 1.43 × 120 m = 172 m ≈ 170 m

The plane uses 170 m of runway when towing the glider.

(b) The final speed given enables us to find the acceleration:

v2
x – v2

0x = 2ax ∆x

With vx = 28 m/s, v0x = 0, and ∆x = 172 m,

ax = �
2
v
∆
x
2

x
� = �

2
(2

×
8

1
m
72

/s)
m

2

� = 2.28 m/s2

The tension in the cable is the only horizontal force acting on
the glider. Therefore

ΣFx = T = m2 ax = 330 kg × 2.28 m/s2 = 752 N

The tension in the cable is approximately 750 N.

Discussion This solution is based on a simplified model, so
we can only regard the answers as approximate. Nevertheless,
it illustrates Newton’s second law. The same net force produces
an acceleration inversely proportional to the mass of the object
on which it acts. Here we have the same net force acting on two
different objects: first the plane alone, then the plane and glider
together.

Alternatively, we can look at forces acting only on the
plane. When towing the glider, the cable pulls backward on
the plane. The net force on the plane is smaller, so its acceler-
ation is smaller. The smaller acceleration means that it takes
more time to reach takeoff speed and travels a longer distance
before lifting off the runway.

Practice Problem 3.12 Engine thrust
Neglecting air resistance, what is the thrust provided by the
airplane’s engines in the preceding example?

Example 3.13

Hauling a Crate Up To a 
Third-Floor Window

A student is moving into a dorm room on the third
floor and he decides to use a block and tackle
arrangement (Fig. 3.24) to move a crate of mass

91 kg from the ground up to his window. If the breaking
strength of the available cable is 550 N, what is the minimum
time required to haul the crate to the level of the window,
30.0 m above the ground? 

Strategy The tension in the cable is T and is the same at
both ends or anywhere along the cable, assuming the cable
and pulleys are ideal. Two cable strands support the crate,
each pulling upward with a force of magnitude T. The weight
of the crate acts downward. We draw a free-body diagram and
set the tension equal to the breaking force of the rope to find
the maximum possible acceleration of the crate. Then from
the maximum acceleration, we use kinematic relationships to
find the minimum time to move the required distance to the
third-floor window with that acceleration.

Given: m = 91 kg; ∆y = 30.0 m; g = 9.8 m/s2; Tmax = 550 N; 
v0y = 0

To find: ∆t, the minimum time to raise the crate 30.0 m

T
TT

T

T

4th-floor
window

3rd-floor
window

2nd-floor
window

mg

mg

(a) (b)

Figure 3.24
(a) Block and tackle setup and (b) free-body diagram for the crate

continued on next page
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Example 3.13 continued

Solution From the free-body diagram (Fig. 3.24b), if the
forces acting up are greater than the force acting down, the net
force is upward and the crate’s acceleration is upward. In terms
of components, with the +y-direction chosen to be upward,

ΣFy = T + T – mg = may

Solving for the acceleration,

ay = �
T + T

m
– mg
�

Setting T = 550 N, the maximum possible value before the
cable breaks, and substituting the other known values,

ay = 

= 2.3 m/s2

The minimum time to move the crate up a distance ∆y
starting from rest can be found from

∆y = v0yt + �
1
2

�ayt
2

Setting v0y = 0 and solving for t, we find

t = ± ��
2
a
∆
y

y
��

550 N + 550 N– 91 kg × 9.8 m/s2

����
91 kg

Our equation applies only for t ≥ 0 (the crate reaches the win-
dow after it leaves the ground). Taking the positive root and
substituting numerical values,

t = ��
2
2
×
. 3

30
m�.0

/s
m
2�� = 5.1 s

This is the minimum time if ay is the maximum acceleration. 

Discussion If the crate is accelerated upward, the tension of
the cable is greater than if the crate is moved at a constant
velocity. For the crate to accelerate, there must be an upward
net force. For motion with a constant velocity, the tension
would be equal to half the weight of the crate, 450 N.

Practice Problem 3.13 Hauling the crate with a 
single pulley
If only a single pulley, attached to the pole above the fourth-floor,
were available and if the student had a few friends to help him
pull on the cable, could they haul the crate up to the third-floor
window? If so, what is the minimum time required to do so?

3.6 FALLING OBJECTS

Suppose you are standing on a bridge over a deep gorge. If you drop a stone into the gorge,
how fast does it fall? You know from experience that it does not fall at a constant velocity;
the longer it falls, the faster it goes. A better question is: what is the stone’s acceleration?

First, let us simplify the problem. If the stone were moving very fast, an apprecia-
ble force of air resistance would oppose its motion. When it is not falling so fast, air
resistance is negligibly small. If air resistance is negligible, the only appreciable force is
that of gravity. Free fall is a situation in which no forces act on an object other than the
gravitational force that makes the object fall. On Earth, free fall is an idealization since
there is always some air resistance.

What is the acceleration of an object in free fall? More massive objects are harder
to accelerate: the acceleration of an object subjected to a given force is inversely pro-
portional to its mass. However, the stronger gravitational force on a more massive
object compensates for its greater inertia, giving it the same acceleration as a less mas-
sive object. The gravitational force on an object is

��W = mg��

From Newton’s second law,
��Fnet = mg�� = ma��

Dividing by the mass yields

a�� = g�� (3-14a)

The acceleration of an object in free fall is g��, regardless of the object’s mass. Since 
1 N = 1 kg•m/s2, an object in free fall near the Earth’s surface has an acceleration of
magnitude

a = g = 9.8 �k
N
g� = 9.8 �k

N
g��

� × 1 �
�kg•

�N
m/s2

� = 9.8 m/s2
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3.6 Falling Objects 87

Thus any object in free fall near the Earth’s surface has a constant downward acceleration
of magnitude 9.8 m/s2. For this reason, g�� is sometimes called the freefall acceleration—the
acceleration of an object near the surface of the Earth when the only force acting is gravity.

When dealing with vertical motion, the y-axis is usually chosen to be positive pointing
upward. In two-dimensional motion, the x-axis is often used for the horizontal direction and
the y-axis for the vertical direction. The direction of the acceleration is down, so in free fall

ay = –g (3-14b)

The same techniques and equations used for other constant acceleration situations are
used with free fall. The only change is that the constant acceleration in free fall is always
directed toward the center of the Earth and has a known constant magnitude of approxi-
mately 9.8 m/s2 for objects near the surface of the Earth. 

Earth’s gravity always pulls downward, so the acceleration of an object in free fall
is always downward, regardless of whether the object is moving up, down, or is at rest.
If the object is moving downward, the downward acceleration makes it speed up; if it is
moving upward, the downward acceleration makes it slow down; and if it is at rest, the
downward acceleration makes it start moving downward. 

If an object is thrown straight up, its velocity is zero at the highest point of its flight.
Why? On the way up, the y-component of its velocity vy is positive if the positive y-axis is
pointing up. On the way down, vy is negative. Since vy changes continuously, at a rate of
9.8 m/s2, it must pass through zero to change sign. At the one instant of time at its highest
point, the object is neither moving up nor down. The object’s acceleration is not zero at
the top of flight. If the acceleration were to suddenly become zero at the top of flight, the
velocity would no longer change; the object would get stuck at the top rather than fall back
down! The velocity is zero at the top but it does not stay zero; it is still changing at the
same rate.

Example 3.14

Throwing Stones
Standing on a bridge, you throw a stone straight upward. The
stone hits a stream, 44.1 m below the point at which you
release it, 4.00 s later. Assume g = 9.81 m/s2. (a) What is the
speed of the stone just after it leaves your hand? (b) What is
the speed of the stone just before it hits the water?

Strategy Ignoring air resistance, the acceleration is constant.
Choose the positive y-axis pointing up. Let the stone be thrown
at t = 0 and hit the stream at a later time t.

Known: ay = –9.81 m/s2; ∆y = –44.1 m at t = 4.00 s

To find: |v0y| (speed at t = 0) and |vy| (speed at t = 4.00 s)

Solution (a) Equation (3-12) can be used to solve for v0y,
since all the other quantities in it (∆y, t, and ay) are known.

∆y = v0yt + �
1
2

�ayt
2

Solving for v0y,

v0y = �
∆
t
y
� – �

1
2

� ayt = �
–
4
4
.
4
0
.
0
1

s
m

� – �
1
2

�(–9.81 m/s2 × 4.00 s) (1)

= –11.0 m/s + 19.6 m/s = 8.6 m/s 

The initial speed is 8.6 m/s.

(b) The change in vy is ayt from Eq. (3-9):

vy = v0y + ayt

Substituting the expression for v0y found in Eq. (1),

vy = ��
∆
t
y
� – �

1
2

�ayt� + ayt (2)

= �
∆
t
y
� + �

1
2

�ayt

= �
–
4
4
.
4
0
.
0
1

s
m

� + �
1
2

�(–9.81 m/s2 × 4.00 s)

vy = –11.0 m/s – 19.6 m/s = –30.6 m/s 

The final speed is 30.6 m/s.

Discussion The final speed is greater than the initial speed,
as expected.

Equations (1) and (2) have a direct interpretation, which
is a good check on their validity. The first term, ∆y/t, is the
average velocity of the stone during the 4.00 s of free fall. The
second term, �

1
2

�ayt, is half the change in vy since (vy – v0y) = ayt.
Because the acceleration is constant, the average velocity is
halfway between the initial and final velocities. Therefore, the
initial velocity is the average velocity minus half of the
change, while the final velocity is the average velocity plus
half of the change.

Practice Problem 3.14 Height attained by stone
(a) How high above the bridge does the stone go? [Hint: What
is vy at the highest point?] (b) If you dropped the stone instead
of throwing it, how long would it take to hit the water? 

In free fall near the Earth’s surface,
ay = –g (if the y-axis points up).

gia24076_ch03.qxd  8/9/02  8:16 AM  Page 87



88 Chapter 3 Forces and Motion Along a Line

Air Resistance—Falling with Varying Acceleration
A skydiver relies on a parachute to provide a large drag force of air resistance. Even
with the parachute closed, drag is not negligible when the skydiver is falling rapidly.
The drag force exerted on a body falling through air increases dramatically with speed;
it is proportional to the square of the speed:

Fd = bv2

where b is a constant that depends on the size and shape of the object. The direction of
the drag force is opposite to the direction of motion.

Since the drag force increases as the speed increases, a falling object may eventu-
ally reach equilibrium when the drag force is equal in magnitude to the weight. The
speed at which the drag force is equal in magnitude to the weight is called the object’s
terminal speed. As the speed gets near the terminal speed, the acceleration gets
smaller and smaller. The acceleration is zero when the object falls at its terminal
speed.

In Fig. 3.25, a baseball and a coffee filter are released from rest and fall through the air.
The strobe photograph shows the positions of the two at equal time intervals. The baseball
has a terminal velocity of about 40 m/s, so air resistance is negligible for the speeds shown
in the photo. The displacement of the baseball in equal time intervals increases linearly,
showing that its acceleration is constant. The coffee filter has a very large surface area for
its small mass. As a result, its terminal speed is much smaller—about 1 m/s. The displace-
ment of the filter barely changes from one strobe flash to the next, showing that it is falling
at a small, nearly constant velocity.

At terminal speed vt, the drag force is equal in magnitude to the weight. Therefore,
Fd = mg = bvt

2 and

b = �
m
vt

2
g
�

Therefore, at any speed v,

Fd = mg �
v
v

2

t
2� (3-15)

The terminal speed of an object depends on its size, shape, and mass (see Table 3.3).
A skydiver with the parachute closed will reach a terminal speed of about 50 m/s 
(≈110 mi/h) in the spread-eagle position or as much as 100 m/s (≈220 mi/h) in a dive.
When the parachute is opened, the drag force increases dramatically—the larger surface
area of the parachute means that more air has to be pushed out of the way. The terminal
speed with the parachute open is typically about 9 m/s (20 mi/h). When the parachute is
opened, the skydiver is initially moving faster than the new terminal speed. For v > vt,
the drag force is larger in magnitude than the weight and the acceleration is upward. The
skydiver slows down, approaching the new terminal speed. Note that the terminal speed
is not the maximum possible speed; it is the speed that the falling object approaches,
regardless of initial conditions, when the only forces acting are drag and gravity.

Figure 3.25 A stroboscopic pho-
tograph shows two objects falling
through the air with very different termi-
nal speeds. The exposures are taken at
fixed time intervals of 1/15 s. 

Table 3.3

Some Typical Terminal Speeds 

Terminal 
Speed 

Object (m/s)

Feather 0.5

Snowflake 1

Raindrop 7

Skydiver (open 5–9
parachute)

Basketball 20

Baseball 40

Skydiver 50–60
(spread-eagle)

Skydiver (dive) 100

Bullet 100

Example 3.15

Skydivers Falling Freely
Two skydivers have identical parachutes. Their
masses (including parachutes) are 62.0 kg and
82.0 kg. Which of the skydivers has the larger ter-

minal speed? What is the ratio of their terminal speeds?

Strategy With identical parachutes, we expect the same
amount of drag at a given speed. The more massive skydiver

must fall faster in order for the drag force to equal his weight,
so the 82.0-kg skydiver should have a larger terminal speed.
For the ratio of the terminal speeds, we first find how the ter-
minal speed depends on mass, all other things being equal.
Then we work by proportions.

Solution At terminal speed vt, the drag force must be equal
in magnitude to the weight. 

continued on next page
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3.6 Falling Objects 89

Example 3.15 continued

mg = Fd = bvt
2

Since the parachutes are identical, we expect the constant b to
be the same for the two divers. Therefore,

vt ∝ �m�

The more massive skydiver has a larger terminal speed—he
must move faster in order for the drag force to equal his larger
weight. The ratio of the terminal speeds is

�
v
v

t

t

2

1
� = ��

m
m

2

1
�� = ��

8
6
2
2
.
.
0
0

�� = 1.15

The terminal speed of the 82-kg diver is 1.15 times that of the
less massive skydiver, or 15% faster.

Discussion The 82.0-kg skydiver is 32% more massive:

�
8
6
2
2
.
.
0
0

k
k
g
g

� = 1.32

but his terminal speed is only 15% greater. That is because the
drag force is proportional to the square of the speed. It only
takes a 15% greater speed to make the drag force 32% greater:

(1.15)2 = 1.32

Practice Problem 3.15 Air resistance at 
terminal speed
A pilot has bailed out of her airplane at a height of 2000 m
above the surface of the Earth. The mass of pilot plus para-
chute is 112 kg. What is the force of air resistance when the
pilot reaches terminal speed? 

Example 3.16

Dropping the Ball
A basketball is dropped off a tall building. (a) What is the ini-
tial acceleration of the ball, just after it is released? (b) What is
the acceleration of the ball when it is falling at its terminal
speed? (c) What is the acceleration of the ball when falling at
half its terminal speed? 

Strategy We choose the positive y-axis to point upward as
usual. The ball is dropped from rest so initially the only force
acting is gravity—the drag force is zero when the velocity is
zero. Once the ball is moving, air drag contributes to the net
force on the basketball. 

Solution (a) The initial acceleration is the free-fall accelera-
tion (a�� = g��) since the drag force is zero. 

(b) Once the ball reaches terminal speed, the drag force is
equal in magnitude to the weight of the ball but acts in the
opposite direction. The net force on the ball is zero, so the
acceleration is zero. At terminal speed, a�� = 0��.

(c) When the ball is falling at half its terminal speed, the drag
force is significant but it is smaller than the weight. The net
force is down and therefore the acceleration is still down-
ward, though with a smaller magnitude. The drag force at any
speed is given by

Fd = mg �
v
v

2

t
2�

and this drag force acts in the opposite direction to the weight;
it acts upward. 

The net vertical force is

ΣFy = Fd – mg = mg �
v
v

2

t
2� – mg = mg ��

v
v

2

t
2� – 1�

Now we apply Newton’s second law.

ΣFy = may

Solving for the acceleration yields

ay = g��
v
v

2

t
2� – 1�

continued on next page
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3.7 APPARENT WEIGHT

Imagine being in an elevator when the cable snaps. Assume that some safety mecha-
nism brings you to rest after you have been in free fall for a while. While you are in free
fall, you seem to be “weightless,” but your weight has not changed; the Earth still pulls
downward with the same gravitational force. In free fall, gravity makes the elevator and
everything in it accelerate downward at 9.8 m/s2. The floor of the elevator stops pushing
up on you, as it does when the elevator is at rest. If you jump up from the elevator floor,
you seem to “float” up to the ceiling of the elevator. Your weight hasn’t changed, but
your apparent weight is zero while you are in free fall.

You don’t need a disastrous elevator mishap to notice an apparent weight that differs
from your true weight. A normally operating elevator will do quite nicely. Step in the ele-
vator and push a button for a higher floor. When the elevator accelerates upward, you can
feel your apparent weight increase. When the elevator slows down to stop, the elevator’s
acceleration is downward and your apparent weight is less than your true weight. 

What is happening in the body while the elevator accelerates? Blood tends to collect
in the lower extremities during acceleration upward and in the upper body during accel-
eration downward. The internal organs shift position within the body cavity resulting in a
funny feeling in the gut as the elevator starts and stops. To avoid this problem, high-
speed express elevators in skyscrapers keep the acceleration relatively small, but main-
tain that acceleration long enough to reach high speeds. That way, the elevator can travel
quickly to the upper floors without making the passengers feel too uncomfortable.

Imagine an object resting on a bathroom scale. The scale measures the object’s
apparent weight W ′, which is equal to the true weight only if the object has zero accel-
eration. Newton’s second law requires that

��Fnet = ��N = mg�� = ma��

where ��N is the normal force of the scale pushing up. The apparent weight is the reading
of the scale—the magnitude of ��N:

W ′ = ���N� = N 

Physics at Home
Go to a balcony or climb up a ladder and drop a basket-style paper coffee filter (or a cup-
cake paper) and a penny simultaneously. Air resistance on the penny is negligible unless it
is dropped from a very high balcony. At the other extreme, the effect of air resistance on
the coffee filter is very noticeable; it reaches its terminal speed almost immediately. Stack
several (two to four) coffee filters together and drop them simultaneously with a single
coffee filter. Why is the terminal speed higher for the stack? Crumple a coffee filter into a
ball and drop it simultaneously with the penny. Air resistance on the coffee filter is now
reduced, but still noticeable.

Example 3.16 continued

At a time when the velocity is at half the terminal speed,

v = �
1
2

�vt and �
v
v

2

t
2� = �

1
4

�

ay = g ��
1
4

� – 1� = – �
3
4

�g

so that the acceleration of the ball is

a�� = �
3
4

�g��

where a�� and g�� both point downward.

Discussion How do we know when air resistance is negli-
gible? If we know the approximate terminal speed of an object,
then air resistance is negligible as long as its speed moving
through the air is small compared to the terminal speed. 

Practice Problem 3.16 Acceleration graph sketch
Sketch a qualitative graph of vy(t) for the basketball using a
y-axis that is positive pointing upward. [Hint: At first air
resistance is negligible. After a long time the basketball is in
equilibrium. Figure out what the beginning and end of the
graph look like and then connect them smoothly.]
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(a) (b) (c)

a

N

mg

Fnet

Free-body
diagram

Vector sum of forces

Fnet = N + mg = ma

Fnet is upward so
N > mg

mgN

Figure 3.26 (a) Apparent weight
in an elevator with acceleration upward
(b) Free-body diagram for the passenger
(c) Normal force must be greater than the
weight to have an upward net force.

a

N N

mg

mg

Fnet

Free-body
diagram

Vector sum of forces

Fnet = N + mg = ma

Fnet is downward so
N < mg

(a) (b) (c)

Figure 3.27 (a) Apparent weight
in an elevator with acceleration down 
(b) Free-body diagram for the passenger
(c) Normal force must be less than the
weight to have a downward net force.

In Fig. 3.26a, the acceleration of the elevator is upward. The normal force ��N must
be larger than the weight m �g in order for the net force to be upward (Fig. 3.26c). Writing
the forces in component form where the +y-direction is upward,

ΣFy = N – mg = may

or
N = mg + may

Therefore,
W ′ = N = m(g + ay) (3-16)

Since the elevator accelerates upward, ay > 0; the apparent weight is greater than the
true weight (Fig. 3.26c).

In Fig. 3.27a, the acceleration is downward. Then the net force must also point
downward. The normal force is still upward, but it must be smaller than the weight in
order to produce a downward net force (Fig. 3.27c). It is still true that

W ′ = m(g + ay)

but now the acceleration is downward (ay < 0). The apparent weight is less than the true
weight.
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92 Chapter 3 Forces and Motion Along a Line

In both these cases—and in general—the apparent weight is given by

W ′ = m��g – a��� (3-17)

where g�� and a�� are both vector quantities. When g�� and a�� point in opposite directions, the
magnitude �g�� – a��� is greater than it is when they point in the same direction. If the accel-
eration of an elevator is upward, then g�� and a�� have opposite directions and the apparent
weight is greater than the true weight. In an elevator with a downward acceleration, g��
and a�� have the same direction and the apparent weight is less than the true weight. If an
elevator is in free fall, then g�� and a�� are in the same direction and are equal in magni-
tude; in free fall the apparent weight is zero. Draw the vectors and perform the vector
subtraction to satisfy yourself that Eq. (3-17) is correct. 

Physics at Home (or in the Garden):
Take an empty half-gallon paper milk carton or a plastic milk jug and poke one hole in the
bottom and another in the side of the carton with a pencil. Fill the carton with water while
sealing the holes with your fingers so the water does not pour out. Throw the carton
straight up into the air and watch what happens at the holes. Does water start to pour out
of the unsealed holes as the carton ascends? What about when the carton is falling down-
ward? Can you explain your observations using the ideas of free fall and apparent weight?

Example 3.17

Apparent Weight in an Elevator
A passenger weighing 598 N rides in an elevator.
The gravitational field strength is 9.80 N/kg. What
is the apparent weight of the passenger in each of

the following situations? In each case, the magnitude of the ele-
vator’s acceleration is 0.500 m/s2. (a) The passenger is on the
1st floor and has pushed the button for the 15th floor; the eleva-
tor is beginning to move upward. (b) The elevator is slowing
down as it nears the 15th floor. 

Strategy Let the +y-axis be upward. The apparent weight is
equal to the magnitude of the normal force exerted by the
floor on the passenger. Newton’s second law lets us find the
normal force from the weight and the acceleration.

Given: W = 598 N; magnitude of the acceleration is 
a = 0.500 m/s2

Find: W ′

Solution (a) When the elevator starts up from the first floor
it accelerates in the upward direction as its speed increases.
Since the elevator accelerates upward, ay > 0 (as in Fig. 3.26).
We expect the apparent weight W ′ = N to be greater than the
true weight—the floor must push up with a force greater than
W to cause an upward acceleration.

ΣFy = N – W = may

Since m = W/g,

W ′ = N = W + may = W + �
W
g
�ay = W�1 + �

a
g

y
��

= 598 N × �1 + �
0
9
.5
.8
0
0
0
m
m

/
/
s
s
2

2

�� = 629 N

(b) When the elevator approaches the 15th floor, it slows down
while still moving upward; its acceleration is downward (ay < 0)
as in Fig. 3.27. The apparent weight is less than the true weight.
Again, 	Fy = N – W = may, but this time ay = –0.500 m/s2.

N = W �1 +  �
a
g

y��
= 598 N × �1 + �

–0
9
.
.
5
8
0
0
0
m
m
/s
/
2
s2

�� = 567 N

Discussion The apparent weight is greater when the direc-
tion of the elevator’s acceleration is upward. That can happen
in two cases: either the elevator is moving up with increasing
speed, or it is moving down with decreasing speed. 

Practice Problem 3.17 Elevator descending 
What is the apparent weight of a passenger of mass 42.0 kg
traveling in an elevator in each of the following situations?
The gravitational field strength is 9.80 N/kg. In each case,
the magnitude of the elevator’s acceleration is 0.460 m/s2.
(a) The passenger is on the 15th floor and has pushed the
button for the 1st floor; the elevator is beginning to move
downward. (b) The elevator is slowing down as it nears the
1st floor.
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MASTER THE CONCEPTS

Summary

• Position (symbol r��) is a vector from the origin to an
object’s location. Its magnitude is the distance from the ori-
gin and its direction points from the origin to the object.

• Displacement is the change in position: ∆r�� = r��f – r��0. The
displacement depends only on the starting and ending posi-
tions, not on the path taken. The magnitude of the displace-
ment vector is not necessarily equal to the total distance
traveled; it is the straight line distance from the initial posi-
tion to the final position.

• Vector components: If A�� points along the +x-axis, then 
Ax = +A; if A�� points in the opposite direction—along the
negative x-axis—then Ax = –A. When adding or subtracting
vectors, we can add or subtract their components.

• The average velocity states at what constant speed and in
what direction to travel to cause that same displacement in
the same amount of time. 

v��av = �
∆
∆
r�
t

�
�

• Velocity is a vector that states how fast and in what direc-
tion something moves. Its direction is the direction of the
object’s motion and its magnitude is the instantaneous
speed. 

v�� = lim
∆t→0

�
∆
∆
r�
t

�
� (3-4)

• Average acceleration is the constant acceleration that
would give the same velocity change in the same amount of
time. In terms of changes in velocity and time, 

a��av = �
∆
∆
v�
t

�
� (3-6)

• Acceleration is the instantaneous rate of change of velocity:

a�� = lim
∆t→0 

�
∆
∆
v�
t

�
� (3-7)

Acceleration does not necessarily mean speeding up. A
velocity can also change by decreasing speed or by chang-
ing directions. 

• Interpreting graphs: On a graph of x(t), the slope at any
point is vx. On a graph of vx(t), the slope at any point is ax

and the area under the graph during any time interval is the
displacement during that time interval. If vx is negative, the
displacement is also negative, so we must count the area as
negative when it is below the time axis. On a graph of ax(t),
the area under the curve is the change in vx during that time
interval. 

• Newton’s second law: 

��Fnet = ma�� (3-8)

• The SI unit of force is the newton; 1 N = 1 kg•m/s2. One
newton is the magnitude of net force that gives a 1-kg
object an acceleration of magnitude 1 m/s2.

• Essential relationships for solving any constant accelera-
tion problem: if ax is constant during the entire time interval
from t = 0 until a later time t,

∆vx = vx – v0x = axt (3-9)

∆x = x – x0 = vav,xt (3-10)

vav,x = �
v0x

2
+ vx� (3-11)

∆x = x – x0 = v0xt + �
1
2

�axt
2 (3-12)

vx
2 – v0x

2 = 2ax ∆x (3-13)

Highlighted Figures and Tables
F3.1 Displacement is the change in position: ∆r�� = r��f – r��0

(p. 64)

F3.5 Displacement and average velocity (p. 67)

F3.6 As ∆t approaches zero, the average velocity during the
increasingly short time interval approaches the instantaneous
velocity (p. 68)

F3.7 Graphical relationship between position and velocity (p.
69)

F3.9 Displacement ∆x is the area under the vx versus time
graph for the time interval considered (p. 70)

F3.14 Mass versus weight (p. 76)

F3.18 Finding average velocity with the aid of a graph (p. 79)

F3.19 Graphical interpretation of Eq. 3-12 (p. 80)

F3.20 Visualizing motion with constant acceleration (p. 81)

T3.3 Some typical terminal speeds (p. 88)

CONCEPTUAL QUESTIONS

1. Explain the difference between distance traveled, displace-
ment, and displacement magnitude.

2. Explain the difference between speed and velocity.

3. On a graph of vx versus time, what quantity does the area
under the graph represent? 

4. On a graph of vx versus time, what quantity does the slope of
the graph represent? 
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5. On a graph of ax versus time, what quantity does the area
under the graph represent? 

6. On a graph of x versus time, what quantity does the slope of
the graph represent? 

7. What is the relationship between average velocity and instan-
taneous velocity? An object can have different instantaneous
velocites at different times. Can the same object have differ-
ent average velocities? Explain.

8. If an object is traveling at a constant velocity, is it necessarily
traveling in a straight line? Explain.

9. Can the average speed and the magnitude of the average
velocity ever be equal? If so, under what circumstances? 

10. If a feather and a lead brick are dropped simultaneously from
the top of a ladder, the lead brick hits the ground first. What
would happen if the experiment is repeated on the surface of
the moon?

11. Name a situation where the speed of an object is constant
while the velocity is not.

12. Can the velocity of an object be zero and the acceleration be
nonzero at the same time? Explain.

13. Why does a 1-kg sandbag fall with the same acceleration as a
5-kg sandbag? Explain in terms of Newton’s second law and
his law of gravitation.

14. If an object is acted on by a single constant force, is it possible
for the object to remain at rest? Is it possible for the object to
move with constant velocity? Is it possible for the object’s
speed to be decreasing? Is it possible for it to change direction?

15. If an object is acted on by two constant forces is it possible
for the object to move at constant velocity? If so, what must
be true about the two forces? 

16. An object is placed on a scale. Under what conditions does
the scale read something other than the object’s weight, even
though the scale is functioning properly and is calibrated cor-
rectly? Explain.

17. What is meant by the terminal speed of a falling object? Can
an object ever move through air faster than the object’s ter-
minal speed? If so, give an example.

18. What force(s) act on a parachutist descending to Earth with a
constant velocity? What is the acceleration of the parachutist?

19. A baseball is tossed straight up. Taking into consideration
the force of air resistance, is the magnitude of the baseball’s
acceleration zero, less than g, equal to g, or greater than g
on the way up? At the top of the flight? On the way down?
Explain.

20. What is the acceleration of an object thrown straight up into
the air at the highest point of its motion? Does the answer
depend on whether air resistance is negligible or not? Explain.

21. You are bicycling along a straight north-south road. Let the
x-axis point north. Describe your motion in each of the fol-
lowing cases. Example: ax > 0 and vx > 0 means you are
moving north and speeding up. (a) ax > 0 and vx < 0. 
(b) ax = 0 and vx < 0. (c) ax < 0 and vx = 0. (d) ax < 0 and 
vx < 0. (e) Based on your answers, explain why it is not a
good idea to use the expression “negative acceleration” to
mean slowing down.

MULTIPLE CHOICE QUESTIONS

1. A go-kart travels around a circular track at a constant speed.
Which of these is a true statement?

(a) The go-kart has a constant velocity.
(b) The go-kart has zero acceleration.
(c) Both (a) and (b) are true.
(d) Neither (a) nor (b) is true.

2. A ball is thrown straight up into the air. Neglect air resistance.
While the ball is in the air its acceleration

(a) increases (b) is zero (c) remains constant
(d) decreases on the way up and increases on the way down
(e) changes direction

3. A stone is thrown upward and reaches a height ∆y. After an
elapsed time ∆t, measured from the time the stone was first
thrown, the stone has fallen back down to the ground. The mag-
nitude of the average velocity of the stone during this time is 

(a) zero (b) 2 �
∆
∆

y
t

� (c) �
∆
∆

y
t

� (d) �
1
2

� �
∆
∆

y
t

�

4. A stone is thrown upward and reaches a height ∆y. After an
elapsed time ∆t, measured from the time the stone was first
thrown, the stone has fallen back down to the ground. The
average speed of the stone during this time is 

(a) zero (b) 2 �
∆
∆

y
t

� (c) �
∆
∆

y
t

� (d) �
1
2

� �
∆
∆

y
t

�

5. A ball is thrown straight up. At the top of its trajectory the ball is

(a) instantaneously at rest.
(b) instantaneously in equilibrium.
(c) Both (a) and (b) are true.
(d) Neither (a) nor (b) is true.

Multiple Choice Questions 6–15 refer to Fig. 3.28.

6. What distance does the jogger travel during the first 10.0 min 
(t = 0 to 10 min)?

(a) 8.5 m (b) 510 m (c) 900 m (d) 1020 m

7. What is the displacement of the jogger from t = 18.0 min to 
t = 24.0 min?

(a) 720 m, south (b) 720 m, north
(c) 2160 m, south (c) 3600 m, north

8. What is the displacement of the jogger for the entire 30.0 min?

(a) 3120 m, south (b) 2400 m, north
(c) 2400 m, south (d) 3840 m, north

9. What is the total distance traveled by the jogger in 30.0 min?

(a) 3840 m (b) 2340 m (c) 2400 m (d) 3600 m

10. What is the average velocity of the jogger during the 30.0 min?

(a) 1.3 m/s, north (b) 1.7 m/s, north
(c) 2.1 m/s, north (d) 2.9 m/s, north

✦
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11. What is the average speed of the jogger for the 30 min?

(a) 1.4 m/s (b) 1.7 m/s (c) 2.1 m/s (d) 2.9 m/s

12. In what direction is she running at time t = 20 min? 

(a) south (b) north (c) not enough information

13. In which region of the graph is ax positive?

(a) A to B (b) C to D (c) E to F (d) G to H

14. In which region is ax negative? 

(a) A to B (b) C to D (c) E to F (d) G to H

15. In which region is the velocity directed to the south?

(a) A to B (b) C to D (c) E to F (d) G to H

Multiple Choice Questions 16–20 refer to Fig. 3.29. 

16. If Fig. 3.29 shows four graphs of x versus time, which graph
shows a constant, positive, nonzero velocity?

17. If Fig. 3.29 shows four graphs of vx versus time, which graph
shows a constant velocity?

18. If Fig. 3.29 shows four graphs of vx versus time, which graph
shows ax constant and positive?

19. If Fig. 3.29 shows four graphs of vx versus time, which graph
shows ax constant and negative?

20. If Fig. 3.29 shows four graphs of vx versus time, which graph
shows a changing ax that is always positive?

21. Two blocks are connected by a light string passing over a
pulley [see Fig. 3.23a]. The block with mass m1 slides on the
frictionless horizontal surface, while the block with mass m2

hangs vertically. (m1 > m2.) The tension in the string is: 

(a) zero (b) less than m2g
(c) equal to m2g (d) greater than m2g, but less than m1g
(e) equal to m1g (f) greater than m1g

Note:   indicates a combination conceptual/quantitative problem. Gold
diamonds ✦ , ✦✦ are used to indicate the increasing level of difficulty of
each problem. Problem numbers appearing in blue, 9., denote problems
that have a detailed solution available in the Student Solutions Manual.
Some problems are paired by concept; their numbers are connected by a
ruled box.

3.1 Position and Displacement; 3.2 Velocity 

1. Two cars, a Porsche and a Honda, are traveling in the same
direction, although the Porsche is 186 m behind the Honda.
The speed of the Porsche is 24.4 m/s and the speed of the
Honda is 18.6 m/s. How much time does it take for the
Porsche to catch the Honda? [Hint: What must be true about
the displacements of the two cars when they meet?]

2. To get to a concert in time, a harpsichordist has to drive 121 mi
in 2.00 h. If he drove at an average speed of 55 mi/h for the first
1.20 h, what must be his average speed for the remaining 0.80 h?

3. Figure 3.30 shows the vertical velocity component of an ele-
vator versus time. How high is the elevator above the starting
point (t = 0 s) after 20 s have elapsed?

4. Figure 3.30 shows the vertical velocity component of an eleva-
tor versus time. If the elevator starts to move at t = 0 s, when is
the elevator at its highest location above the starting point?

(a) (b) (c) (d)

Figure 3.29 Multiple Choice Questions 16–20

PROBLEMS

t (s)

vy
(m/s)

4 8 12 16 20

0

2

–2

Figure 3.30 Problems 3 and 4

5. Figure 3.31 shows a graph of speedometer readings obtained
as a car comes to a stop along a straight-line path. How far
does the car move between t = 0 and t = 16 s?

6. Figure 3.32 shows a graph of speedometer readings, in meters
per second (on the vertical axis), obtained as a car travels
along a straight-line path. How far does the car move between
t = 3.00 s and t = 8.00 s?

t (min)

0 10.0 30.0

–2

0

vx
(m/s)

2

5

20.0

A

B

C D

E F

G

H

Figure 3.28 Multiple Choice Questions 6–15. A jogger is exercising
along a long, straight road that runs north-south. She starts out heading north.

C
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7. Figure 3.32 shows a graph of x(t) in meters, on the vertical
axis, for an object traveling in a straight line. (a) What is vav,x

for the interval from t = 0 to t = 4.0 s? (b) from t = 0 to t = 5.0
s? 

8. Figure 3.32 shows a graph of x(t) in meters for an object trav-
eling in a straight line. What is vx at t = 2.0 s? 

9. A rabbit, nervously trying to cross a road, first moves 80 cm
to the right, then 30 cm to the left, then 90 cm to the right,
and then 310 cm to the left. (a) What is the rabbit’s total dis-
placement? (b) If the elapsed time was 18 s, what was the
rabbit’s average speed? (c) What was its average velocity? 

10. An object is moving along a straight line. The graph in Fig.
3.33 shows its position from the starting point as a function
of time. (a) In which section(s) of the graph does the object
have the highest speed? (b) At which time(s) does the object
reverse its direction of motion? (c) How far does the object
move from t = 0 to t = 3 s? 

11. Amotor scooter travels east at a speed of 12 m/s. The driver then
reverses direction and heads west at 15 m/s. What was the
change in velocity of the scooter? Give magnitude and direction.

3.3 Acceleration

12. If a car traveling at 28 m/s is brought to a full stop in 4.0 s
after the brakes are applied, find the average acceleration
during braking. 

13. If a pronghorn antelope accelerates from rest in a straight line
with a constant acceleration of 1.7 m/s2, how long does it
take for the antelope to reach a speed of 22 m/s?

14. An airtrack glider, 8.0 cm long, blocks light as it goes through
a photocell gate (Fig. 3.34). The glider is released from rest on
a frictionless inclined track and the gate is positioned so that
the glider has traveled 96 cm when it is in the middle of the
gate. The timer gives a reading of 333 ms for the glider to pass
through this gate. Friction is negligible. What is the accelera-
tion (assumed constant) of the glider along the track? 

15. Figure 3.35 shows a graph of vx versus t for a body moving
along a straight line. (a) What is ax at t = 11 s? (b) What is ax at
t = 3 s? (c) How far does the body travel from t = 12 to t = 14 s?

16. Figure 3.36 shows a plot of vx(t) for a car. (a) What is aav,x

between t = 6 s and t = 11 s? (b) What is vav,x for the same time
interval? (c) What is vvav,x for the interval t = 0 to t = 20 s? (d)
What is the increase in the car’s speed between 10 and 15 s? (e)
How far does the car travel from time t = 10 s to time t = 15 s?

17. Figure 3.31 shows a graph of speedometer readings as a
motorcycle comes to a stop. What is the magnitude of the
acceleration at t = 7.0 s?

18. At 3:00 P.M., a bank robber is spotted driving north on I-15 at
milepost 126. His speed is 112.0 mi/h. At 3:37 P.M. he is spot-
ted at milepost 185 doing 105.0 mi/h. During this time inter-
val, what are the bank robber’s displacement, average
velocity, and average acceleration? (Assume a straight high-
way.) 

t (s)

0 2 4 61 3 5
A

B
C

D

E

F

40

30

20

10

x (m)

Figure 3.33 Problem 10

8 cm

96 cm

Photogate

v

v0 = 0

Figure 3.34 Problem 14

✦

✦✦

t (s)

40 8
0

4

8

Figure 3.32 Problems 6, 7, and 8.
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0
0 4 8 12 162 6 10 14

5

10

15

20

25
vx

(m/s)

Figure 3.31 Problems 5, 17, and 79
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3.4 Newton’s Second Law: Force 
and Acceleration

19. An engine accelerates a train of 20 freight cars, each having a
mass of 5.0 × 104 kg, from rest to a speed of 4.0 m/s in 20.0 s
on a straight track. Neglecting friction and assuming constant
acceleration, what is the force with which the 10th car pulls
the 11th one (at the middle of the train)?

20. In Fig. 3.16a, two blocks are connected by a lightweight,
flexible cord that passes over a frictionless pulley. (a) If m1 =
3.0 kg and m2 = 5.0 kg, what are the accelerations of each
block? (b) What is the tension in the cord?

21. A 2.0-kg toy locomotive is pulling a 1.0-kg caboose. The fric-
tional force of the track on the caboose is 0.50 N backward
along the track. If the train is accelerating forward at 3.0 m/s2,
what is the magnitude of the force exerted by the locomotive
on the caboose? 

22. A 2010-kg elevator accelerates upward at 1.5 m/s2. What is
the tension in the cable that supports the elevator? 

23. A 2010-kg elevator accelerates downward at 1.5 m/s2. What
is the tension in the cable that supports the elevator? 

24. A model sailboat is slowly sailing west across a pond. A gust of
wind gives the sailboat a constant acceleration of magnitude
0.30 m/s2 during a time interval of 2.0 s. If the net force on the
sailboat during the 2.0-s interval has magnitude 0.375 N, what
is the sailboat’s mass?

25. The vertical component of the acceleration of a sailplane is
zero when the air pushes up against its wings with a force of
3.0 kN. (a) Assuming that the only forces on the glider are

that due to gravity and that due to the air pushing against its
wings, what is the gravitational force on the Earth due to the
glider? (b) If the wing stalls and the upward force decreases
to 2.0 kN, what is the acceleration of the glider?

26. A man lifts a 2.0-kg stone vertically with his hand at a con-
stant velocity of 1.5 m/s. What is the force exerted by his
hand on the stone? 

27. A man lifts a 2.0-kg stone vertically with his hand at a con-
stant upward acceleration of 1.5 m/s2. What is the magnitude
of the total force of the stone on the man’s hand?

28. A crate of oranges weighing 180 N rests on a flatbed truck 
2.0 m from the back of the truck. The coefficients of friction
between the crate and the bed are ms = 0.30 and mk = 0.20.
The truck drives on a straight, level highway at a constant
8.0 m/s. (a) What is the force of friction acting on the crate?
(b) If the truck speeds up with an acceleration of 1.0 m/s2,
what is the force of friction on the crate? (c) What is the
maximum acceleration the truck can have without the crate
starting to slide? 

3.5 Motion with Constant Acceleration

29. A trolley car in New Orleans starts from rest at the St. Charles
Street stop and accelerates uniformly at 1.20 m/s2 for 12.0 s.
(a) How far has the train traveled at the end of the 12.0 s? 
(b) What is the speed of the train at the end of the 12.0 s? 

30. A train, traveling at a constant speed of 22 m/s, comes to an
incline with a constant slope. While going up the incline, the
train slows down with a constant acceleration of magnitude 
1.4 m/s2. (a) What is the speed of the train after 8.0 s on the
incline? (b) How far has the train traveled up the incline after
8.0 s?

31. A car is speeding up and has an instantaneous speed of 10.0 m/s
when a stopwatch reads 10.0 s. It has a constant acceleration of
2.0 m/s2. (a) What change in speed occurs between t = 10.0 s
and t = 12.0 s? (b) What is the speed when the stopwatch reads
12.0 s?

32. A train is traveling south at 24.0 m/s when the brakes are
applied. It slows down at a constant rate to a speed of 6.00 m/s
in a time of 9.00 s. (a) What is the acceleration of the train
during the 9.00 s interval? (b) How far does the train travel
during the 9.00 s? 

33. Figure 3.35 shows the graph of vx versus time for a body mov-
ing along the x-axis. How far does the body go between t = 9.0 s
and t = 13.0 s? Solve using two methods: a graphical analysis
and an algebraic solution using kinematic equations. 

34. Figure 3.35 shows the graph of vx versus time for a body mov-
ing along the x-axis. What is the average acceleration between
t = 5.0 s and t = 9.0 s? Solve using two methods: a graphical
analysis and an algebraic solution using kinematic equations.

35. An airplane lands and starts down the runway at a southwest
velocity of 55 m/s. What constant acceleration allows it to
come to a stop in 1.0 km?

36. The minimum stopping distance of a car moving at 30.0 mi/h
is 12 m. Under the same conditions (so that the maximum
braking force is the same), what is the minimum stopping
distance for 60.0 mi/h? Work by proportions to avoid con-
verting units. 
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Figure 3.36 Problem 16
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Figure 3.35 Problems 15, 33, and 34
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37. Derive Eq. (3-12) using these steps. (a) Start with ∆x = vav,xt.
Rewrite this equation with the average velocity expressed in
terms of the initial and final velocities. (b) Replace the final
velocity with the initial velocity plus the change in velocity
(v0x + ∆vx). (c) Find the change in velocity in terms of ax and
t and substitute. Rearrange to form Eq. (3-12). 

38. Derive Eq. (3-13) using these steps. (a) Start with ∆x = vav,xt.
Rewrite this equation with the average velocity expressed in
terms of the initial and final velocities. (b) Use vx – v0x = axt
to eliminate t. (c) Rearrange algebraically to form Eq. (3-13).
[Hint: A2 – B2 = (A + B)(A – B).] 

39. A train of mass 55,200 kg is traveling along a straight, level
track at 26.8 m/s (60.0 mi/h). Suddenly the engineer sees a
truck stalled on the tracks 184 m ahead. If the maximum pos-
sible braking force has magnitude 84.0 kN, can the train be
stopped in time? 

40. In a television tube, electrons are accelerated from rest by a
constant electric force of magnitude 6.4 × 10–17 N during the
first 2.0 cm of the tube’s length; then they move at essentially
constant velocity another 45 cm before hitting the screen. 
(a) Find the speed of the electrons when they hit the screen. 
(b) How long does it take them to travel the length of the tube?

3.6 Falling Objects

In the problems, please assume g = 9.8 m/s2 unless a more precise
value is given in the problem.

41. A penny is dropped from the observation deck of the Empire
State building (369 m above ground). With what velocity
does it strike the ground? Ignore air resistance.

42. (a) How long does it take for a golf ball to fall from rest for a
distance of 12.0 m? (b) How far would the ball fall in twice
that time? 

43. Grant Hill jumps 1.3 m straight up into the air to slam-dunk a
basketball into the net. With what speed did he leave the floor?

44. A student, looking toward his fourth-floor dormitory win-
dow, sees a flowerpot with nasturtiums (originally on a win-
dow sill above) pass his 2.0-m-high window in 0.093 s. The
distance between floors in the dormitory is 4.0 m. From a
window on which floor did the flowerpot fall? 

45. A balloonist, riding in the basket of a hot air balloon that is
rising vertically with a constant velocity of 10.0 m/s, releases
a sandbag when the balloon is 40.8 m above the ground.
Neglecting air resistance, what is the bag’s speed when it hits
the ground? Assume g = 9.80 m/s2. 

46. A 55-kg lead ball is dropped from the leaning tower of Pisa.
The tower is 55 m high. (a) How far does the ball fall in the
first 3.0 s of flight? (b) What is the speed of the ball after it
has traveled 2.5 m downward? (c) What is the speed of the
ball 3.0 s after it is released?

47. During a walk on the Moon, an astronaut accidentally drops
his camera over a 20.0-m cliff. It leaves his hands with zero
speed, and after 2.0 s it has attained a velocity of 3.3 m/s
downward. How far has the camera fallen after 4.0 s?

48. A stone is launched straight up by a slingshot. Its initial speed
is 19.6 m/s and the stone is 1.50 m above the ground when

launched. Assume g = 9.80 m/s2. (a) How high above the
ground does the stone rise? (b) How much time elapses
before the stone hits the ground?

49. How far must something fall for its speed to get close to its
terminal speed? Use dimensional analysis to come up with
an estimate based on the object’s terminal speed vt and the
gravitational field g. Estimate this distance for (a) a raindrop
(vt ≈ 7 m/s) and (b) a skydiver in a dive (vt ≈ 100 m/s).

50. A paratrooper with a fully loaded pack has a mass of 120 kg.
The force due to air resistance on him when falling with 
an unopened parachute has magnitude FD = bv2, where 

b = 0.14 �
N
m

•s
2

2

�. (a) If he is falling with an unopened parachute

at 64 m/s, what is the force of air resistance acting on him?
(b) What is his acceleration? (c) What is his terminal speed? 

51. A bobcat weighing 72 N jumps out of a tree. (a) What is the
drag force on the bobcat when it falls at its terminal velocity?
(b) What is the drag force on the bobcat when it falls at 75%
of its terminal velocity? (c) What is the acceleration of the
bobcat when it falls at its terminal velocity? (d) What is its
acceleration when it falls at 75% of its terminal velocity? 

52. In free fall, we assume the acceleration to be constant. Not
only is air resistance neglected, but the gravitational field
strength is assumed to be constant. (a) From what height can
an object fall to the Earth’s surface such that the gravitational
field strength changes less than 1.00% during the fall? (b) In
most cases, which do we have to worry about first: air resis-
tance becoming significant or g changing? 

3.7 Apparent Weight

53. Refer to Example 3.17. What is the apparent weight of the
same passenger (weighing 598 N) in the following situations?
In each case, the magnitude of the elevator’s acceleration is
0.50 m/s2. (a) After having stopped at the 15th floor, the pas-
senger pushes the 8th floor button; the elevator is beginning to
move downward. (b) Elevator is slowing down as it nears the
8th floor.

54. You are standing on a bathroom scale inside an elevator. Your
weight is 140 lb, but the reading of the scale is 120 lb. 
(a) What is the magnitude and direction of the acceleration of
the elevator? (b) Can you tell whether the elevator is speed-
ing up or slowing down?

55. Felipe is going for a physical before joining the swim team.
He is concerned about his weight, so he carries his scale into
the elevator to check his weight while heading to the doctor’s
office on the 21st floor of the building. If his scale reads 750 N
while the elevator is accelerating upward at 2.0 m/s2, what
does the nurse measure his weight to be? 

56. Luke stands on a scale in an elevator that has a constant
acceleration upward. The scale reads 0.960 kN. When Luke
picks up a box of mass 20.0 kg, the scale reads 1.200 kN.
(The acceleration remains the same.) (a) Find the accelera-
tion of the elevator. (b) Find Luke’s weight.
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✦
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COMPREHENSIVE PROBLEMS

In the problems, please assume g = 9.8 m/s2 unless a more precise
value is given in the problem.

57. The conduction electrons in a copper wire have instantaneous
speeds of around 106 m/s. The electrons keep colliding with cop-
per atoms and reversing direction, so that even when a current is
flowing in the wire, they only drift along with average velocities
on the order of centimeters per hour. If the drift velocity in a par-
ticular wire has magnitude 10 cm/h, calculate the distance an
electron travels in order to move 1 m down the wire. 

58. Imagine a trip where you drive along a straight east-west
highway at 80.0 km/h for 50.0 min and then at 60.0 km/h for
30.0 min. What is your average velocity for the trip (a) if you
drive east for both parts of the trip? (b) if you drive east for
the first 50.0 min and then west for the last 30.0 min?

59. A rocket is launched from rest. After 8.0 min, it is 160 km
above the Earth’s surface and is moving at a speed of 7.6 km/s.
Assuming the rocket moves up in a straight line, what are its
(a) average velocity and (b) average acceleration?

60. Based on the information given in Problem 59, is it possible
that the rocket moves with constant acceleration? Explain.

61. An unmarked police car starts from rest just as a speeding car
passes at a speed of v0. If the police car accelerates at a con-
stant value of a, what is the speed of the police car when it
catches up to the speeder, who does not realize she is being
pursued and does not vary her speed?

62. In Fig. 3.23a, the block of mass m1 slides to the right with coef-
ficient of kinetic friction mk on a horizontal surface. The block
is connected to a hanging block of mass m2 by a light cord that
passes over a light, frictionless pulley. (a) Find the acceleration
of each of the blocks and the tension in the cord. (b) Check your
answers in the special cases m1 << m2, m1 >> m2, and m1 = m2.
(c) For what value of m2 (if any) do the two blocks slide at con-
stant velocity? What is the tension in the cord in that case?

63. While passing a slower car on the highway, you accelerate uni-
formly from 39 mi/h to 61 mi/h in a time of 10.0 s. (a) How far
do you travel during this time? (b) What is your acceleration in
(mi/h)/s and m/s2? 

64. A cheetah can accelerate from rest to 24 m/s in 2.0 s.
Assuming the acceleration is uniform, (a) what is the acceler-
ation of the cheetah? (b) What is the distance traveled by the
cheetah in these 2.0 s? (c) A runner can accelerate from rest
to 6.0 m/s in the same time, 2.0 s. What is the acceleration of
the runner? By what factor is the cheetah’s average accelera-
tion magnitude greater than that of the runner?

65. Neglecting air resistance, (a) from what height must a hockey
puck drop if it is to attain a speed of 30.0 m/s (approximately
67 mi/h) before striking the ground? (b) If the puck comes to
a full stop in a time of 1.00 s from initial impact, what accel-
eration (assumed constant) is experienced by the puck during
the impact with the ground? 

66. Locusts can jump to heights of 0.30 m. (a) Assuming the
locust jumps straight up, and ignoring air resistance, what is
the takeoff speed of the locust? (b) The locust actually jumps
at an angle of about 55° to the horizontal, and air resistance is
not negligible. The result is that the takeoff speed is about
40% higher than the value you calculated in part (a). If the

mass of the locust is 2.0 g and its body moves 4.0 cm in a
straight line while accelerating from rest to the takeoff speed,
calculate the acceleration of the locust (assumed constant).
(c) Ignore the locust’s weight and estimate the force exerted
on the hind legs by the ground. Compare this force to the
locust’s weight. Was it OK to ignore the locust’s weight?

67. In Fig. 3.16a, two blocks are connected by a lightweight, flexi-
ble cord that passes over a frictionless pulley. If m1 is 
3.6 kg and m2 is 9.2 kg, and block 2 is initially at rest 140 cm
above the floor, how long does it take block 2 to reach the floor? 

68. A locomotive pulls a train of 10 identical cars with a force of
2.0 × 106 N directed east. What is the force with which the
last car pulls on the rest of the train?

69. A woman of mass 51 kg is standing in an elevator. If the ele-
vator floor pushes up on her feet with a force of 408 N, what
is the acceleration of the elevator? 

70. A drag racer crosses the finish line of a 400.0-m track with a
final speed of 104 m/s. (a) Assuming constant acceleration
during the race, find the racer’s time and the minimum coeffi-
cient of static friction between the tires and the road. (b) If,
because of bad tires or wet pavement, the acceleration were
30.0% smaller, how long would it take to finish the race? 

71. The graph in Fig. 3.37 shows the position x of a switch
engine in a rail yard as a function of time t. At which of the
labeled times t0 to t7 is (a) ax < 0, (b) ax = 0, (c) ax > 0, 
(d) vx = 0, (e) the speed decreasing?

72. An elevator starts at rest on the ninth floor. At t = 0, a passen-
ger pushes a button to go to another floor. The graph in Fig.
3.38 shows the acceleration ay of the elevator as a function of
time. Let the y-axis point upward. (a) Has the passenger gone
to a higher or lower floor? (b) Sketch a graph of the velocity

C
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vy of the elevator versus time. (c) Sketch a graph of the posi-
tion y of the elevator versus time. (d) If a 1.40 × 102 lb person
stands on a scale in the elevator, what does the scale read at
times t1, t2, and t3?

73. A streetcar named Desire travels between two stations 
0.60 km apart. Leaving the first station, it accelerates for 10.0 s
at 1.0 m/s2 and then travels at a constant speed until it is near
the second station, when it brakes at 2.0 m/s2 in order to stop at
the station. How long did this trip take? [Hint: What’s the aver-
age velocity?]

74. The graph in Fig. 3.39 is the vertical velocity component vy

of a bouncing ball as a function of time. The y-axis points up.
Answer these questions based on the data in the graph. (a) At
what time does the ball reach its maximum height? (b) For
how long is the ball in contact with the floor? (c) What is the
maximum height of the ball? (d) What is the acceleration of
the ball while in the air? (e) What is the average acceleration
of the ball while in contact with the floor?

75. A rocket engine can accelerate a rocket launched from rest ver-
tically up with an acceleration of 20.0 m/s2. However, after
50.0 s of flight the engine fails. Neglect air resistance. (a) What
is the rocket’s altitude when the engine fails? (b) When does it
reach its maximum height? (c) What is the maximum height
reached? [Hint: a graphical solution may be easiest.] (d) What
is the velocity of the rocket just before it hits the ground?

76. Two blocks lie side by side on a frictionless table. The block
on the left is of mass m; the one on the right is of mass 2 m.
The block on the right is pushed to the left with a force of
magnitude F, pushing the other block in turn. What force
does the block on the left exert on the block to its right?

77. A helicopter of mass M is lowering a truck of mass m onto the
deck of a ship. (a) At first, the helicopter and the truck move
downward together (the length of the cable doesn’t change). If
their downward speed is decreasing at a rate of 0.10g, what is
the tension in the cable? (b) As the truck gets close to the
deck, the helicopter stops moving downward. While it hovers,
it lets out the cable so that the truck is still moving downward.
If the truck’s downward speed is decreasing at a rate of 0.10g,
while the helicopter is at rest, what is the tension in the cable?

78. Fish don’t move as fast as you might think. A small trout has a
top swimming speed of only about 2 m/s, which is about the
speed of a brisk walk (for a human, not a fish!). It may seem to
move faster because it is capable of large accelerations—it

can dart about, changing its speed or direction very quickly.
(a) If a trout starts from rest and accelerates to 2 m/s in 0.05 s,
what is the trout’s average acceleration? (b) During this accel-
eration, what is the average net force on the trout? Express
your answer as a multiple of the trout’s weight. (c) Explain
how the trout gets the water to push it forward.

79. Figure 3.31 shows a graph of speedometer readings obtained
as an automobile came to a stop. What is the displacement
along a straight line path in the first 16 s?

80. In Fig. 3.16a, two blocks are connected by a lightweight, flex-
ible cord that passes over a frictionless pulley. If m1 >> m2,
find (a) the acceleration of each block and (b) the tension in
the cord.

81. Find the point of no return for an airport runway of 1.50 mi in
length if a jet plane can accelerate at 10.0 ft/s2 and decelerate
at 7.00 ft/s2. The point of no return occurs when the pilot can
no longer abort the takeoff without running out of runway.
What length of time is available from the start of the motion
in which to decide on a course of action?

82. Two blocks, masses m1 and m2, are connected by a massless
cord (Fig. 3.40). If the two blocks are accelerated uniformly
on a frictionless surface by applying a force of magnitude T2

to a second cord connected to m2, what is the ratio of the ten-
sions in the two cords in terms of the masses? T1/T2 = ?

83. In the human nervous system, signals are transmitted along
neurons as action potentials that travel at speeds of up to
100 m/s. (An action potential is a traveling influx of
sodium ions through the membrane of a neuron.) The sig-
nal is passed from one neuron to another by the release of
neurotransmitters in the synapse. Suppose someone steps
on your toe. The pain signal travels along a 1.0-m-long
sensory neuron to the spinal column, across a synapse to a
second 1.0-m-long neuron, and across a second synapse to
the brain. Suppose that the synapses are each 100 nm wide,
that it takes 0.10 ms for the signal to cross each synapse,
and that the action potentials travel at 100 m/s. (a) At what
average speed does the signal cross a synapse? (b) How
long does it take the signal to reach the brain? (c) What is
the average speed of propagation of the signal? 

84. A car traveling at 65 mi/h runs into a bridge abutment after the
driver falls asleep at the wheel. (a) If the driver is wearing a
seat belt and comes to rest within a 1.0-m distance, what is his
acceleration (assumed constant)? (b) A passenger who isn’t
wearing a seat belt is thrown into the windshield and comes to
a stop in a distance of 10.0 cm. What is the acceleration of the
passenger? (c) Express these accelerations in terms of the free
fall acceleration, g = 9.8 m/s2, and find “how many g’s” are
felt in each case. (Test pilots can black out at accelerations of
4g or greater; pressure suits are designed to help force blood
to the brain and prevent such a loss of consciousness.)

–4

–3

–2

–1

0

1

2

3

4

v y
 (

m
/s

)

0.5 1.0 1.5 2.0 2.5 3.00 t (s)

m1 m2

T2T1

Figure 3.39 Problem 74

Figure 3.40 Problem 82

✦

✦✦

✦C

✦

✦

C

✦

gia24076_ch03.qxd  8/9/02  8:19 AM  Page 100



Answers to Practice Problems 101

3.1 His displacement is zero since he ends up at the same place
from which he started (home plate).

3.2 ∆x = –2.9 km, so the displacement is 2.9 km to the west.

3.3 1.05 m/s to the north

3.4 The velocity is increasing in magnitude, so ∆v�� and a�� are in
the same direction as the velocity (the –x-direction). Thus ax is
negative.

3.5 (a) aav,x = –3.0 m/s2, where the negative sign means the accel-
eration is directed to the northwest; (b) ax = –4.2 m/s2 (northwest)

3.8 60 N

3.9 (a) 20 s; (b) 18 m/s east

3.10 5.00 s

3.11 If m1 >> m2, a is very small and T ≈ m2g. Block 1 is so mas-
sive that it barely accelerates; block 2 is essentially just hanging
there, being supported by the cord.

3.12 2500 N

3.13 It is impossible to pull the crate up with a single pulley. The
entire weight of the crate would be supported by a single strand of
cable and that weight exceeds the breaking strength of the cable.

3.14 (a) 3.8 m: (b) 3.00 s

3.15 1.1 kN

3.16 At first, constant acceleration: straight line with slope –g.
After a long time, constant velocity.

ANSWERS TO PRACTICE PROBLEMS

t (s)

0 1 2 3 4 5 6 7 8
0

5

10

vx
(m/s)

15

20

2.0 s

Instantaneous
acceleration
at t = 2.0 s

ax = = – 4.2 m/s2–8.4 m/s
2.0 s

aav,x = = – 3.0 m/s2–24 m/s
8.0 s

Slope at
t = 2.0 s=

8.4 m/s

t

vy

–vt

3.17 (a) 392 N; (b) 431 N

3.6 1.84 kN

3.7 For equal masses, ay = 0 and T = mg. The pull of gravity is
equal on the two sides. For slightly unequal masses, m1 ≈ m2, so
again T ≈ mg; the acceleration is very small since there is only a
slight excess pull of gravity on the heavier side but plenty of inertia.
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