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sailplane (or “glider”) is a small,
A unpowered, high-performance air-

craft. A sailplane must be initially
towed afew thousand feet into the air by a
small airplane, after which it relies on
regions of upward-moving air such as
thermals and ridge currents to ascend far-
ther. Suppose a small plane requires about
120 m of runway to take off by itself.
When it is towing a sailplane, how much
more runway does it need?
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3.1 POSITION AND DISPLACEMENT

A nonzero net force acting on an object changes the object’s velocity. According to
Newton’s second law, the net force determines the accel eration of the abject. In order to
see how interactions affect motion, we first need to carefully define the quantities used

Concepts & Skills to Review

* net force: vector
addition (Section 2.4)
+ free-body diagrams

(Section 2.4) to describe motion (position, displacement, velocity, and acceleration) and we must
. gravitational understand the relationships among them. The description of motion using these quanti-

force (Section 2.5) tiesis called kinematics. When we combine kinematics with Newton's laws, we are in
« internal and external forces the realm of dynamics. Chapter 3 considers motion only along astraight line.

(Section 2.4) To describe motion clearly, we first need a way to say where an object is located.

Suppose that at 3:00 PM. a train stops on an east-west track as a result of an engine
problem. The engineer wants to call the railroad office to report the problem. How can
Making The Connection: he tell them where to find the train? He might say something like “three kilometers east

9 - .’ of the old trestle bridge.” Notice that he uses a point of reference: the old trestle bridge.
Then he states how far the train is from that point and in what direction. If he omits any
of the three pieces (the reference point, the distance, and the direction) then his descrip-
tion of the train’s whereabouts is ambiguous.

The same thing is done in physics. First, we choose a reference point, called the
origin. Then, to describe the location of something, we give its distance from the origin
and the direction. These two quantities, direction and distance, together describe the
position of the object. Position isavector quantity; the direction is just asimportant as
the distance. The position vector is written symbolically asr. Graphically, the position
vector can be drawn as an arrow starting at the origin and ending with the arrowhead on
the object. When more than one position vector isto be drawn, ascale is chosen so that
the length of the vector is proportional to the distance between the object and the origin.

Oncethetrain’sengineisrepaired and it gets on its way, we might want to describe
itsmotion. At 3:14 p.M. it leavesitsinitial position, 3 km east of the origin (Fig. 3.1). At
3:56 PM. thetrain is 26 km west of the origin, which is 29 km to the west of itsinitial
position. Displacement is defined as the change of position; it is written AT, where the

motion of a train

- —
26 km west 3 km west

AT < AT =T¢—Tg
29 km west

final position initial position

3:1|4P.M.
3km

0

trestle
bridge

) position vectors for atrain; the displacement vector Ar isfound by subtracting the vector for theinitial position



3.1 Position and Displacement

symbol A means the change in, or the final value minus the initial value. If the initial
and final positionsare 'y and I, then

Displacement

AF =T¢ =T, (3-1)

Since the positions are vector quantities, the operation indicated in Eq. (3-1) is a vector
subtraction. To subtract a vector is to add its opposite, so 1y — o = I + (). Vectors
representing the initial and final positions are shown asarrowsin Fig. 3.1 and the vector
subtraction is indicated. The displacement or change of position Ar is shown; it is a
vector of magnitude 29 km pointing west.

Asashortcut to subtract r'p from ', instead of adding —'y to 'y, we can simply draw
an arrow from thetip of ' to the tip of r'; when the two vectors are drawn starting from
the same point, as in the uppermost vector diagram of Fig. 3.1. This shortcut works
because the displacement vector is the change of position; it takes us from the initial
position to the final position. Since all vectors add and subtract according to the same
rules, this same method can be used to subtract any kind of vector—as long as the vec-
tors are drawn starting with their tails at the same point.

Notice that the magnitude of the displacement vector is not necessarily equal to the
distance traveled by the train. Perhaps the train first travels 7 km to the east, putting it
10 km east of the origin, and then reverses direction and travels 36 km to the west. The
total distance traveled in that caseis (7 km + 36 km) = 43 km, but the magnitude of the
displacement—which is the distance between the initial and final positions—is 29 km.
The displacement, since it is avector quantity, must include the direction; it is 29 km to
the west.
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The symbol A stands for the change
in. If theinitial value of aquantity Q
is Qg and thefinal valueis Qy, then
AQ=Q; —Qu. AQisread “deltaQ.”

Displacement depends only on the
starting and ending positions, not on
the path taken.

Q

Conceptual Example 3.1

A Relay Race
I A relay race is run aong a straight line track of

length L running south to north. The first runner

starts at the south end of the track and passes the
baton to ateammate at the north end of the track. The teeammate
races back to the start line and passes the baton to a third team-
mate who races 1/3 of the way northward to afinish line. What
isthe baton’s displacement during the race?

Strategy The displacement of the baton is the vector from
the starting point to the finish point; it is the vector sum of the
displacements of each runner.

Solution  The displacement is the vector sum of the three sepa-
rate displacements that occurred during the race (Fig. 3.2). Since
thefirst two displacements are equal in magnitude but in opposite
directions, their vector sumiszero. Thetotal displacement isthen
equal to the 3rd displacement, from the origin to the finish line,
located 1/3 of theway along the track north of the starting point.

AF = (AF]_ + Arz) + AF3
=0+ AF3 =1L, directed north

Discussion Notethat the displacement magnitudeislessthan
the total distance traveled by the baton (Z%L). The distance

F
4/
oA s
Origin | _
L + [ |
Startof | — — — — — — > —————— — — = m=r====== ===
o= plppt =l . . < __Z__ < __Z2__ ~End of
race IL——f———>———|Endof =~ | =~ |tra:k
race
Path followed
> AT,
Figure3.2 AP
Baton displacements during race; vector - N 2
sum of displacements > Ary

continued on next page
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Forces and Motion Along a Line

Conceptual Example 3.1 continued .

traveled depends on the path followed, while the magnitude of
the displacement is always the shortest distance between the
two points of interest. The displacement vector shows the
straight line path from starting point to finish point.

bases

Conceptual Practice Problem 3.1 Around the

Casey hitsalong fly ball over the heads of the outfielders. He
runs from home plate to first base, to second base, to third
base, and slides back to home plate safely (an inside-the-park
home run). What is Casey’stotal displacement?

| Thesign of avector component
indicates the direction.

Vector Components

Since our universe has three spatial dimensions, positions in space are specified using
a three-dimensional coordinate system, with x-, y-, and z-axes that are mutually per-
pendicular. Any vector can be specified either by its magnitude and direction or by its
components along the x-, y-, and z-axes. The x-, y-, and z-components of vector A are
written with subscripts as follows: A,, A, and A,. One exception to this otherwise con-
sistent notation is that the components of the position vector 1 are usually written sim-
ply as x, y, and z rather than r,, ry, and r,. The components themselves are scalars,
which have a magnitude, units, and an algebraic sign. The sign indicates the direction;
a positive x-component indicates the direction of the positive x-axis, while a negative
x-component indicates the opposite direction (the negative x-axis). Specifying the
components of avector isas complete a description of the vector asis giving the mag-
nitude and direction.

This chapter concentrates on motion along a straight line. If we choose one of
the axes along that line, then the position, displacement, velocity, and acceleration
vectors each have only one nonzero component. For horizontal linear motion, we
usually choose the x-axis to lie along the direction of motion. For objects that move
vertically, it is conventional to use the y-axis instead. One direction along the axisis
chosen to be positive. Customarily the direction to the right of the originis called the
positive direction for ahorizontal axis and upward is called the positive direction for
avertical axis. If vector A points along the x-axisin the direction of +x (to the right),
then A, = +|K|; if A points in the opposite direction—in the direction of —x (to the
left)—then A, = —|A|.

In Fig. 3.1 the compass arrows indicate that east is chosen as the direction for the
positive x-axis. Using components, the train of Fig. 3.1 starts at x = +3 km and is later
found at x = —26 km. The displacement (in component form) is AX = X; — Xy = =29 km.
The sign of the component indicates the direction. Since the positive x-axis is east, a
negative x-component means that the displacement isto the west.

The rules for adding vectors translate into adding components with their algebraic
signs. IfC = A+ B, then C, = A, + B,, C, = A, + B, and C, = A, + B,. Components
becomeincreasingly useful when adding vectors having more than one nonzero compo-
nent. We can also subtract vectors by subtracting their components, since reversing the
direction of avector changes the sign of each of its components.
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Example 3.2

A Stubborn Mule
I In an attempt to get a mule moving in a horizontal

direction, a farmer stands in front of the mule and
pulls on the reins with a force of 320 N to the east
while his son pushes on the mul€e’s hindquarters with aforce of
110 N to the east. In the meantime the mule pushes on the
ground with aforce of 430 N to the east (Fig. 3.3a). Use vector

components to find the sum of the horizontal forces acting on
themule. Draw avector diagram to verify the result.

Strategy We are interested in the forces acting on the mule,
One force given in the problem statement is a force exerted on
the ground (by the mule). From Newton's third law, the ground
pushes back on the mule with a force of equa magnitude and
opposite direction; therefore, we needed to know this force to
determine one of the horizontal forces acting on the mule. Other
forces acting on the mule that have not been explicitly stated are
the mule's weight and the normal force on the mule due to the
ground. These two are vertical forces: the weight is downward
and the normal force is upward; these forces do not concern us
since they have no effect on the horizontal motion of the mule.
Therefore, we are left with three horizontal forcesto sum. When
finding vector components, we must first choose a direction for
the positive x-axis. Here we choose east as the +x-direction.

Given: Force on mule by farmer: Emf = 320 N to the east;
force on mule by boy: Fiy,= 110 N to the east; horizon-
tal force on ground by mule: Fg,, = 430 N to the east.

To find: Sum of horizontal forces on mule

Solution  From Newton’sthird law, the ground pushes on the
mule with aforce equal and opposite to that of the mule on the
ground; therefore, the ground pushes on the mule with a force

Figure3.3

(a) A farmer and his son
encouraging their mule to move
and (b) the vector sum of the
horizontal forces on the mule

Emg of 430 N to the west. The other two horizontal forces act-
ing on the mule are directed to the east. Now we can drop the
“m" subscripts since we deal only with the three forces acting
on the mule (F.s becomes F;, etc.). The x-components of
forces directed to the east (Ft, and Fy,) are positive, since we
chose east as the +x-direction. The x-component of the one
force directed to the west (Fg,) is negative. Notice that the
F’s are not in bold-faced type because we are now talking
about components of vectors, components are scalars. Then
Fix=+320 N, Fp = +110 N, and Fg =430 N.

ZFX = fo + Fbx + ng
>F,=320N + 110N + (-430N) =0

The sum of the horizontal forcesis zero. Drawing the vectors
to sgale (ﬁFig.ﬁ3.3b) verifies that the vector sum is zero:
Ff + Fb + Fg =0.

Discusson Each force component hasasign that indicatesthe
direction along the x-axis in which the force acts. Adding the
three x-components with their algebraic signs gives the x-com-
ponent of the sum. If the sum of the x-components had been pos-
itive, the sum of the vectors would beto theright (east); if it had
been negative, the sum of the forceswould beto the left (west).

Practice Problem 3.2 At last, themule
cooperates

The mule finaly starts moving and hauls the farmer’s wagon
along a straight road for 4.3 km directly east to the neighboring
farm, where a few bushels of corn are loaded onto the wagon.
Then the farmer drives the mule back along the same straight
road, heading west for 7.2 km to the market. Use vector compo-
nentsto find the displacement of the mule from the starting point.

3.2

VELOCITY

A displacement vector indicates by how much and in what direction the position has
changed, but implies nothing about how long it took to move from one point to the other.
If we want to describe how fast something moves, we would give its speed. But we find

that amore useful quantity than speed isvelocity. Speed isameasure of “how fast”: dis-
tance traveled divided by elapsed time (distance traveled per unit time). Velocity
includes the direction of motion as well as the speed: it is defined as displacement

something moves

Velocity: a vector that measures
how fast and in what direction
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Figure 3.4 Graph of position x ver-
sustimet for thetrain.

"'0 Making The Connection:

A

Average velocity iswritten Vay. 1

Forces and Motion Along a Line

10 -0,
/G

g 0

.g -10 \

z \
-20 \

\

-30

0 10 20 30 40 50 60
Timet (min)

X (km)| +3 +3 +10 | +10 0 —26
t(min)| O 14 23 28 40 56

divided by elapsed time (displacement per unit time). Speed, the magnitude of the veloc-
ity vector, isascalar.

Average Velocity

Figure 3.4 is a graph showing the position of the train considered in Section 3.1 as a
function of time. The positions of the train at various times are marked with a dot. The
position of the train would have to be measured at more frequent time intervalsin order
to accurately trace out the shape of the graph.

The graph of position versus time shows a curving line, but that does not mean the
train travels along a curved path. The motion of thetrain is constrained along astraight line
since the track runs in an east-west direction. The graph shows the x-component of the
train’s position asafunction of time.

A horizontal portion of the graph (as fromt = 0 to t = 14 min) indicates that the
position is not changing during that time interval. Sloping portions of the graph indicate
that the train is moving. The steeper the graph, the faster its position changes. The slope
isameasure of the rate of change of position. A positive slope (t =14 mintot =23 min)
indicates motion in the +x-direction while a negative slope (t = 28 min to t = 56 min)
indicates motion in the —x-direction.

When a displacement Ar” occurs during atime interval At, the aver age velocity Vay
during that timeinterval is:

Average velocity
- A7
=— 3-2
Vav At (3-2)

Average velocity isavector becauseit is the product of avector, the displacement (Ar),
and ascalar, theinverse of the time(1/At). Since At isalways positive, the direction of the
average velocity vector must be the same as the direction of the displacement vector. In
terms of x-components,
XAt

The symbol A does not stand alone and cannot be canceled in equations because it mod-
ifiesthe quantity that followsit; Ax/At is not the same as x/t.

The average velocity does not convey detailed information about the motion during
At, just the net effect. During the time interval in question, the object’s motion could
change direction and speed in many ways and still have the same average velocity. For
any given displacement, the average velocity does indicate a constant speed and a
straight line direction that would result in the same displacement during the same
amount of time.

(3-3)
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Suppose a butterfly flutters from a point O on one flower to a point D on another
flower along the dashed line path shown in Fig. 3.5 (path OABCD). The displacement of
the butterfly is the vector arrow Ar” from O to D. The average velocity of the butterfly is
the displacement per unit time, Ar/At; the direction of the average velocity is the same
as the direction of the displacement vector Ar. The average velocity does not distin-
guish the actual path of the butterfly from any other path that begins at O and ends at D
over the sametimeinterval At.

Figure 3.5 pathfollowedby a
butterfly, fluttering from one flower to
another.

Example 3.3

AverageVelocity of Train

Find the average velocity of the train shown in Fig. 3.1 during
thetimeinterval between 3:14 pM., when thetrain is 3 km east
of the origin, and 3:56 PM., when it is 26 km west of the origin.

Strategy We aready know the displacement Ar from Fig.
3.1. The direction of the average velocity is the direction of the
displacement.

Known: Displacement Ar = 29 km west; start time = 3:14 PMm.;
finishtime= 3:56 pMm.

To find: Vay

Solution  From Section 3.1, the displacement is 29 km to the
west:

Ar = 29 km west
Thetimeinterval is
At =56 min—14 min =42 min
We convert the timeinterval to hours, so that we can use units
of km/h.

. 1h
At=42 X =0.70h
min 60 min

The average velocity is
- _ displacement _ Ar
7 timeinterval ~ At
o _ 29kmwest
¥~ 070h

We can also use components to express the answer to
this question. Assuming a positive x-axis pointing east, the

=41 km/h to the west

x-component of the displacement vector is Ax = —29 km,
where the negative sign indicates that the vector points to
the west. Then

_Ax_ -29km
At 0.70h

The negative sign shows that the average velocity is directed
aong the negative x-axis, or to the west.

=—41km/h

Va\/Y X

Discussion If the train had started at the same instant of
time, 3:14 pM., and had traveled directly west at a constant 41
km/h, it would have ended up in exactly the same place—26
km west of the trestle bridge—at 3:56 P.M.

Had we started measuring time from when we first spot-
ted the motionless train at 3:00 P.M., instead of 3:14 PM., we
would have found the average velocity over a different time
interval, changing the average vel ocity.

The average velocity depends on the time interval con-
sidered.

Practice Problem 3.3 Average velocity of the
baton from the relay race

Consider the baton from the relay race of Conceptual
Example 3.1. For the winning team, the magnitudes of the
average velocities of the first, second, and third runners are
7.30 m/s, 7.20 m/s, and 7.80 m/s, respectively. If the length of
the track is 3.00 x 10> m, what is the average velocity of the
baton for the entire race? [Hint: Find the time spent by each
runner in completing her portion of the race]
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A

The rate of change of aquantity Q
(whether scalar or vector) is

AQ
ate of ch f Q=li
rate of change of Q Jim === At
Velocity istherate of change of
position.

A

Figure 3.6 (a)A small displacement
AT of abutterfly from point ato point b. If
thetimeto travel from point ato pointbis
At, the average velocity during that time
interval iSVa, = ar, (b) Aspointsa and
b get closer and closer to point A, the
displacement Ar” becomes tangent to the
path of travel at point A. The average
velocity during the displacement from a

to b approaches the instantaneous
velocity at point A.

Forces and Motion Along a Line

In Example 3.3, the magnitude of thetrain’s average velocity isnot equal to the total
distance traveled divided by the time interval for the complete trip. That quantity is
called the average speed: _
average speed = distance traveled _ 43km

total time 0.70h
The distinction arises because the average velocity is the average of a vector quantity

whereas the average speed isthe average of ascalar.

=61 km/h

Instantaneous Velocity

The speedometer of a car does not indicate the average speed, but shows how fast the
car isgoing at any instant in time—the instantaneous speed. When a speedometer reads
55 mi/h, it does not necessarily mean that the car will travel 55 milesin the next hour;
the car could change its speed or stop during that hour. The speedometer reading indi-
cates how far the car will travel during avery short time interval—short enough that the
speed does not change appreciably. For instance, at 55 mi/h (= 25 m/s), we can calcul ate
that in 0.010 s the car moves 25 m/s x 0.010 s = 0.25 m—assuming the speed does not
change significantly during that 0.010 sinterval.

The instantaneous velocity is a vector quantity whose magnitude is the instanta-
neous speed and whose direction is the direction of motion. The direction of an object’s
instantaneous velocity at any point is tangent to the path of the object at that point.
Repeating the word instantaneous can get cumbersome. When we refer simply to the
vel ocity, we mean the instantaneous vel ocity.

The mathematical definition of instantaneous velocity starts with the average
velocity during a short time interval. Then we consider shorter and shorter time inter-
vals At; the corresponding displacements Ar that take place during At get smaller and
smaller. We let the time interval approach—but never reach—zero (Fig. 3.6). (This
mathematical processis caled finding the limit and is written I|m .) As At approaches

zero, the average velocity during the increasingly short time mterval approaches the
instantaneous velocity.

Definition of instantaneousvelocity
Ar
It L AL (3-4)

Both numerator and denominator in Eq. (3-4) approach zero, but Ar/At approaches
a limiting value that is neither undefined nor infinite; it can be but is not necessarily
zero. Suppose At is small enough that the velocity is approximately constant during the
interval. If we now cut the time interval At in half, the displacement during the time
interval isalso cut in half (or nearly so), so Ar/At (the average velocity during the inter-
val) changesvery little.

For motion along the x-axis, we can rewrite the definition of velocity in terms of

X-components:
Ax

vy, =lim 35
w=lim (3-5)
,D
/
A b /
o — 2 v A
M»\E"/C T
A=, 2SN
/=Mt
| .,/Af)y / At-0

ol origin
@ (b)
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Table 3.1

Velocities Determined from the Graph of Fig. 3.4

t (min) 14 16 19 21 23 28 32 38 47 56
Vy (km/min) 0 05 1.8 0.7 0 0 -05 -1.3 20 -3
Vv, (M/s) 0 83 30 n 0 0 83 =» -33 22

Graphical Relationship between Position and Velocity

How can we determine the instantaneous vel ocities from a graph of position versustime?
Again, we look at the average velocity during a short time interval. For motion along the
x-axis, the displacement (in component form) is Ax. Then the average velocity can berep-
resented on the graph of x versust as the slope of a line connecting two points (called a
“chord”). In Fig. 3.7a, the displacement Ax = x3 —x; isthe“rise” of the graph and thetime
interval At =t;—t; isthe“run” of the graph. The slope of the graph isthe “rise over run,”

which isequal to the average velocity AX/At= v,  for that timeinterval.

To find the instantaneous velocity at sometimet =t,, we draw lines showing the aver-
age velocity for smaler and smaler time intervas. As the time interval is reduced (Fig.
3.7b), the average vel ocity changes. AsAt — 0, the chord approaches atangent to the graph.
Therefore, v, isthe dope of the line tangent to the graph of x versust at the chosen time.

Average and instantaneous velocities for the train can be found from the graph of
x versust (Fig. 3.4). Instantaneous vel ocities are found from the slopes of the tangents
to the curve at various points. Table 3.1 shows some instantaneous velocities of the
train in km/min along with equivalent velocitiesin m/s.

What about the other way around? Given a graph of the velocity as a function of
time (v, versus t), how can we determine displacements? For motion along a straight
line it is most convenient to work in terms of the x-components of velocity and dis-
placement (v, and AX). If v, is constant during atime interval, then the average velocity
isequal to the instantaneous velocity:

Ax
At
and therefore AX = v, At (for constant v,)

The graph of Fig. 3.8 showsv, versust for an object moving aong the x-axiswith con-
stant speed v, from timet; to t,. The displacement Ax during thetimeinterval At =t,—t; is
v, At. The shaded rectangle has “height” v, and “width” At. Since the area of arectangleis
the product of the height and the width, the displacement Ax is represented by the area of
the rectangle between the graph of v,(t) and thetime axisfor thetimeinterval considered.

Vyx = Va,x =

3.2 \elocity 69

Figure 3.7 instantaneous velocity
at timet, isthe slope of the tangent to the
curve of displacement versustime at that
time: (a) average velocity measured over
alonger timeinterval and (b) average
velocity measured over a shorter time
interval

| v isthe slope of the graph of x
versust

Vi | — m—

[ |
| |
[ |
| |
I Ax |
| |
[ |

L1 5
ty y !

Figure 3.8 Displacement Ax
between t; and t, isrepresented by the
shaded area under the v,(t) graph.
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Figure 3.9 Displacement Axisthe
area under the v, versus time graph for
thetimeinterval considered.

A

| Axisthe areaunder the graph of
V, versust.
The areaiis negative when the graph
isbeneath thetime axis (v, < 0).

Figure 3.10 Trainvelocity versus
timefromt = 14 to 56 min using values
from Table 3.1.

Forces and Motion Along a Line
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When we speak of the areaunder agraph, we are not talking about the literal number
of square centimeters of paper or computer screen. The figurative area under a graph usu-
aly does not have dimensions of an ordinary area ([L]%). In agraph of v, versust, v, has
dimensions [L]/[T] and time has dimensions [T]; areas on such a graph have dimensions

I, [T] =[L], whichiscorrect for adisplacement. The units of Ax are determined by the

units used on the axes of the graph. If v, isin meters per second and t is in seconds, then
the displacement isin meters.

Wheat if the velocity is not constant? The displacement Ax during a very small time
interval At can be found in the same way as for constant velocity since, during a short
enough time interval, the velocity does not change appreciably. Then v, and At are the
height and width of a narrow rectangle (Fig. 3.98) and the displacement during that
short timeinterval isthe area of the rectangle. To find the total displacement during any
timeinterval, the areas of al the narrow rectangles are added together.

In Fig. 3.9b the time from t; to t, is subdivided into many short time intervals so
that many narrow rectangles of varying heights are formed. The width At is allowed to
approach zero and the areas of the rectangles are added together. The total displacement
Ax between t; and t, isthe sum of the areas of the rectangles. Thus, the displacement Ax
during any time interval equals the area under the graph of v,(t) (Fig. 3.9¢). If v, is
negative, x is decreasing and the displacement is negative, so we must count the area as
negativewhen it is below the time axis.

The magnitude of the train’s displacement from timet = 14 minto timet = 23 min
is the area under the v, versust graph during that time interval. In Fig. 3.10 the area

W (1)
(ms) 30 .

20

T ——
—
—

10

t (min)



under the graph for that timeinterval is shaded. One way to estimate the areaisto count
the number of grid boxes under the curve. Each box is2 m/sin height and 5 min (300 s)
in width, so each box represents an “area’ (displacement) of 2 m/s x 300 s = 600 m.
When counting the number of boxes under the curve, we make our best estimate for the
fraction of the boxes that are only partly below the curve.

Thetotal number of shaded boxesfor thistimeinterval isabout 12, so the displace-
ment magnitudeis 12 x 0.60 km = 7 km, as expected—during thistimeinterval thetrain
went from +3 km to +10 km. To get more exact measurements of areas under a curve,
we could divide the areainto afiner grid.

The shaded areafor thetime interval t = 28 minto t = 56 min is below the x-axis,
indicating a negative “area’” or negative displacement. During this interval the train is
headed west (in the —x-direction). The number of shaded grid boxes in thisinterval is
approximately 60. The magnitude of the displacement is the product of the number of
boxes times “area’ of a single box and is negative since v, is negative; Ax = -60) x
(0.60 km) = —36 km. By adding this value to the displacement during the first 14 min,
we have the total displacement fromt=0tot=56 min:

AX=+7km+ (=36 km) =—29 km
which agreeswith Fig. 3.1.

3.3 ACCELERATION

One goal of this chapter isto quantify changesin velocity, so we can predict the effect on
an object’s motion of anonzero net force. Just as we defined velocity in terms of displace-
ments and time intervals, now we define acceler ation in terms of changesin velocity and
timeintervals. The aver age acceler ation during atime interval At is defined to be
- _ Vi=Vo _ AV
T -ty At

The velocity vector can change magnitude, direction, or both. Acceleration is a vector
quantity because it is the product of a scalarl/At and a vector AV; the direction of the
average acceleration is the direction of the vector AV. The direction of the change in
velocity AV is not necessarily the same as either theinitial or thefinal velocity direction.

Just as instantaneous velocity is the limit of average velocity as the time interval
approaches zero, the instantaneous acceler ation is defined as the limit of the average
acceleration asthetime interval approaches zero.

At-0 At
The instantaneous accel eration is the rate of change of the velocity.
The Sl units of acceleration are m/s%, read as “meters per second squared.” Just as
with instantaneous vel ocity, the word instantaneous is not always repeated; accel eration
without the adjective means instantaneous accel eration.
In physics, the word accel eration does not necessarily mean speeding up. A veloc-
ity can also change by decreasing speed or by changing direction. A car going around a
curve at constant speed has a nonzero acceleration because its velocity is changing; the
change is in the direction of the velocity rather than in the magnitude. Of course, both
the magnitude and direction of the velocity can be changing simultaneously, as when a
skateboarder goes up a curved ramp.

(3-6)

(37)
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Acceleration istherate of change of
velocity.
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O Conceptual Example 3.4
Direction of Acceleration t©
While Slowing Down o—2 4 ° 8 3 1
~

When Damon approaches a stop sign on his motor
0- scooter, he “decelerates’ before coming to a full

stop. If he moves in the negative x-direction while
he slows down, is the scooter’s acceleration component, a,,
positive or negative?

Strategy and Solution  Theterm “decelerate” isnot ascientific
term. In common usage it means the scooter is dowing: the
scooter’s velocity is decreasing in magnitude. The acceleration
vector a pointsin the direction of the change in the velocity vec-
tor AV during a short timeinterval. Since the velocity is decreas-
ing in magnitude, the direction of AV is oppositeto V (Fig. 3.11).
The accel eration vector isin the same direction as AV—the posi-
tivex-direction. Thusa, ispositive (see Fig. 3.12).

Figure3.11 <
Thevelocity vectors at two
different times as the scooter

movesto the left with -V,
decreasing speed. The change -

in velocity AV =V, —V, isto — &Y
theright. T X

_
. =

vy (m/s)
N

V4

s

Figure3.12

Inthisgraph of v, versust, as Damon is stopping, vy is negative, while
a, (thedope) ispositive. Thevalue of vy isincreasing, but—sinceitis
lessthan zero to begin with and is getting closer to zero astime goes
on—the speed is decreasing.

Practice Problem 3.4 Continuing on hisway

As Damon pulls away from the stop sign, continuing in the
—x-direction, his speed gradually increases. What is the sign
of a,?

a, isthe slope of av,(t) graph.
Av, isthe area under an a,(t) graph.

Both velocity and acceleration measure rates of change: velocity is the rate of
change of position and acceleration is the rate of change of velocity. Therefore the
graphical relationship of acceleration to velocity is the same as the graphical relation-
ship of velocity to position: a, is the slope of a v,(t) graph and Av, is the area under an
a,(t) graph. On a graph of any quantity Q as a function of time, the slope of the graph
represents the instantaneous rate of change of Q. On a graph of the rate of change of Q

asafunction of time, the area under the graph represents AQ.

QO Example 3.5

Acceleration of SportsCar
A sports car can accelerate from 0 to 30.0 m/s in

4.7 s according to the advertisements. Figure 3.13

shows data for the speed of the car as a function of
time asthe sports car starts from rest and accel eratesto 60.0 m/s
while traveling in astraight line headed east.

(@) What is the average acceleration of the sports car from O
t0 30.0 m/s?

(b) What isthe maximum accel eration of the car?

(c) How far hasthe car traveled when it reaches 60.0 m/s?

(d) What isthe car’s average velocity during the entire 19.2 s
interval?

Strategy The velocity of the car is aways in the same direc-
tion. If we choose that direction asthe +x-axis, the x-component
of the car’s velocity is aways positive. Therefore, v, isequal to

the car’s speed (which isthe magnitude of the velocity). We can
reinterpret the graph as agraph of v, versust.

(a) To find the average acceleration, the change in veloc-
ity for thetimeinterval isdivided by the timeinterval. (b) The
instantaneous acceleration is the slope of the velocity graph,
so it is maximum where the graph is steepest. At that point,
the velocity is changing at a high rate. We expect the maxi-
mum acceleration to take place early on; the magnitude of
acceleration must decrease as the velocity gets higher and
higher—there is a maximum velocity for the car, after al. (c)
The displacement is the area under the v,(t) graph. The graph
isnot asimple shape such as atriangle or rectangle, so an esti-
mate of the areais made. (d) Once we have avaluefor the dis-
placement, we can apply the definition of average velocity.

continued on next page
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Example 3.5 continued

Given: Graph of v(t) inFig. 3.13
Tofind: (a) aux for vx = 0t0 30.0 m/s; (b) ama; (€) Ax from vy
=010 60.0M/s; (d) Vo xfromt=0t019.2 s

Solution (&) During the first 4.7 s, the car is moving in a
straight line to the east, so the average component of accelera-
tionin the east direction is, by definition,

_Av, _ 30.0m/s

T At 4T7s

The positive sign indicates the acceleration is directed to the
east. On average, then, the car’s velocity increases 6.4 m/s
each second during thefirst 4.7 s.

=6.4m/s

(b) Theacceleration, at any instant of time, isthe slope of the
tangent line to the vy(t) graph, at that time. To find the maxi-
mum acceleration, notice where the graph is steepest. In this
case, the largest slope occurs near t = 0, just as the car is start-
ing out. In Fig. 3.13, atangent line to the v,(t) graph at t = 0
passes through t = 0. Values for the change in velocity and
changein time are read from the graph; the tangent line passes
through the two points (t =0, vy =0and t = 6.0 s, v, = 55 m/s)
on the graph so that the change in velocity is 55 m/s for a
changeintimeof 6.0 s. The slope of thislineis
_rise _55m/s

= = =+9.2
Gma= 1 in T 6.0s 9.2m/s’

Since the slope is positive, the direction of the acceleration is
east.

v, (m/s)
60.0 — —
Tangentatt=0 —
|
50.0 f o
|
/1 Ppa
40.0 : /.//
300 /| A
/ / 1rs5mis
I
20.0 / :
/ |
10.0 :
60s |
O — = — = —
0 20 40 60 80 100 120 140 160 180 20.0
t (9
v (m/s)] 0 [15.0[20.0]25.0[30.0]35.0[40.0[45.0]50.0[55.0[60.0
t9 | 0 [20]|29]38|49(62]76]91]112[140[10.1

Figure3.13
Speed as afunction of time for a sports car.

(c) Displacement is the area under the v,(t) graph shown
shaded in Fig. 3.13. The area can be estimated by counting the
number of grid boxes under the curve. Each box is 5.0 m/sin
height and 2.0 s in width, so each represents an “area” (dis-
placement) of 10 m. When counting the number of boxes
under the curve, abest estimate is made for the fraction of the
boxes that are only partly below the curve. Approximately 75
boxes lie below the curve, so the displacement magnitude is
(75x 10 m) = 750 m.

(d) Theaverage velocity for the 19.2-sinterval is

Vo= BX
av,X At
750 m
1925 0MS
This result is reasonable; if the acceleration were constant, the
average velocity would be%(o +60.0 n/s) = 30.0 m/s. The actua
average velocity is somewhat higher because the acceleration is
greater at the start so less of thetimeinterval is spent going (rela
tively) dowly and moreis spent going fast. The speed islessthan
30.0 m/sfor only 4.7 s, but isgreater than 30.0 m/sfor 14.5s.

Discusson The graph of velocity as a function of
time is often the most helpful graph to have when solv-
ing aproblem. If that graph is not given in the problem,
it is useful to sketch one. The v(t) graph shows al three kine-
matic quantities at once: the velocity isgiven by the pointsor the
curve graphed, the displacement is the area under the curve, and
the acceleration isthe slope of the curve.

8T

Practice Problem 3.5 Braking acar

An automobile is traveling along a straight road heading to
the southeast at 24 m/s when the driver sees a deer begin to
cross the road ahead of her. She steps on the brake and brings
the car to a complete stop in an elapsed time of 8.0 s. A data
recording device, triggered by the sudden braking action,
records the following velocities and times as the car slows
(Table 3.2). Let the positive x-axis be directed to the south-
east. Plot agraph of v, versust and find (&) the average accel-
eration as the car comes to a stop and (b) the instantaneous
acceleration at atime of 2.0 s after braking begins.

Table 3.2

\elocities and Times as Car Slows

Vo (m/s) 24 173 120 87 60 35 20 075 0

t(s) 0 10 20 30 40 50 60 70 80

When the acceleration and the velocity of an object are both pointing in the same
direction, the object is speeding up. In terms of components, a, and v, must either both
be positive or both be negative when speed is increasing. When they are both positive,

A
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Fi gure 3.14 Anastronaut playing shuffleboard (8) on Earth and (c) on the Moon. Free-body diagramsfor apuck being given the same acceleration on afric-
tionless court on (b) Earth and () on the Moon. The contact force on the puck due to the pushing stick (Fc) must be the same since the mass of the puck isthe same.

the object is moving in the +x-direction and is speeding up. If they are both negative,
the object ismoving in the—x-direction and is speeding up.

When the velocity and acceleration point in opposite directions, so that their com-
ponents have opposite signs, the object is slowing down. When v, is positive and a, is
negative, the body is moving in the positive x-direction, but it is slowing down. When
Vv, is negative and a, is positive, the body is moving in the negative x-direction and is
slowing down (its speed is decreasing).

The acceleration does not contain any information about the initial velocity.
Acceleration is the rate of change of velocity. Can an object have a velocity of zero and a
nonzero acceleration at the same time? Yes, but the velocity does not remain zero. A ball
thrown straight up into the air has a velocity of zero at its highest point. Its acceleration is
not zero at that point; if it were, the ball would not fall back down. On the way up, theball’s
velocity is upward and decreasing in magnitude. At the highest point, the velocity is zero
but then the ball starts moving downward. On the way down, the velocity isdownward and
increasing in magnitude. For the entireflight of the ball, its acceleration is downward.

We can define the upward direction as positive or negative aswelike; the choiceisarbi-
trary, but we must remain consistent throughout a particular problem. For vertical motion,
upward isusually defined asthe positive y-direction. For aball throwninto the air, v, is posi-
tive on theway up and negative on the way down; a, is negative and constant throughout the
motion—on the way up, at the highest point, and on the way down. Since v, and a, have
opposite signs on theway up, the ball is dowing down (the velocity is decreasing in magni-
tude). On the downward trip, v, and a, have the same sign so the ball’s speed isincreasing.

34 NEWTON'S SECOND LAW:
FORCE AND ACCELERATION

According to Newton’s second law, the acceleration of an object is proportiona to the net
forceonit and isin the samedirection. The larger the net force, the larger the accel eration.



3.4 Newton’s Second Law: Force and Acceleration

If the net force is zero, the acceleration is zero and the object moves with constant veloc-
ity—possibly zero velocity, but not necessarily. Newton’s second law also says that the
acceleration is inversely proportional to the object’s mass. The same net force acting on
two different objects causes a smaller acceleration on the object with greater mass. Mass
isameasure of an object’sinertia—the amount of resistance to changesin velocity.

Mass and weight measure different physical properties. The mass of a body is a
measure of itsinertia, while weight is a measure of the gravitational force acting on it.
Imagine taking a shuffleboard puck to the Moon. Since the Moon’s gravitational field is
weaker than the Earth’s, the puck’s weight W would be smaller. A smaller normal force
N would be reguired to hold it up. On the other hand, the puck’s mass, an intrinsic prop-
erty, isthe same. Neglecting the effects of friction, an astronaut playing shuffleboard on
the Moon would have to exert the same horizontal force on the puck as on Earth to give
it the same acceleration (Fig. 3.14).

Newton’s law relating net force and acceleration is

Newton’s Second L aw

—

Fre=ma (3-9)

or

SF=ma
where ¥, the Greek capital |etter sigma, stands for the sum of. =F means the sum of all
the forces acting on a system. The order of the symbolsin Eq. (3-8) does not reflect a
cause-and-effect relationship; the net force causes the acceleration, not the other way

around. The SI unit of force, the newton, is defined in terms of S| base units so that a
1-N net force acting on a 1-kg mass produces an acceleration of 1 m/s’; therefore,

1N =1kg-m/s’

When calculating the net force on a system, only external forces need be consid-
ered. According to Newton’sthird law, internal forces always add to zero.

&
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Example 3.6

0"

Coupling Forceon First
and Last Freight Cars

A train engine pulls out of astation along a straight
track with five identical freight cars behind it, each
of which weigh 90.0 kN. The train reaches a speed

of 15.0 m/s within 5.00 min of starting out. Assuming the
acceleration is constant, with what magnitude of force must

the coupling between cars pull forward on the first and last of
the freight cars? Ignorefriction and air resistance. Assume g =
9.80 N/Kkg.

Strategy A sketch of the situation is shown in Fig. 3.15a.
We can calculate the acceleration of the train from the initial
and final velocities and the elapsed time. Then we can relate
the acceleration to the net force using Newton's second law.

Ts Ty T3 T,

R Nis
Ns
Figure3.15 = =

_(a) An engin_e pulling five 5 5 1.5 Tl 1 y
identical freight cars. The X
entire train has a constant = l
acceleration @ to theright. Ws v
(b) FBD for car 5. (c) FBD e
for cars 1-5. (b) (©)

continued on next page
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Forces and Motion Along a Line

Example 3.6 continued

To find the force of the first coupling, we can consider al five
cars to be one system so that we do not have to worry about
the force exerted on the first car by the second car. Once we
identify a system, we draw afree-body diagram before apply-
ing Newton's second law.

Given: W= weight of each freight car = 90.0 kN = 9.00 x 10°N:
V,=15.0m/satt=5.00min=300Ss;, Vo, = 0 sincethe
train startsfrom rest; a, = constant

To find: tensions T; and Ts

Solution The acceleration of thetrainis
_Av, _15.0m/s _
= T 2008 T 0.0500 m/s?
First consider the last freight car (car 5). If we ignore fric-
tionand air resistance, the only forces acting are theforce T due
to the tension in the coupling, the normal force N, and the car’s
weight Ws; an FBD is shown in Fig. 3.15b. The normal force
and the weight are vertical and act in opposite directions. They
must be equa in magnitude; the vertical component of the net
force is zero since the vertical component of the acceleration is
zero. Then the net force is equa to the tension in the coupling.
The mass of the car is m = W/g, where g = 9.80 N/kg = 9.80
m/<%. Then, from Newton’s second |aw,

T5:ZFX=max:%aX

0.0500 m/s?

Ts=9.00 x 16N
5 * Ny B0 mig

=459N

For the tension in thefirst coupling, consider the five cars
as one system. Fig. 3.15¢ shows an FBD in which cars 1-5 are
treated as asingle object. Again, the vertical forces on the sys-
tem add to zero. The only external horizontal forceisthe force
T, dueto thetension in the first coupling. The mass of the sys-
tem isfive times the mass of one car. Therefore,

0.0500 m/s>
9.80 m/s?

Discussion The solution to this problem is much simpler
when Newton’s second law is applied to asystem comprised of
al five cars, rather than to each car individually. Although the
problem can be solved by looking at individual cars, to find the
tension in the first coupler you would have to draw five free-
body diagrams (one for each car) and apply Newton’s second
law five times. That's because each car, except the fifth, is
acted on by the unequal tensions in the couplers on either side.
You' d have to first find the tension in the fifth coupler, then in
thefourth, then the third, and so on.

T, = 5F,= ma, = (5x9.00 x 16 N) x =2.30kN

Practice Problem 3.6  Coupling force between
first and second freight cars

With what force does the coupling between the first and sec-
ond cars pull forward on the second car? [Hint: Try two meth-
ods. One of them isto draw an FBD for thefirst car and apply
Newton’sthird law aswell asthe second.]

Example 3.7

Two Blocks Hanging on a Pulley

In Fig. 3.16a, two blocks are connected by a massess, flexible
cord that does not stretch; the cord passes over a massless, fric-
tionless pulley. If the masses are m, = 26.0 kg and m, = 42.0 kg,

T3,
mg

@ (b)

Figure3.16

(a) Two hanging blocks connected on either side of africtionless
pulley by amassless, flexible cord that does not stretch. (b) Free-body
diagramsfor the hanging blocks.

what are the accelerations of each block and the tension in the
cord? The gravitational field strength is9.80 N/kg.

Strategy Since my, is greater than my, the downward pull of
gravity isstronger on the right side than on the | eft. We expect
m, to accel erate downward and m, to accel erate upward.

Since the cord does not stretch, the accelerations of the two
blocks are equal in magnitude. If the accelerations had different
magnitudes, then soon the two blocks would be moving with
different speeds. That could only happen if the cord either
stretches or contracts. Thefixed length of the cord constrainsthe
blocks to move with equal speeds (in opposite directions) at all
times, so the magnitudes of their accel erations must be equal.

The tension in the cord must be the same everywhere
along the cord since the masses of the cord and pulley are neg-
ligible and the pulley turns without friction.

We treat each block as a separate system, draw free-body
diagrams for each, and then apply Newton’s second law to
each. It is convenient to choose the positive y-direction differ-
ently for the two blocks. For each, we choose the +y-axis in
the direction of the acceleration. Doing so means that a, has
the same magnitude and sign for the two.

continued on next page
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Example 3.7 continued

Given: my = 26.0 kg and m, = 42.0 kg
Tofind: a,; T

Solution Figure 3.16b shows free-body diagrams for the
two blocks. Two forces act on each: gravity and the pull of the
cord. The acceleration vectors are drawn next to the free-body
diagrams. Thus we know the direction of the net force: it is
always the same as the direction of the acceleration. Then we
know that the tension must be greater than m,g to give block 1
an upward acceleration and less than m,g to give block 2 a
downward acceleration. The +y-axes are drawn for each block
to be in the direction of the acceleration.

From the free-body diagram of block 1, the pull of the
cord isin the +y-direction and the gravitational forceisin the
—y-direction. Then

SF,=T—mg= ma,
For block 2, the pull of the cord isin the —y-direction and the
gravitational forceisin the +y-direction. Therefore,
2Fy=mg—T=ma,
Both T and a, are identical in these two equations. We

then have a system of two equations with two unknowns.
Adding the equations, we obtain

Mpg — Mg = Mpay + myay
Solving for a, wefind
_ (m—myg
A mrm,
Substituting numerical values,
_ (42.0kg—26.0kg) x 9.80 N/kg _ 16.0kg
- 42.0kg + 26.0 kg " 68.0kg

a,=2.31m/s

x 9.80 N/kg

since
1 ﬁ =1 M =1 m/52
kg kg
The blocks have the same magnitude acceleration. For block

1 the acceleration points upward and for block 2 it points
downward.

To find T we can substitute the expression for a, into
either of the two original equations. Using the first equation,

oo (M —my)g
T—mg=m; .

Solving for T yields

T= 2mym, g
m + M,
Substituting,

T2 2% 260kgx 42.0kg
- 68.0 kg

x 9.80 N/kg =315 N

Discussion A few quick checks:

* @ ispositive, which means that the accelerations are in
the directions we expect.

e The tension (315 N) is between myg (255 N) and m,g
(412 N) as expected.

e Theunitsand dimensions are correct for al equations.

It is aso instructive to examine what happens to the
expressions for a, and T for special cases of hanging blocks
with: equal masses, masses just slightly unequal, or one mass
much greater than the other. We often have intuition about
what should happen in such special cases. See Practice
Problem 3.7 for some examples.

Note that we did not find out which way the blocks

move. We found the directions of their accelerations. If
the blocks start out at rest, then the block of mass m, moves
downward and the block of mass m; moves upward. However,
if initially m, is moving up and my, down, they continue to
move in those directions, slowing down since their accelera-
tions are opposite to their velocities. Eventually, they come to
rest and then reverse directions.

® Practice Problem 3.7 Equal and dlightly

unequal masses

Suppose that the blocks attached to the pulley are of equal
mass (my, = my). What do the expressions for a, and T yield
in that case? Can you explain why that must be correct?
What if the blocks are only slightly unequal so that their
masses m, —m; << m, = m,? What isthe tension in that case?
What about the magnitude of the acceleration?

These steps are hel pful in most problemsthat involve Newton's second law.

. Decide what objects will have Newton’s second law applied to them.
. Identify all the interactions affecting that object.

. Draw afree-body diagram to show all the forces acting on the object.
. Find the net force by adding the forces as vectors.

. Use Newton’s second law to relate the net force to the accel eration.
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Forces acting on an object determine the motion of the object. The sum of the forces
isthe net force, which causes an acceleration. The acceleration isameasure of therate of
change of the object’s velocity. To describe the motion, one other piece of information is
required: the object’sinitial velocity. From theinitial velocity and the changesin veloc-
ity caused by the forces acting, the velocity at any later time can be calculated. The
velocity istherate of change of the position. This strategy for finding the velocity isatri-
umph of Newton’s method of analyzing and then predicting the motion based on theini-
tial conditions and the forces acting on the object.

Example 3.8

Forward Acceleration of a Grocery Cart

Alfredo is shopping at the supermarket (Fig. 3.17a).
0 Alfredo’smassis 72 kg and the mass of his shopping

cart plus groceries is 46 kg. At some particular
instant, Alfredo’s foot pushes backward on the floor with aforce
of 147 N. What isthe acceleration of the cart at that instant? The
forcesthat oppose the forward motion of the cart—frictioninthe
rotation of the cart wheels, air resistance, and so on—add to 5 N.

Strategy To simplify this problem we may choose a system
composed of Alfredo and the cart; they move together with the
same acceleration. Two horizontal externa forces act on the
system: the forces opposing the motion of the cart, f, and a
force of thefloor pushing forward on Alfredo’sfoot. Thereisno
motion in the vertical direction so the net vertical force is zero;
theweight of the systemisequal to the normal force with which
the floor pushes up on the system. We apply both Newton's
third law and Newton's second law to solve this problem.
Given: Alfredo’'smass: my =72 kg

cart + groceries mass: m, = 46 kg

force on floor by Alfredo: Fia= 147 N to the left

force opposing motion of cart: f =5 N to the left
Tofind: a

Solution From Newton'’s third law, we know that the floor
pushes forward on the system with the same force that
Alfredo pushes backward on the floor.
Far=—Fia
Since l_ffA isto theleft, l_fAf isto theright and of magnitude 147 N.
We draw a free-body diagram (Fig. 3.17h), showing the externa
forces acting on the system. Since the vertical acceleration
component is zero, the free-body diagram indicates that the
weight of the system is balanced by an equal normal force. There
may beanonzero horizontal acceleration component. The +x-axis
direction ischosen to theright, in the forward direction of the cart.
From Newton's second law for the vertical direction,
SFy=N—(m +mp)g=ma,=0
and for the horizontal direction,
ZFy=Far—f = may

Solving for the acceleration,
m + mp
Substituting the given values,

o= 147N-5N _ 142N

X" 72kg+46kg 118kg

The direction of the acceleration isto theright.

=1.20m/s?

N A
te [ Far
| | >
Figure3.17
(a) Alfredo pushes backward y
on the floor with force Fa (my +my) §

and aforcef’ opposes the for-
ward motion of the cart;

(b) afree-body diagram for
the system of Alfredo and
cart + groceries.

(b)

continued on next page
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QO Example 3.8 continued

Discussion By choosing the system to be composed of

cancel each other. The only forces that are of concern for the the chosen system.]
motion of the system as a whole are the external forces,
shown in Fig. 3.17b, that act on the system.

Alfredo and the cart and groceries, we did not havetoworry ~ PracticeProblem 3.8 Alfredo’s pushing force

about the forces internal to the system. Alfredo pushes on the What isthe force with which Alfredo’s hands push on the gro-
cart handle while the cart handle pushes back on Alfredo’s  cery cart? [Hint: Choose a new system so that Alfredo is
hands—these are two internal forces within the system that ~ external to the system and consider forces acting external to

3.5 MOTION WITH CONSTANT ACCELERATION

If the net force acting on an object is constant, then the acceleration of the object isaso
constant, both in magnitude and direction. Uniform acceleration is a synonym for con-
stant acceleration.

Three essential relationships between position, velocity, and acceleration can be
used to solve any constant acceleration problem. We write these relationships using
these conventions:

- For motion along the x-axis, write position, velocity, and acceleration in terms of
their x-components (X, Vy, &,).

. Atatimet=0, wedesignatetheinitia position and velocity as Xy and V.

. Atalater timet >0, the position and velocity are x and v,.

Just asthe origin of acoordinate system can be chosen at any convenient point in space,
the time at which t = 0 can be freely chosen to be any instant in time—whatever makes
the problem easiest to solve.

The three essentia relationships are: First, since the acceleration is constant, the
change in velocity over a given time interval At is just the acceleration—the rate of
change of velocity—times the elapsed time:

Avy, = v, —Vg =a, At for a, constant (3-9
Second, the displacement is the average velocity timesthetimeinterval:
AX=X—Xg = Vax At (3-10)

Equation (3-10) is true whether the acceleration is constant or not; it comes directly
from the definition of average velocity.
Third, since the velocity changes linearly with time, the average vel ocity is given by

v :V0x+Vx
av,x
’ 2

Equation (3-11) is not true in general, but it is true for constant acceleration. To see
why, refer to the velocity versus time graph in Fig. 3.18a. The graph is linear because
the acceleration is constant. The displacement during any time interval is represented
by the area under the v(t) graph. The average velocity is found by forming a rectangle
with an area equal to the area under the curve in Fig. 3.18a, because the average veloc-
ity should give the same displacement in the same time interval. Fig. 3.18b shows that,
to makethe area of one colored triangle equal to the area of the other, the average veloc-
ity must be exactly halfway between the initial and final velocities.

If the acceleration is not constant, there is no reason why the average velocity would
have to be exactly halfway between the initial and the final velocity. As an illustration,
imagine atrip where you drive along a straight highway at 80 km/h for 50 min and then
at 60 km/h for 30 min. Your acceleration is zero for the entire trip except during the few
seconds while you slowed from 80 km/h to 60 km/h. The magnitude of your average
velocity would not be 70 km/h. You spent more time going 80 km/h than you did going

for a, constant (3-11)

(b)

Figu re 3.18 Finding average
velocity with the aid of agraph
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Av, = a, At

Vox _

VTX

0 t

Fi gure 3.19 Graphical interpreta-
tion of Eq. (3-12)

Forces and Motion Along a Line

60 km/h, so the magnitude of your average velocity would be greater than 70 km/h (see
Problem 16).
To summarize:

If a, is constant during the entiretime interval fromt = 0 until alater timet,
when thetimeinterval isfromt =0 until alater timet, At=t-0=t

AV, = Vy — Vg, = a, At
AX= X—Xg = Vg At

_ Vox + Vx
Vax = 2

Other relationships can be formed between the various quantities (displacement,
velocity, acceleration, and time interval), but it is usually better to start with the three
basic relationships and work from there. Any constant acceleration problem can be
solved using just these three, and they are not difficult to remember—two of them are
really definitions.

Two such relationships that are often useful shortcuts can be derived from Egs. (3-9)
through (3-11) (see Problems 37 and 38). They are

AX=X—Xo = Vot + 32 (3-12)

v2—vé = 2a,AX (3-13)

Note that At is replaced by t because the time interval begins at t = 0 and At = t.
Equation (3-12) is useful when the final velocity is not known, while Eq. (3-13) is use-
ful when the elapsed time is not known.

We can interpret Eq. (3-12) graphically. Figure 3.19 shows av,(t) graph for constant-
accel eration motion. The displacement that occurs betweent = 0 and alater timet isthe
areaunder the graph for that timeinterval. Partition this areainto arectangle plus atrian-
gle. Theareaof therectangleis

height x base = vq,t
The height of the triangle isthe change in velocity, which isequal to at. The area of the
triangleis
2 x height x base=3 xat xt=1 at?

Adding these “areas’ gives Eq. (3-12).

Equations (3-9) through (3-13) are called kinematic equations for motion with con-
stant acceleration, since they deal with the relationships between position, velocity,
acceleration, and time, but not with forces.

Example 3.9 u

Displacement of Motor boat

Strategy This problem involves two different values of accel-

A motorboat accelerates from rest at a dock with a constant
acceleration of magnitude 2.8 m/s>. After traveling directly to
the east for 140 m the motor is throttled down so that the boat
slows down at 1.2 m/s” while still moving east until its speed
is 16 m/s. Just as the boat attains the velocity of 16 m/s, it
passes a buoy due east of the dock. What is the total displace-
ment of the motorboat from the dock at that time?

eration, so it must be divided into two subproblems. The kine-
matic equations for constant acceleration cannot be applied to a
time interval during which the acceleration changes. But for
each of two time intervals, the acceleration of the boat is con-
stant. The two subproblems are connected by the position and
velocity of the boat at the instant that the accel eration changes.
For the first subproblem, the boat speeds up with a con-
stant acceleration of 2.8 m/s” to the east. We know the acceler-

continued on next page
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Example 3.9 continued

ation, the displacement (140 m east), and the initial velocity:
the boat starts from rest, so the initial velocity is zero. We
need to calculate the final velocity, which then becomes the
initial velocity for the second subproblem. The boat is always
headed to the east, so we | et east be the positive x-direction.

First subproblem: Vg, = 0; a, = +2.8 m/s?
Ax =140 m; find v,

For the second subproblem, we know acceleration, final
velocity, and we have just found initial velocity from the first
subproblem. Since the boat is slowing down, its acceleration
is in the direction opposite its velocity; therefore a, is nega-
tive. From these three quantities we can find the displacement
of the boat during the second time interval.

Second subproblem: vg, comes from first subproblem
a,=-1.2m/s%; v, = +16 m/s; find Ax

Adding the displacements for the two time intervals gives
thetotal displacement.

Solution (1) To find v, without knowing the time, the most
convenient kinematic equation is
vi—v3, = 2a,AX
Solving for v,
Vx = \/V(ZJX + 2aXAX
Vx=1/0+2x2.8m/s2x 140 m = +28 m/s

(2) For the second interval the initial velocity is the final
velocity for thefirst interval: v, = +28 m/s. Then
vZ—vE = 2a,AX
Thistime we solve for the displacement.
ViV
2ay
_ (16 m/s®— (28 mis)®
2x (-1.2m/s)
And the total displacement is
AX=AX; + AX% =140 m + 220 m = +360 m
The boat is 360 m east of the dock.

AX =

AX =+220m

Discussion This problem is solved by applying the same
kinematic equation twice, once to find a velocity and once to
find a displacement. The natural division of the problem into
two parts occurs because the boat has two different constant
accelerations during two different time periods.

In problems that can be subdivided in this way, the final
velocity found in the first part becomes the initial velocity for
the second part. The same istrue for position.

Practice Problem 3.9 Timeto reach buoy and
average velocities

(@) What is the time required by the boat in the previous
example to reach the buoy? (b) Find the average velocity for
the entire trip from the dock to the buoy.

Visualizing Motion with Constant Acceleration

In Fig. 3.20 three carts move in the same direction with three different values of con-
stant acceleration. The position of each cart is depicted as it would appear in a strobo-
scopic photograph with one picture taken every second.

The yellow cart has zero acceleration and therefore constant velocity. During each
1.0-stimeinterval its displacement isthe same: 1.0 m/s x 1.0 s= 1.0 m to theright.

The red cart has a constant acceleration of 0.2 m/s’ to the right. Although m/s’ is
normally read “ meters per second squared,” it can be useful to think of it as“m/s per sec-
ond”: the cart’s velocity changes by 0.2 m/s during each 1.0-stimeinterval. In this case,

A

Positions of the carts at 1.0 sintervals

¥ 10m/s 10m/s 10m/s 1.0nm/s 1.0nvs 1.0nUs
a, =0, —_— S S g g =
Vox = 1.0m/s l l ‘ l
l w—w' \'_"T "_\.' Wrw \'_"' W
‘ 10m/s 12m/s  14mis | 16m/s 1.8m/s 2.0m/s
a,=02m/s, —_— > | —D > —
Wioms | o o | | |
% , A “ 2 Figure 3.20 Eachcartisshownas
_ 2 2.0m/s 1.8m/s 1.6 m/s 14m/s 12m/s 1.0m/is if strobosconic photoaranhs were taken
ax——%ZOrTr:]// ) = > — — +— |—> oo [t) ZI fglag
Voy = 2.0 m/s 4 with timeintervals of 1.0 s between
| "'4 “‘4 "'4 ‘17'4 "'4 flashes. The arrows above each cart indi-
0 1 2 3 4 5 6 7 8 cate velocity vectors as the strobe flashes

X (m) occeur.
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Figure 3.21 (g If the acceleration
isparallel to the velocity, then the change
invelocity (AV = a At) isalso parallel to
thevelocity. Theresult isan increasein
the magnitude of the velocity: the object
speeds up. (b) If theaccelerationis
antiparallel (parallel but pointed in oppo-
site direction) to the velocity, then the
changein velocity (AV = a At) isalso
antiparallel to the velocity. Theresultisa
decrease in the magnitude of the veloc-
ity: the object slows down.

Figure 3.22 Piotsof position,
velocity, and acceleration along the
x-axisfor the carts of Fig. 3.20.

Forces and Motion Along a Line

acceleration isin the same direction asthe velocity, so the velocity increases (Fig. 3.21a).
The displacement of the cart during successive 1.0-stime intervals gets larger and larger.

The blue cart experiences a constant acceleration of 0.2 m/s in the —x-direction—
the direction opposite to the velocity. The magnitude of the velocity then decreases
(Fig. 3.21b); during each one-second interval the speed decreases by 0.2 m/s. Now the
displacements during one-second intervals get smaller and smaller.

Figure 3.22 shows graphs of x(t), v,(t), and a,(t) for each of the carts. The accelera-
tion graphs are horizontal since each of the carts has a constant acceleration. All three v,
graphs are straight lines. Since a, isthe rate of change of v,, the slope of the v, graph at
any value of tis a, at that value of t. With constant acceleration, the slope is the same
everywhere and the graph is linear. Note that a positive a, does mean that v, isincreas-
ing, but not necessarily that the speed is increasing; if v, is negative then a positive a,
indicates a decreasing speed. (See Conceptual Example 3.4 and Fig. 3.12.) Speed is
increasing when the acceleration and velocity are in the same direction (a, and v, both
positive or both negative). Speed is decreasing when acceleration and velocity are in
opposite directions—when a, and v, have opposite signs.

The position graph islinear for the yellow cart because it has constant velocity. For
the red cart the slope of the x(t) graph increases, showing that v, is increasing; for the
blue cart the slope of the x(t) graph decreases, showing that v, is decreasing.

Position Velocity Acceleration
T 2 T T T
- 8 Q) v
E _ E1 E 0
< 4 e e - - 2 [ 4]t
-0.2
0 0
2 4 2 4 a.=0me
t(s) t(9)
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Example 3.10

Drag-Racing Spaceships

Two spaceships are moving from the same starting point in
the +x-direction with constant accelerations. In component
form, the silver spaceship starts with an initial velocity of
+2.00 km/s and has an acceleration of +0.400 km/s’. The
black spaceship starts with a velocity of +6.00 km/s and has
an acceleration of —0.400 km/s’. Find the time at which the
silver spaceship just overtakes the black spaceship.

Strategy We can find the positions of the spaceships at later
times from theinitial velocities and the accelerations. At first,
the black spaceship is moving faster, so it pulls out ahead.
Later, the silver ship overtakes the black ship when their
positions are equal.

Solution The position of either spaceship at a later time is
given by

1
X = Xo + Vout + 5at?

We set the positions of the spaceships equal to each other
(Xsiver = Xplack) @nd solve algebraically for the time at which
thisoccurs. Theinitial positions are the same: Xgs = Xgp = Xo-

1 1
Xo + Vosd + 58st” = Xo + Vopd + Sapd”

Subtracting X, from each side, moving all terms to one side,
and factoring out one power of t yields

t(Vosct+ %39('[ —Voox— %abxt) =0
One solution of the equation ist = 0 (the two spaceships at the
same initial position). That is not the solution we seek, so the
expression in the parentheses must be equd to zero. Solving for t,
t= 2(Vosx—Vony) . 2(2.00 km/s—6.00 km/s
T ay—ay  —0.400 km/s>— 0.400 km/s?
The silver spaceship overtakesthe black spaceshipatt = 10.0s.

=10.0s

Discussion Quick check: the two ships must have the same
displacement at t =10.0 s.

AXs = Voot + 50t
=2.00km/sx 10.0s+3 x 0.400 km/s? x (10.05)? = 40.0 km
DX = Vot + 38t
=6.00 km/s x 10.0's + 5 x (—0.400 km/s?) x (10.0's)
=40.0km

Practice Problem 3.10 Timeto reach
same velocity

Find thetime at which the two spaceships have the same vel ocity.

Example 3.11

Two Blocks, One Sliding
and One Hanging

A block of mass m; = 3.0 kg rests on a frictionless horizontal
surface. A second block of mass m, = 2.0 kg hangs from aflex-
ible cord of negligible mass that runs over an ideal pulley and
then is connected to thefirst block (Fig. 3.233). The blocks are
released from rest. (@) Find the accelerations of the two blocks
after they arereleased. (b) Find the tension in the cord connect-
ing the blocks. (c) What is the velocity of the first block 1.2 s
after the release of the blocks, assuming thefirst block does not
run out of room on the table and the second block does not
land on the floor? (d) What is the minimum distance from the
pulley for block 1 to be located so that it can attain the velocity
found in part (c)?

Y

L

Figure3.23

(a) Two blocks connected by a cord, one supported by
africtionless table and one hanging freely and

(b) free-body diagrams for blocks 1 and 2 with force
magnitudes |abeled.

Strategy We consider each block as a separate system and
draw a free-body diagram for each. The tension in the cord is
the same at both ends of the cord since the cord and pulley are
ideal. We choose the +x-axis to the right and the +y-axis up.
To find the accelerations of the blocks (which are equal in
magnitude if the cord length is fixed) and the tension in the
cord, we apply Newton's second law. Then we use kinematic
equations for constant accel eration to answer (c) and (d).

Given: my = 3.0 kg; m, = 2.0kg; Vo = 0for both; At=1.2s

Solution (&) Figure 3.23b shows free-body diagrams for the
two blocks. Block 1 slides along the table surface, so the verti-
cal component of acceleration is zero; the normal force must

—+

T’
1 —>

@ (b)
continued on next page
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Example 3.11 continued

be equal in magnitude to the weight. With the two vertical
forces canceling, the only remaining force is horizontal: the
pull of the cord.

SF, =T =mayy
Only vertical forces act on block 2. From the free-body dia-
gram for block 2, we write Newton's second law:

2F5 =T —myg = mpay,
The two accel erations have the same magnitude. The acceler-

ation of block 1 isin the +x-direction while that of block 2 is
in the—y-direction. Therefore we substitute

ax=a and ay=-a
where a isthe magnitude of the acceleration.
Substituting T = mya and a,, = —a into the second equation,
ma—mg = —ma
Now we solve for a:
a=—"e
m, + M,
Substituting the known quantities
a= 2.0kg
3.0kg + 2.0kg

The acceleration of block 1 is 3.9 m/s’ to the right and that of
block 2 is 3.9 m/s? downward.

g

x 9.8 m/s? = 3.9 m/s

(b) Thetension isnow found from the accel eration:
T=ma=30kgx3.9m/s’=12N
(c) Next wefind the velocity of block 1 after 1.2 s. The prob-
lem gives the initial velocity, Vo, = 0 at t = 0, and the elapsed
time, At=t=1.2s.
Vy = Voy + &yt
V,=0+39m/sx1.2s=4.7m/s
The positive sign indicates that block 1 movesto the right

(d) To find the minimum distance from the pulley, we find the
distance traveled during 1.2 s after starting from rest

1
Ax = Vgt + a2

Ax=0+73[39m/$ x (L2572 =2.8m

Discussion An algebraic expression for thetension is
mm 9
m, + M,
An algebraic expression can lead to insightsthat are lost when
anumerical answer is calculated (see Practice Problem 3.11).

T=ma=

® PracticeProblem3.11 A quick check

Check the expressions for acceleration and tension in the spe-
cial case my > m,. [Hint: What is the sum my, + m, approxi-
mately equal to if my>> m,?|

<

Example 3.12

Towing a Glider
A small plane of mass 760 kg requires 120 m of
0 runway to take off by itself (120 m is the horizon-
tal displacement of the plane just before it lifts off
the runway, not the entire length of the runway). (a) When the
plane is towing a 330-kg glider, how much runway does it
need? (b) If the final speed of the plane just before it lifts off

the runway is 28 m/s, what is the tension in the tow cable
while the plane and glider are moving along the runway?

Strategy The plane's engines produce thrust—the forward
force on the plane dueto the air. Thereis also abackward force
on the plane due to the air: drag. The drag force increases as
the plan€’s speed increases, but it is much less than the thrust.
A small backward force is exerted on the rolling tires by the
runway. As a simplified model we assume that the sum of the
horizontal forces on the plane (thrust plus drag plus runway) is
constant.

As the glider is towed along the runway, the tension in
the cable pulls forward on the sailplane and backward on the
plane. Ignoring the small mass of the cable, the tension is the
same at both ends. Drag on the glider is negligible—it is
designed to have very little drag.

Since the plane and glider are moving along the runway,
the vertical component of acceleration is zero. We need not be
concerned with gravity and with lift (the upward force on the
aircraft's wings due to the air) since they add to zero to pro-
duce zero vertical acceleration.

Solution (&) When the plane takes off by itself, we assume a
constant horizontal net force. From Newton's second |aw,

ZFX = My,

where my isthe plane’'s mass and ay, isits horizontal accelera-
tion component.

When the glider is towed, we can consider the plane,
glider, and cable to be a single system. The net horizontal
force on the system is the same as 2F, above. The tension in
the cable is an internal force; the glider produces no thrust;
and weignore drag on the glider. Therefore

Myag, = (M + Mp)ay,
where m, isthe glider’s mass and a,, is the horizontal accelera-

tion component of the plane and glider system. The same net
force applied to a larger mass produces a smaller acceleration:

continued on next page




3.5 Motion with Constant Acceleration

85

Q

Example 3.12 continued

vy < a3 Rearranging the last equation shows that the accelera-
tionisinversely proportiona to the total mass:
Bx__ My
x M+
How is the acceleration related to the runway distance?
The plane must get to the same final speed in order to lift off
the runway. From
vZ—vi = 2a,Ax
with the same values of v, and v, in both cases, we see that
AX is inversely proportional to a,; a smaller acceleration
means alonger runway distanceisrequired. Since the acceler-
ation is inversely proportional to the total mass, and the run-
way distance is inversely proportional to the acceleration, the
runway distanceisdirectly proportional to the total mass:
%:@:mﬁmz:logokg:“s
AX; g my 760kg
AX,=143%x120m=172m=170m
The plane uses 170 m of runway when towing the glider.

(b) Thefinal speed given enables usto find the acceleration:
V2—v3, = 2a,AX
With v, =28 m/s, vg, =0, and Ax =172 m,

_ V2 _ (28m/9)?

= = =228 m/s
&=oMx - 2x172m m

Thetension in the cable is the only horizontal force acting on
the glider. Therefore

YF,=T=mya,=330kg x 2.28 m/s’> = 752 N
Thetension in the cableis approximately 750 N.

Discussion This solution is based on a simplified model, so
we can only regard the answers as approximate. Nevertheless,
it illustrates Newton's second law. The same net force produces
an acceleration inversely proportional to the mass of the object
on which it acts. Here we have the same net force acting on two
different objects: first the plane alone, then the plane and glider
together.

Alternatively, we can look at forces acting only on the
plane. When towing the glider, the cable pulls backward on
the plane. The net force on the planeis smaller, so its acceler-
ation is smaller. The smaller acceleration means that it takes
more time to reach takeoff speed and travels alonger distance
before lifting off the runway.

Practice Problem 3.12 Enginethrust

Neglecting air resistance, what is the thrust provided by the
airplane’'s enginesin the preceding example?

Example 3.13

HaulingaCrateUp Toa
Third-Floor Window

A student is moving into a dorm room on the third
0-, floor and he decides to use a block and tackle

arrangement (Fig. 3.24) to move a crate of mass
91 kg from the ground up to his window. If the breaking
strength of the available cable is 550 N, what is the minimum
time required to haul the crate to the level of the window,
30.0 m above the ground?

Strategy The tension in the cable is T and is the same at
both ends or anywhere along the cable, assuming the cable
and pulleys are ideal. Two cable strands support the crate,
each pulling upward with aforce of magnitude T. The weight
of the crate acts downward. We draw a free-body diagram and
set the tension equal to the breaking force of the rope to find
the maximum possible acceleration of the crate. Then from
the maximum accel eration, we use kinematic relationships to
find the minimum time to move the required distance to the
third-floor window with that acceleration.
Given: m=91 kg; Ay = 30.0 m; g = 9.8 m/S*; Tra = 550 N;

Voy =0
To find: At, the minimum time to raise the crate 30.0 m
continued on next page

4th-floor
window

3rd-floor
window

2nd-floor
window

&

rPEPE

@ (b)

Figure3.24
(a) Block and tackle setup and (b) free-body diagram for the crate
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Solution From the free-body diagram (Fig. 3.24b), if the
forces acting up are greater than the force acting down, the net
forceisupward and the crate’s acceleration isupward. In terms
of components, with the +y-direction chosen to be upward,

2Fy=T+T-mg=ma,
Solving for the acceleration,
_T+T-mg
&= m
Setting T = 550 N, the maximum possible value before the
cable breaks, and substituting the other known values,

_ 550N +550 N—91 kg x 9.8 m/s’
& 91kg

=23m/s

The minimum time to move the crate up a distance Ay
starting from rest can be found from

Ay =vot +5at?
Setting vo, = 0 and solving for t, wefind
2Ny
a

t==%

Our equation applies only for t > 0 (the crate reaches the win-
dow after it leaves the ground). Taking the positive root and
substituting numerical values,

2X300m
= 2=l _5g
=V 23me 1S

Thisisthe minimum timeif a, isthe maximum acceleration.

Discussion If the crate is accelerated upward, the tension of
the cable is greater than if the crate is moved at a constant
velocity. For the crate to accelerate, there must be an upward
net force. For motion with a constant velocity, the tension
would be equal to half the weight of the crate, 450 N.

Practice Problem 3.13 Hauling the crate with a
single pulley

If only asingle pulley, attached to the pole above the fourth-floor,
were available and if the student had a few friends to help him
pull on the cable, could they haul the crate up to the third-floor
window? If so, what isthe minimum time required to do so?

3.6 FALLING OBJECTS

Suppose you are standing on abridge over adeep gorge. If you drop astoneinto the gorge,
how fast doesit fall? You know from experience that it does not fall at a constant velocity;

thelonger it falls, the faster it goes. A better questionis: what isthe stone’s accel eration?

First, let us simplify the problem. If the stone were moving very fast, an apprecia-
ble force of air resistance would oppose its motion. When it is not falling so fast, air
resistanceisnegligibly small. If air resistanceis negligible, the only appreciableforceis
that of gravity. Freefall isasituation in which no forces act on an object other than the
gravitational force that makes the object fall. On Earth, freefal is an idealization since

thereisaways some air resistance.

What is the acceleration of an object in free fall? More massive objects are harder
to accelerate: the acceleration of an object subjected to a given force is inversely pro-
portional to its mass. However, the stronger gravitational force on a more massive
object compensates for its greater inertia, giving it the same acceleration as aless mas-

sive object. The gravitational force on an object is

From Newton’s second law,

Dividing by the massyields

magnitude

a:g:9.8kﬂg:9.8ﬂ><1k‘34'm’52 —08m/g

kg N

(3-14a)

The acceleration of an object in free fal is g, regardless of the object’'s mass. Since
1 N = 1 kg:m/s?, an object in free fall near the Earth’s surface has an acceleration of
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Thus any object in free fall near the Earth’s surface has a constant downward acceleration
of magnitude 9.8 m/s”. For thisreason, g is sometimes called the freefall acceleration—the
acceleration of an object near the surface of the Earth when the only force acting is gravity.
When desling with vertical motion, the y-axisis usually chosen to be positive pointing
upward. In two-dimensional mation, the x-axisis often used for the horizontal direction and
they-axisfor the vertical direction. The direction of the acceleration isdown, soin freefdll

a,=—g (3-14b)
The same techniques and equations used for other constant acceleration situations are
used with freefall. The only changeisthat the constant acceleration in freefall is always
directed toward the center of the Earth and has a known constant magnitude of approxi-
mately 9.8 m/s? for objects near the surface of the Earth.

Earth’s gravity always pulls downward, so the acceleration of an object in free fall
is always downward, regardless of whether the object is moving up, down, or is at rest.
If the object is moving downward, the downward accel eration makesit speed up; if itis
moving upward, the downward acceleration makesit slow down; and if it is at rest, the
downward accel eration makesit start moving downward.

If an object isthrown straight up, its velocity is zero at the highest point of its flight.
Why? On the way up, the y-component of its velocity v, is positiveif the positive y-axisis
pointing up. On the way down, vy is negative. Since v, changes continuously, at arate of
9.8 m/s%, it must pass through zero to change sign. At the one instant of time at its highest
point, the object is neither moving up nor down. The object’s acceleration is not zero at
the top of flight. If the acceleration were to suddenly become zero at the top of flight, the
velocity would no longer change; the object would get stuck at the top rather than fall back
down! The velocity is zero at the top but it does not stay zero; it is still changing at the
samerate.

Falling Objects
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In freefal near the Earth’s surface,
a, =—g (if the y-axis points up).

A

<

Example 3.14

Throwing Stones

speed of the stone just after it leaves your hand? (b) What is t * ant
the speed of the stonejust beforeit hits the water? _ 441m

4.00s

Strategy Ignoring air resistance, the acceleration is constant.
Choose the positive y-axis pointing up. L et the stone be thrown
att =0and hit the stream at alater timet.

Known: a,=-9.81 m/s”; Ay=—44.1matt=4.00s
Tofind: |vqy| (speed at t = 0) and |v,| (speed at t = 4.00 )

Thefinal speedis30.6 m/s.

as expected.

Standing on a bridge, you throw a stone straight upward. The vy = (ﬂ —layt
stone hits a stream, 44.1 m below the point at which you t 2
release it, 4.00 s later. Assume g = 9.81 m/s>. (a) What is the _Ay 1

Substituting the expression for v, found in Eg. (1),

)+ayt

+ %(—9.81 Mg x 4.009)
vy =-11.0 m/s—19.6 m/s=-30.6 m/s

@

Discussion The final speed is greater than the initial speed,

Equations (1) and (2) have a direct interpretation, which

Solution (a) Equation (3-12) can be used to solve for vy,
sinceall the other quantitiesin it (Ay, t, and a,) are known.

Ay =Vt + 3at?

Solving for v,
Ay 1. _441m 1
Voy == T 2( 9.81 m/s*x4.005) (1)

=-11.0m/s+ 19.6 m/s=8.6 m/s
Theinitial speedis8.6 m/s.
(b) ThechangeinvyisaytfromEq. (3-9):
Vy = Vg, +at

is a good check on their validity. The first term, Ay/t, is the
average velocity of the stone during the 4.00 s of freefall. The
second term, %ayt, ishalf the changein vy since (v, —Vo,) = at.
Because the acceleration is constant, the average velocity is
halfway between theinitial and final velocities. Therefore, the
initial velocity is the average velocity minus haf of the
change, while the final velocity is the average velocity plus
half of the change.

Practice Problem 3.14 Height attained by stone
(a) How high above the bridge does the stone go? [Hint: What
isvy at the highest point?] (b) If you dropped the stone instead
of throwing it, how long would it take to hit the water?
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Air Resistance—Falling with Varying Acceleration

A skydiver relies on a parachute to provide a large drag force of air resistance. Even
with the parachute closed, drag is not negligible when the skydiver is falling rapidly.
The drag force exerted on a body falling through air increases dramatically with speed;
it isproportional to the square of the speed:

Fd = bV2
where b is a constant that depends on the size and shape of the object. The direction of
the drag force is opposite to the direction of motion.

Since the drag force increases as the speed increases, afalling object may eventu-
ally reach equilibrium when the drag force is equal in magnitude to the weight. The
speed at which the drag forceis equal in magnitude to the weight is called the object’s
terminal speed. As the speed gets near the terminal speed, the acceleration gets

Figure 3.25 A stroboscopic pho- smaller and smaller. The acceleration is zero when the object falls at its terminal
tograph shows two objectsfalling speed

through the air with very different termi- - ' .
n;°;geed;"ﬂ{eﬁ'xpovjﬁg Iar::akm a InFig. 3.25, abaseball and acoffeefilter are released from rest a_\nd fall through the air.
fixed imeintervals of 1/15's. The strobe photograph shows the positions of the two at equal time intervals. The baseball

has atermina velocity of about 40 m/s, so air resistance is negligible for the speeds shown
in the photo. The digplacement of the baseball in equal time intervals increases linearly,
showing that its acceleration is constant. The coffee filter has avery large surface area for
its small mass. Asaresult, itsterminal speed is much smaller—about 1 m/s. The displace-

Table 3.3 ment of the filter barely changes from one strobe flash to the next, showing that it isfalling
at asmall, nearly constant velocity.
Some Typical Terminal Speeds At terminal speed v,, the drag forceis equal in magnitude to the weight. Therefore,
Fq=mg= bv?and
Terminal = ﬂ;
Speed vi
Object (m/s) Therefore, at any speed v,
2
Feather 05 Fa=mg , (315)
Snowflake 1 ) i Lo
Raindrop . Thg termi _nal speed of an object depen<_js onitssize, shqpe, and mass (see Table 3.3).
Skydiver (open 59 A skydiver with the parachute closed will reach a termina speed of abou_t 50 Ws
parachute) (=110 mi/h) in the spread-eagle position or as much as 100 m/s (=220 mi/h) in a dive.
Basketball 20 When the parachute is opened, the drag force increases dramatically—the larger surface
Baseball 20 area of the parachute means that more air has to be pushed out of the way. The terminal
Skydiver 50-60 speed with the parachute open is typically about 9 m/s (20 mi/h). When the parachute is
(spread-eagle) opened, the skydiver isinitialy moving faster than the new terminal speed. For v > v;,
Skydiver (dive) 100 the drag force islarger in magnitude than the weight and the accel eration is upward. The
Bullet 100 skydiver slows down, approaching the new terminal speed. Note that the terminal speed
is not the maximum possible speed; it is the speed that the falling object approaches,
regardless of initial conditions, when the only forces acting are drag and gravity.
o ® Example 3.15 .
Skydiver sFalli ng Fr ee|y must fall faster in order for the drag force to equal his weight,

so the 82.0-kg skydiver should have a larger terminal speed.
For the ratio of the terminal speeds, we first find how the ter-
minal speed depends on mass, al other things being equal.
Then we work by proportions.

Two skydivers have identical parachutes. Their

0 masses (including parachutes) are 62.0 kg and
82.0 kg. Which of the skydivers has the larger ter-

minal speed? What istheratio of their terminal speeds?

Solution At terminal speed v;, the drag force must be equal

Strategy With identical parachutes, we expect the same in magnitude to the weight.

amount of drag at a given speed. The more massive skydiver
continued on next page




3.6 Falling Objects

89

Example 3.15 continued

mg = Fq=bv{
Since the parachutes are identical, we expect the constant b to
be the samefor the two divers. Therefore,

vidVm

The more massive skydiver has a larger terminal speed—he
must move faster in order for the drag force to equal hislarger
weight. Theratio of the terminal speedsis

Vio _ /mp _ /820 _
—L- —== [—=115
Vi my, 62.0

The terminal speed of the 82-kg diver is 1.15 times that of the
|less massive skydiver, or 15% faster.

Discussion The 82.0-kg skydiver is 32% more massive:
82.0kg
62.0kg

but his terminal speed is only 15% greater. That is because the
drag force is proportional to the square of the speed. It only
takes a 15% greater speed to make the drag force 32% greater:

(1.15)%=1.32

=132

Practice Problem 3.15 Air resistance at
terminal speed

A pilot has bailed out of her airplane at a height of 2000 m
above the surface of the Earth. The mass of pilot plus para-
chute is 112 kg. What is the force of air resistance when the
pilot reaches terminal speed?

Example 3.16

Dropping the Ball

A basketball is dropped off atall building. (a) What istheini-
tial acceleration of the ball, just after it isreleased? (b) What is
the acceleration of the ball when it is falling at its terminal
speed? (c) What is the acceleration of the ball when falling at
half itsterminal speed?

Strategy We choose the positive y-axis to point upward as
usual. The ball is dropped from rest so initially the only force
acting is gravity—the drag force is zero when the velocity is
zero. Once the ball is moving, air drag contributes to the net
force on the basketball.

Solution (&) Theinitial acceleration isthe free-fall accelera-
tion (a = g) since the drag force is zero.

(b) Once the ball reaches terminal speed, the drag force is
equal in magnitude to the weight of the ball but acts in the
opposite direction. The net force on the bal is zero, so the
acceleration is zero. At terminal speed, a = 0.

() Whentheball isfalling at half its terminal speed, the drag
force is significant but it is smaller than the weight. The net
force is down and therefore the acceleration is still down-
ward, though with a smaller magnitude. The drag force at any
speed isgiven by
V2

Fq=mg V2
and this drag force acts in the opposite direction to the weight;
it acts upward.

The net vertical forceis
v2 e
ZFy:Fd—nQ:mF—m:m(v—z—l)
t t
Now we apply Newton's second |aw.

2Fy=ma,
Solving for the acceleration yields

_ (v
3=9( 1)

continued on next page




90

Chapter 3

Forces and Motion Along a Line

Q

Example 3.16 continued .

At atime when the velocity is at half

1 Vo1 gible? If we know the approximate terminal speed of an object,
V=§Vt and V—t2=z then air resistance is negligible as long as its speed moving

a,=g(3-1)=—ig

so that the acceleration of theball is
El=]
where & and g both point downward.

the terminal speed, Discusson How do we know when air resistance is negli-

through the air is small compared to the terminal speed.

Practice Problem 3.16 Acceleration graph sketch

Sketch a qualitative graph of vy(t) for the basketball using a
y-axis that is positive pointing upward. [Hint: At first air
resistance is negligible. After along time the basketball isin
equilibrium. Figure out what the beginning and end of the
graph look like and then connect them smoothly.]

Physics at Home

Go to a balcony or climb up a ladder and drop a basket-style paper coffee filter (or a cup-
cake paper) and a penny simultaneously. Air resistance on the penny is negligible unless it
is dropped from a very high balcony. At the other extreme, the effect of air resistance on
the coffee filter is very noticeable; it reaches its terminal speed almost immediately. Stack
several (two to four) coffee filters together and drop them simultaneously with a single
coffee filter. Why is the terminal speed higher for the stack? Crumple a coffee filter into a
ball and drop it simultaneously with the penny. Air resistance on the coffee filter is now
reduced, but still noticeable.

3.7 APPARENT WEIGHT

Imagine being in an elevator when the cable snaps. Assume that some safety mecha
nism brings you to rest after you have been in freefall for awhile. Whileyou arein free
fall, you seemto be “weightless,” but your weight has not changed; the Earth still pulls
downward with the same gravitational force. In freefall, gravity makesthe elevator and
everything in it accel erate downward at 9.8 m/s?. Thefloor of the elevator stops pushing
up on you, asit does when the elevator isat rest. If you jump up from the elevator floor,
you seem to “float” up to the ceiling of the elevator. Your weight hasn't changed, but
your apparent weight iszero whileyou arein freefall.

You don’t need a disastrous elevator mishap to notice an apparent weight that differs
from your true weight. A normally operating elevator will do quite nicely. Stepintheele-
vator and push a button for ahigher floor. When the elevator accel erates upward, you can
feel your apparent weight increase. When the elevator slows down to stop, the elevator’s
acceleration is downward and your apparent weight isless than your true weight.

What is happening in the body while the elevator accelerates? Blood tendsto collect
in the lower extremities during acceleration upward and in the upper body during accel-
eration downward. Theinternal organs shift position within the body cavity resultingin a
funny feeling in the gut as the elevator starts and stops. To avoid this problem, high-
speed express elevators in skyscrapers keep the acceleration relatively small, but main-
tain that accel eration long enough to reach high speeds. That way, the elevator can travel
quickly to the upper floors without making the passengers feel too uncomfortable.

Imagine an object resting on a bathroom scale. The scale measures the object’s
apparent weight W', which is equal to the true weight only if the object has zero accel-
eration. Newton’'s second law requires that

Froe=N = mg = mi
whereN isthe normal force of the scale pushing up. The apparent weight is the reading
of the scale—the magnitude of N:
W =|N|=N
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Vector sum of forces

A N
N N mg

te..

Frg =N +mg=nma
mg Fret is upward so
\ N>mg
Free-body
diagram

@ (b) (©)

In Fig. 3.26a, the acceleration of the elevator is upward. The normal force N must
belarger than the weight mg in order for the net force to be upward (Fig. 3.26¢). Writing
the forcesin component form where the +y-direction is upward,

ZF,=N-mg=ma,
or
N =mg+ ma,
Therefore,
W =N=m(g+a,) (3-16)

Since the elevator accelerates upward, a, > 0; the apparent weight is greater than the
true weight (Fig. 3.26¢).

In Fig. 3.27a, the acceleration is downward. Then the net force must also point
downward. The normal force is still upward, but it must be smaller than the weight in
order to produce adownward net force (Fig. 3.27¢). Itis till true that

W'=m(g+a,)
but now the acceleration is downward (a, < 0). The apparent weight is less than the true
welght.

Vector sum of forces

A,
N N
" ‘ mg
Fna
'-fna =N+ mg = ma
mg I'fnet isdownward so
Y N<mg
Free-body
diagram

@ (b) (©)

FIgU re 3.26 (a) Apparent weight
in an elevator with acceleration upward
(b) Free-body diagram for the passenger
(c) Normal force must be greater than the
weight to have an upward net force.

Flgu re 3.27 (a) Apparent weight
in an elevator with acceleration down
(b) Free-body diagram for the passenger
(c) Normal force must be less than the
weight to have a downward net force.
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In both these cases—and in general—the apparent weight is given by

W =mlg- & (3-17)
where g and a are both vector quantities. When g and & point in opposite directions, the
magnitude |g — a| isgreater than it iswhen they point in the same direction. If the accel-
eration of an elevator is upward, then g and a have opposite directions and the apparent
weight is greater than the true weight. In an elevator with a downward acceleration, g
and a have the same direction and the apparent weight is less than the true weight. If an
elevator isin free fall, then g and a are in the same direction and are equal in magni-
tude; in free fall the apparent weight is zero. Draw the vectors and perform the vector
subtraction to satisfy yourself that Eq. (3-17) is correct.

Physics at Home (or in the Garden):

Take an empty half-gallon paper milk carton or a plastic milk jug and poke one hole in the
bottom and another in the side of the carton with a pencil. Fill the carton with water while
sealing the holes with your fingers so the water does not pour out. Throw the carton
straight up into the air and watch what happens at the holes. Does water start to pour out
of the unsealed holes as the carton ascends? What about when the carton is falling down-
ward? Can you explain your observations using the ideas of free fall and apparent weight?

Q

Example 3.17 —

Apparent Waeai ght in an Elevator (b) When the elevator approaches the 15th floor, it slows down
while still moving upward; its acceleration is downward (a, < 0)

A passenger weighing 598 N rides in an elevator. asin Fig. 3.27. The apparent weight is less than the true weight.

ﬁ. The gravitaionsl field strength is .80 Nkg. What o S'F N W e, but thistimea, = 0.500m/
is the apparent weight of the passenger in each of LY ' ’ '

the following situations? In each case, the magnitude of the ele- N= W<1 + E«L)
vator's acceleration is 0.500 m/s>. (a) The passenger is on the
1st floor and has pushed the button for the 15th floor; the eleva 2

: T ) i _ —0.500 m/s”\ _
tor is beginning to move upward. (b) The elevator is slowing B R e
down asit nearsthe 15th floor. '

Discussion The apparent weight is greater when the direc-
tion of the elevator’s acceleration is upward. That can happen
in two cases: either the elevator is moving up with increasing
speed, or it is moving down with decreasing speed.

Strategy Let the +y-axis be upward. The apparent weight is
equa to the magnitude of the normal force exerted by the
floor on the passenger. Newton’s second law lets us find the
normal force from the weight and the acceleration.

Given: W =598 N; magnitude of the acceleration is . .
a = 0.500 m/s> Practice Problem 3.17 Elevator descending

Find: W' What is the apparent weight of a passenger of mass 42.0 kg

traveling in an elevator in each of the following situations?
Solution  (8) When the elevator starts up from the first floor e gravitational field strength is 9.80 N/kg. In each case,
it accelerates in the upward direction as its speed increases.  the magnitude of the elevator’s acceleration is 0.460 m/s’.
Since the elevator accelerates upward, a, > 0 (asin Fig. 3.26). (@) The passenger is on the 15th floor and has pushed the
We expect the apparent weight W' = N to be greater than the ~ button for the 1st floor; the elevator is beginning to move
true weight—the floor must push up with aforce greater than ~ downward. (b) The elevator is slowing down as it nears the

W 'to cause an upward acceleration. 1st floor.
2F,=N-W=ma,

Since m= W/g,
W':N:W+n‘ay:W+%ay:W(l+%>

0.500 m/s?

=598 N x (1+
x( 9.80 M/

>=629N
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Summary

e Position (symbol T) is a vector from the origin to an
object’slocation. Its magnitude is the distance from the ori-
gin and its direction points from the origin to the object.

«  Displacement is the change in position: AT =1t — . The
displacement depends only on the starting and ending posi-
tions, not on the path taken. The magnitude of the displace-
ment vector is not necessarily equal to the total distance
traveled; it isthe straight line distance from the initial posi-
tion to the final position.

»  Vector components; If A points along the +x-axis, then
A, = +A if A points in the opposite direction—along the
negative x-axis—then A, = —A. When adding or subtracting
vectors, we can add or subtract their components.

o The average velocity states at what constant speed and in
what direction to travel to cause that same displacement in
the same amount of time. R
Vo= 20
At
o Velocity is avector that states how fast and in what direc-
tion something moves. Its direction is the direction of the
object’s motion and its magnitude is the instantaneous
speed.

v=Ilim— (3-9)
o Average acceleration is the constant acceleration that
would give the same velocity change in the same amount of

time. In terms of changesin velocity and time,
Y

Aav = A (3-6)
o Acceleration isthe instantaneousrate of change of velocity:
a=lim v (3-7)

Tat-0 At

Acceleration does not necessarily mean speeding up. A
velocity can aso change by decreasing speed or by chang-
ing directions.

o Interpreting graphs. On a graph of x(t), the slope at any
point is v,. On a graph of v,(t), the slope at any point is a,
and the area under the graph during any time interval isthe
displacement during that time interval. If v, is negative, the
displacement is also negative, so we must count the area as
negative when it is below the time axis. On agraph of a(t),
the area under the curve isthe change in v, during that time
interval.

MASTER THE CONCEPTS

«  Newton'ssecond law:

Fre = Ma (3-9)
o The Sl unit of force is the newton; 1 N = 1 kg-m/s*. One
newton is the magnitude of net force that gives a 1-kg
object an acceleration of magnitude 1 m/s’.
o  Essentia relationships for solving any constant accelera-
tion problem: if a, is constant during the entiretime interval
fromt =0 until alater timet,

AV, = Vy— Vo = at (3-9)
AX=X—Xg= Vayut (3-10)
Vaux = Vﬁ;& (3-11)
AX=X—X = Vit + 3382 (3-12)
vZ—vg = 2a,AX (3-13)

Highlighted Figuresand Tables

F3.1 Displacement is the change in position: Ar = 1; — 1o
(p. 64)

F3.5 Displacement and average velocity (p. 67)

F3.6 As At approaches zero, the average velocity during the
increasingly short time interval approaches the instantaneous
velocity (p. 68)

F3.7 Graphical relationship between position and velocity (p.
69)

F3.9 Displacement Ax is the area under the v, versus time
graph for the time interval considered (p. 70)

F3.14 Massversusweight (p. 76)

F3.18 Finding average velocity with the aid of agraph (p. 79)
F3.19 Graphical interpretation of Eq. 3-12 (p. 80)

F3.20 Visualizing motion with constant acceleration (p. 81)
T3.3 Sometypical terminal speeds (p. 88)
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CONCEPTUAL QUESTIONS

- N

1. Explain the difference between distance traveled, displace-
ment, and displacement magnitude.

2. Explain the difference between speed and velocity.

3. On a graph of v, versus time, what quantity does the area
under the graph represent?

4. Onagraph of v, versus time, what quantity does the slope of
the graph represent?
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10.

11
12.

13.

14.

1

Chapter 3

On a graph of a, versus time, what quantity does the area
under the graph represent?

On a graph of x versus time, what quantity does the slope of
the graph represent?

What isthe relationship between average velocity and instan-
taneous velocity? An object can have different instantaneous
velocites at different times. Can the same object have differ-
ent average velocities? Explain.

If an object istraveling at a constant velocity, isit necessarily
traveling in astraight line? Explain.

Can the average speed and the magnitude of the average
velocity ever be equal ? If so, under what circumstances?

If afeather and alead brick are dropped simultaneously from
the top of aladder, the lead brick hits the ground first. What
would happen if the experiment is repeated on the surface of
the moon?

Name a situation where the speed of an object is constant
whilethe velocity is not.

Can the velocity of an object be zero and the acceleration be
nonzero at the same time? Explain.

Why does a 1-kg sandbag fall with the same acceleration asa
5-kg sandbag? Explain in terms of Newton's second law and
hislaw of gravitation.

If an object is acted on by a single constant force, isit possible
for the object to remain at rest? Isit possible for the object to
move with constant velocity? Is it possible for the object’s
speed to be decreasing?Isit possiblefor it to change direction?

=
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15.

16.

17.

18.

19.

20.

21.

If an object is acted on by two constant forces is it possible
for the object to move at constant velocity? If so, what must
be true about the two forces?

An object is placed on a scale. Under what conditions does
the scale read something other than the object’s weight, even
though the scaleis functioning properly and is calibrated cor-
rectly? Explain.

What is meant by the terminal speed of afalling object? Can
an object ever move through air faster than the object’s ter-
minal speed? If so, give an example.

What force(s) act on a parachutist descending to Earth with a
constant velocity? What isthe accel eration of the parachutist?
A baseball is tossed straight up. Taking into consideration
the force of air resistance, is the magnitude of the baseball’'s
acceleration zero, less than g, equal to g, or greater than g
on the way up? At the top of the flight? On the way down?
Explain.

What is the acceleration of an object thrown straight up into
the air at the highest point of its motion? Does the answer
depend on whether air resistanceis negligible or not? Explain.

You are bicycling along a straight north-south road. Let the
x-axis point north. Describe your motion in each of the fol-
lowing cases. Example: a, > 0 and v, > 0 means you are
moving north and speeding up. (&) a, > 0 and v, < 0.
(b) ay=0and v, < 0. (c) a, <0 and v, = 0. (d) a, < 0 and
vy < 0. (e) Based on your answers, explain why it is not a
good idea to use the expression “negative acceleration” to
mean slowing down.

MULTIPLE CHOICE QUESTIONS e kil

A go-kart travels around a circular track at a constant speed.
Which of theseisatrue statement?

(a) The go-kart has a constant velocity.

(b) The go-kart has zero acceleration.

(c) Both (a) and (b) aretrue.

(d) Neither (a) nor (b) istrue.

A ball isthrown straight up into the air. Neglect air resistance.
Whiletheball isintheair its acceleration

(@) increases (b) iszero (c) remains constant
(d) decreases on the way up and increases on the way down
(e) changes direction

A stone is thrown upward and reaches a height Ay. After an
elapsed time At, measured from the time the stone was first
thrown, the stone has fallen back down to the ground. The mag-
nitude of the average velocity of the stone during thistimeis

Ly 1y
© At @ 2 At

A stone is thrown upward and reaches a height Ay. After an

elapsed time At, measured from the time the stone was first

thrown, the stone has fallen back down to the ground. The
average speed of the stone during thistimeis

O

Ly
(a) zero (b) 2 At

1y

(a) zero > At

Ly
027

5.

A bdl isthrown straight up. At thetop of itstrgjectory the ball is

(a) instantaneoudly at rest.

(b) instantaneously in equilibrium.
(c) Both (a) and (b) aretrue.

(d) Neither (&) nor (b) istrue.

Multiple Choice Questions 6-15 refer to Fig. 3.28.

6.

10.

What distance does the jogger travel during thefirst 10.0 min
(t=0to10min)?

(8 85m (b) 510 m (c)900m (d) 1020 m
What is the displacement of the jogger from t = 18.0 min to
t=24.0min?

(8 720 m, south (b) 720 m, north

(c) 2160 m, south (c) 3600 m, north

What is the displacement of thejogger for the entire 30.0 min?

(a) 3120 m, south (b) 2400 m, north
(c) 2400 m, south (d) 3840 m, north

What isthetotal distance traveled by thejogger in 30.0 min?

(8)3840m  (b)2340m  (c)2400m  (d) 3600 m
What isthe average vel ocity of thejogger during the 30.0 min?
(@) 1.3 m/s, north (b) 1.7 m/s, north

(c) 2.1 m/s, north (d) 2.9 m/s, north
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Figu re 3.28 Multiple Choice Questions 6-15. A jogger is exercising
along a long, straight road that runs north-south. She starts out heading north.

11. What isthe average speed of the jogger for the 30 min?
@1l4m/s (b)L.7m/s (c)21lm/s (d)2.9m/s
12. Inwhat direction is sherunning at timet =20 min?

(a) south (b) north (c) not enough information
13. Inwhich region of the graph is a, positive?

(a)AtoB (b)CtoD (c)EtoF (d)GtoH
14. Inwhichregionisa, negative?

(a)AtoB (b)CtoD (c)EtoF (d)GtoH
15. Inwhichregionisthe velocity directed to the south?

(&AtoB (b) CtoD (0 EtoF (d)GtoH

=

il 0

Problems 95

@ (b) © (d)

Figure 3.29 Muitiple Choice Questions 16-20

Multiple Choice Questions 1620 refer to Fig. 3.29.

16. If Fig. 3.29 shows four graphs of x versus time, which graph
shows a constant, positive, nonzero velocity?

17. If Fig. 3.29 shows four graphs of v, versus time, which graph
shows a constant velocity?

18. If Fig. 3.29 showsfour graphs of v, versus time, which graph
shows a, constant and positive?

19. If Fig. 3.29 shows four graphs of v, versustime, which graph
shows a, constant and negative?

20. If Fig. 3.29 shows four graphs of v, versustime, which graph
shows achanging a, that is aways positive?

21. Two blocks are connected by a light string passing over a
pulley [see Fig. 3.23a]. The block with mass m, slides on the
frictionless horizontal surface, while the block with mass m,
hangs verticaly. (m, >m,.) Thetensioninthestringis:

(a) zero (b) lessthan myg
(c)equal tom,g  (d) greater than myg, but less than m,g
(e)equal tom,g  (f) greater than myg

PROBLEMS e el

Note: @ indicates a combination conceptual/quantitative problem. Gold
diamonds | |, are used to indicate the increasing level of difficulty of
each problem. Problem numbers appearing in blue, 9., denote problems
that have a detailed solution available in the Student Solutions Manual.
Some problems are paired by concept; their numbers are connected by a
ruled box.

3.1 Position and Displacement; 3.2 \elocity

1. Two cars, a Porsche and a Honda, are traveling in the same
direction, although the Porsche is 186 m behind the Honda.
The speed of the Porsche is 24.4 m/s and the speed of the
Honda is 18.6 m/s. How much time does it take for the
Porsche to catch the Honda? [Hint: What must be true about
the displacements of the two cars when they meet?]

2. To get to aconcert intime, a harpsichordist hasto drive 121 mi
in 2.00 h. If he drove at an average speed of 55 mi/h for thefirst
1.20 h, what must be his average speed for the remaining 0.80 h?

3.| Figure 3.30 shows the vertical velocity component of an ele-
vator versustime. How high isthe elevator above the starting
point (t = 0 s) after 20 s have elapsed?

4. | Figure 3.30 showsthe vertical velocity component of an eleva-
tor versustime. If the elevator startsto moveat t =0s, whenis
the elevator at its highest |ocation above the starting point?

v,
(mys)

—2

t(s)
Figure 3.30 Problems3and4

5. Figure 3.31 shows a graph of speedometer readings obtained
as a car comes to a stop along a straight-line path. How far
does the car move betweent=0andt =16 s?

6. Figure 3.32 shows agraph of speedometer readings, in meters
per second (on the vertical axis), obtained as a car travels
along astraight-line path. How far does the car move between
t=3.00sandt=28.00s?
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VX
(m/s) 25
20
15
10

0
0 2 4 6 8 10 12 14 16
t(s)

Figure 3.31 Problems5, 17, and 79

t(s

Figure 3.32 Problems6, 7, and 8.

7. | Figure 3.32 shows a graph of x(t) in meters, on the vertical

10.

axis, for an object traveling in a straight line. (a) What is Vg«
for theinterval fromt=0tot=4.0s?(b) fromt=0tot=5.0
s?

Figure 3.32 shows a graph of x(t) in metersfor an object trav-
einginastraight line. Whatisv, att=2.0s?

A rabbit, nervously trying to cross aroad, first moves 80 cm
to the right, then 30 cm to the left, then 90 cm to the right,
and then 310 cm to the left. (a) What is the rabbit’s total dis-
placement? (b) If the elapsed time was 18 s, what was the
rabbit’s average speed? (c) What was its average velocity?
An object is moving along a straight line. The graph in Fig.
3.33 shows its position from the starting point as a function
of time. (a) In which section(s) of the graph does the object
have the highest speed? (b) At which time(s) does the object
reverse its direction of motion? (c) How far does the object
movefromt=0tot=3s?

A motor scooter travelseast at aspeed of 12 m/s. Thedriver then
reverses direction and heads west a 15 m/s. What was the
changein velocity of the scooter? Give magnitude and direction.

Forces and Motion Along a Line

x (m)

30

Figure 3.33 Problem 10

3.3 Acceleration

12.

13.

14.

15.

16.

17.

18.

If acar traveling at 28 m/s is brought to a full stopin 4.0 s
after the brakes are applied, find the average acceleration
during braking.

If apronghorn antelope accelerates from rest in astraight line
with a constant acceleration of 1.7 m/s?, how long does it
take for the antel ope to reach a speed of 22 m/s?

Anairtrack glider, 8.0 cmlong, blockslight asit goes through
aphotocell gate (Fig. 3.34). Theglider isreleased from rest on
africtionless inclined track and the gate is positioned so that
the glider has traveled 96 cm when it is in the middle of the
gate. Thetimer givesareading of 333 msfor the glider to pass
through this gate. Friction is negligible. What is the accelera-
tion (assumed constant) of the glider along the track?

Figure 3.35 shows a graph of v, versust for a body moving
along astraight line. (@) What isa, at t = 11 s? (b) What isa, at
t =3s?(c) How far doesthe body travel fromt=12tot=14s?
Figure 3.36 shows a plot of v(t) for a car. (8) What is @y
betweent =6 sand t = 11 s? (b) What iS v« for the sametime
interval? (c) What is v, for theinterval t = 0 to t = 20 s? (d)
What istheincrease in the car’s speed between 10 and 15 s? (€)
How far doesthe car travel fromtimet=10stotimet=15s?

Figure 3.31 shows a graph of speedometer readings as a
motorcycle comes to a stop. What is the magnitude of the
accelerationatt=7.0s?

At 3:00 pM., abank robber is spotted driving north on I-15 at
milepost 126. His speed is112.0 mi/h. At 3:37 P.Mm. heis spot-
ted at milepost 185 doing 105.0 mi/h. During this time inter-
val, what are the bank robber’s displacement, average
velocity, and average acceleration? (Assume a straight high-
way.)

Photogate

Figure 3.34 pProblem 14
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Figure 3.35 Problems 15, 33, and 34

Vy (M/s)
20

15

t(s

Figure 3.36 Problem 16

3.4 Newton’s Second Law: Force
and Acceleration

10.

20.

21.

25.

An engine accelerates atrain of 20 freight cars, each having a
mass of 5.0 x 10* kg, from rest to aspeed of 4.0 m/sin20.0 s
on astraight track. Neglecting friction and assuming constant
acceleration, what is the force with which the 10th car pulls
the 11th one (at the middle of the train)?

In Fig. 3.16a, two blocks are connected by a lightweight,
flexible cord that passes over africtionless pulley. (&) If my =
3.0 kg and m, = 5.0 kg, what are the accelerations of each
block? (b) What isthe tension in the cord?

A 2.0-kg toy locomotiveis pulling a 1.0-kg caboose. Thefric-
tional force of the track on the caboose is 0.50 N backward
along the track. If the train is accel erating forward at 3.0 m/s”,
what is the magnitude of the force exerted by the locomotive
on the caboose?

.| A 2010-kg elevator accelerates upward at 1.5 m/s>. What is

the tension in the cable that supports the elevator?

A 2010-kg elevator accelerates downward at 1.5 m/s>. What
isthetension in the cable that supports the elevator?

A model sailboat isslowly sailing west acrossapond. A gust of
wind gives the sailboat a constant acceleration of magnitude
0.30 m/s” during atimeinterval of 2.0 s. If the net force on the
sailboat during the 2.0-sinterval has magnitude 0.375 N, what
isthe sailboat’s mass?

The vertical component of the acceleration of a sailplane is
zero when the air pushes up against its wings with a force of
3.0 kN. (@) Assuming that the only forces on the glider are

26.

27.

28.
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that due to gravity and that due to the air pushing against its
wings, what is the gravitational force on the Earth due to the
glider? (b) If the wing stalls and the upward force decreases
to 2.0 kN, what isthe acceleration of the glider?

A man lifts a 2.0-kg stone vertically with his hand at a con-
stant velocity of 1.5 m/s. What is the force exerted by his
hand on the stone?

A man lifts a 2.0-kg stone vertically with his hand at a con-
stant upward acceleration of 1.5 m/s>. What is the magnitude
of thetotal force of the stone on the man’s hand?

A crate of oranges weighing 180 N rests on a flatbed truck
2.0 m from the back of the truck. The coefficients of friction
between the crate and the bed are ys = 0.30 and «, = 0.20.
The truck drives on a straight, level highway at a constant
8.0 m/s. (a) What is the force of friction acting on the crate?
(b) If the truck speeds up with an acceleration of 1.0 m/s?,
what is the force of friction on the crate? (c) What is the
maximum acceleration the truck can have without the crate
starting to slide?

3.5 Motion with Constant Acceleration

29.

30.

3L

32.

35.

36.

A trolley car in New Orleans starts from rest at the St. Charles
Street stop and accelerates uniformly at 1.20 m/s® for 12.0 s.
(8) How far has the train traveled at the end of the 12.0 s?
(b) What isthe speed of thetrain at the end of the 12.0 s?

A train, traveling at a constant speed of 22 m/s, comes to an
incline with a constant slope. While going up the incline, the
train slows down with a constant acceleration of magnitude
1.4 m/S. () What is the speed of the train after 8.0 s on the
incline? (b) How far hasthe train traveled up theincline after
8.0s?

A car is speeding up and has an instantaneous speed of 10.0 m/s
when a stopwatch reads 10.0 s. It has a constant accel eration of
2.0 m/s. () What change in speed occurs between t = 10.0 s
andt = 12.0 s? (b) What is the speed when the stopwatch reads
12.0s?

A train is traveling south at 24.0 m/s when the brakes are
applied. It dowsdown at aconstant rate to a speed of 6.00 m/s
in atime of 9.00 s. (@) What is the acceleration of the train
during the 9.00 s interval? (b) How far does the train travel
during the 9.00 s?

.| Figure 3.35 shows the graph of v, versus time for abody mov-

ing along the x-axis. How far doesthe body go betweent=9.0s
and t = 13.0 s? Solve using two methods: a graphical analysis
and an agebraic solution using kinematic equations.

Figure 3.35 shows the graph of v, versustime for abody mov-
ing aong the x-axis. What is the average accel eration between
t=5.0sandt = 9.0 s? Solve using two methods: a graphical
analysis and an algebraic solution using kinematic equations.

An airplane lands and starts down the runway at a southwest
velocity of 55 m/s. What constant acceleration allows it to
cometoastopin1.0km?

The minimum stopping distance of acar moving at 30.0 mi/h
is 12 m. Under the same conditions (so that the maximum
braking force is the same), what is the minimum stopping
distance for 60.0 mi/h? Work by proportions to avoid con-
verting units.
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Derive Eq. (3-12) using these steps. (a) Start with AX = vg,t.
Rewrite this equation with the average velocity expressed in
terms of the initial and final velocities. (b) Replace the final
velocity with the initial velocity plus the change in velocity
(Vox + Avy). (¢) Find the changein velocity in terms of a, and
t and substitute. Rearrange to form Eq. (3-12).

Derive Eq. (3-13) using these steps. () Start with AX = vg,t.
Rewrite this equation with the average velocity expressed in
terms of the initial and final velocities. (b) Use v, — Vg, = agt
to eliminatet. (c) Rearrange algebraically to form Eq. (3-13).
[Hint: A2—B?= (A + B)(A-B).]

A train of mass 55,200 kg is traveling along a straight, level
track at 26.8 m/s (60.0 mi/h). Suddenly the engineer sees a
truck stalled on the tracks 184 m ahead. If the maximum pos-
sible braking force has magnitude 84.0 kN, can the train be
stopped in time?

In a television tube, electrons are accelerated from rest by a
constant electric force of magnitude 6.4 x 107" N during the
first 2.0 cm of the tube’s length; then they move at essentialy
constant velocity another 45 cm before hitting the screen.
(a) Find the speed of the electrons when they hit the screen.
(b) How long doesiit take them to travel the length of the tube?

3.6 Falling Objects

In the problems, please assume g = 9.8 m/s” unless amore precise
valueisgiven in the problem.

41.| A penny is dropped from the observation deck of the Empire

42.

State building (369 m above ground). With what velocity
doesit strike the ground? Ignore air resistance.

(a) How long does it take for agolf ball to fall from rest for a
distance of 12.0 m? (b) How far would the ball fall in twice
that time?

43. Grant Hill jumps 1.3 m straight up into the air to dam-dunk a

basketball into the net. With what speed did he leave the floor?

44. A student, looking toward his fourth-floor dormitory win-

45,

46.

47.

dow, sees a flowerpot with nasturtiums (originally on a win-
dow sill above) pass his 2.0-m-high window in 0.093 s. The
distance between floors in the dormitory is 4.0 m. From a
window on which floor did the flowerpot fall?

A balloonist, riding in the basket of a hot air balloon that is
rising vertically with a constant velocity of 10.0 m/s, releases
a sandbag when the balloon is 40.8 m above the ground.
Neglecting air resistance, what is the bag’'s speed when it hits
the ground? Assume g = 9.80 m/s>.

A 55-kg lead ball is dropped from the leaning tower of Pisa.
The tower is 55 m high. (a) How far does the ball fall in the
first 3.0 s of flight? (b) What is the speed of the ball after it
has traveled 2.5 m downward? (c) What is the speed of the
ball 3.0 safter it isreleased?

During awalk on the Moon, an astronaut accidentally drops
his camera over a 20.0-m cliff. It leaves his hands with zero
speed, and after 2.0 s it has attained a velocity of 3.3 m/s
downward. How far hasthe camerafallen after 4.0 s?

A stoneislaunched straight up by aslingshot. Itsinitial speed
is 19.6 m/s and the stone is 1.50 m above the ground when

Forces and Motion Along a Line

49,

52.

launched. Assume g = 9.80 m/s’. (&) How high above the
ground does the stone rise? (b) How much time elapses
before the stone hits the ground?

How far must something fall for its speed to get close to its
terminal speed? Use dimensional analysis to come up with
an estimate based on the object’s terminal speed v; and the
gravitational field g. Estimate this distance for (a) araindrop
(v¢ =7 m/s) and (b) askydiver in adive (v; = 100 m/s).
A paratrooper with a fully loaded pack has a mass of 120 kg.
The force due to air resistance on him when falling with
an unopened parachute has magnitude Fp = bv? where
N-s*
m?
at 64 m/s, what is the force of air resistance acting on him?
(b) What is hisacceleration? (c) What is histerminal speed?
A bobcat weighing 72 N jumps out of atree. (a) What is the
drag force on the bobcat when it falls at its terminal velocity?
(b) What is the drag force on the bobcat when it falls at 75%
of its terminal velocity? (c) What is the acceleration of the
bobcat when it falls at its terminal velocity? (d) What is its
acceleration when it fallsat 75% of itsterminal velocity?

In free fall, we assume the acceleration to be constant. Not
only is air resistance neglected, but the gravitational field
strength is assumed to be constant. (a) From what height can
an object fall to the Earth’s surface such that the gravitational
field strength changes less than 1.00% during the fall? (b) In
most cases, which do we have to worry about first: air resis-
tance becoming significant or g changing?

b=014

(8 If heisfalling with an unopened parachute

3.7 Apparent Weight

53.

@

55.

56.

Refer to Example 3.17. What is the apparent weight of the
same passenger (weighing 598 N) in the following situations?
In each case, the magnitude of the elevator’s acceleration is
0.50 m/s’. (a) After having stopped at the 15th floor, the pas-
senger pushes the 8th floor button; the elevator is beginning to
move downward. (b) Elevator is slowing down as it nears the
8th floor.

You are standing on abathroom scale inside an elevator. Your
weight is 140 Ib, but the reading of the scale is 120 Ib.
(8) What isthe magnitude and direction of the accel eration of
the elevator? (b) Can you tell whether the elevator is speed-
ing up or slowing down?

Felipe is going for a physical before joining the swim team.
Heis concerned about his weight, so he carries his scale into
the elevator to check hisweight while heading to the doctor’s
officeon the 21st floor of the building. If hisscalereads 750 N
while the elevator is accelerating upward at 2.0 m/s?, what
does the nurse measure hisweight to be?

Luke stands on a scale in an elevator that has a constant
acceleration upward. The scale reads 0.960 kN. When Luke
picks up a box of mass 20.0 kg, the scale reads 1.200 kN.
(The acceleration remains the same.) (a) Find the accelera-
tion of the elevator. (b) Find Luke' sweight.
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In the problems, please assume g = 9.8 m/s” unless amore precise
valueisgiven in the problem.

57.

58.

59.

60.

61.

62.

65.

66.

The conduction electrons in a copper wire have instantaneous
speeds of around 10° m/s. The dlectrons keep colliding with cop-
per atoms and reversing direction, so that even when acurrent is
flowing in the wire, they only drift along with average velocities
on the order of centimeters per hour. If the drift velocity in apar-
ticular wire has magnitude 10 cm/h, calculate the distance an
electron travelsin order to move 1 m down the wire,

Imagine a trip where you drive along a straight east-west
highway at 80.0 km/h for 50.0 min and then at 60.0 km/h for
30.0 min. What is your average velocity for thetrip (a) if you
drive east for both parts of the trip? (b) if you drive east for
thefirst 50.0 min and then west for the last 30.0 min?

A rocket is launched from rest. After 8.0 min, it is 160 km
above the Earth’s surface and is moving at a speed of 7.6 km/s.
Assuming the rocket moves up in a straight line, what are its
(a) average velocity and (b) average acceleration?

Based on the information given in Problem 59, is it possible
that the rocket moves with constant acceleration? Explain.
An unmarked police car startsfrom rest just as a speeding car
passes at a speed of vy, If the police car accelerates at a con-
stant value of a, what is the speed of the police car when it
catches up to the speeder, who does not realize she is being
pursued and does not vary her speed?

In Fig. 3.233, the block of mass my, didesto the right with coef-e

ficient of kinetic friction 4, on a horizontal surface. The block
is connected to a hanging block of mass m, by alight cord that
passes over alight, frictionless pulley. (a) Find the acceleration
of each of the blocks and the tension in the cord. (b) Check your
answers in the specia cases my, << m,, my > m,, and my = M.
(c) For what value of m, (if any) do the two blocks dide at con-
stant velocity? What isthe tension in the cord in that case?

While passing aslower car on the highway, you accelerate uni-
formly from 39 mi/h to 61 mi/hin atime of 10.0s. (a) How far
do you travel during thistime? (b) What isyour acceleration in
(mi/h)/s and m/s*?

A cheetah can accelerate from rest to 24 m/s in 2.0 s.
Assuming the acceleration isuniform, (a) what isthe acceler-
ation of the cheetah? (b) What is the distance traveled by the
cheetah in these 2.0 s? (c) A runner can accelerate from rest
to 6.0 m/sin the sametime, 2.0 s. What is the acceleration of
the runner? By what factor is the cheetah’s average accelera-
tion magnitude greater than that of the runner?

Neglecting air resistance, (a) from what height must ahockey
puck drop if it isto attain a speed of 30.0 m/s (approximately
67 mi/h) before striking the ground? (b) If the puck comesto
afull stop in atime of 1.00 sfrom initial impact, what accel-
eration (assumed constant) is experienced by the puck during
the impact with the ground?

Locusts can jump to heights of 0.30 m. (a) Assuming the
locust jumps straight up, and ignoring air resistance, what is
the takeoff speed of the locust? (b) The locust actualy jumps
at an angle of about 55° to the horizontal, and air resistanceis
not negligible. The result is that the takeoff speed is about
40% higher than the value you calculated in part (a). If the

67.

68.

69.

70.

71.

72.

mass of the locust is 2.0 g and its body moves 4.0 cm in a
straight line while accelerating from rest to the takeoff speed,
calculate the acceleration of the locust (assumed constant).
(c) Ignore the locust’s weight and estimate the force exerted
on the hind legs by the ground. Compare this force to the
locust’sweight. Wasit OK to ignore the locust’s weight?

In Fig. 3.16a, two blocks are connected by alightweight, flexi-
ble cord that passes over a frictionless pulley. If my is
3.6 kg and m, is 9.2 kg, and block 2 isinitialy at rest 140 cm
abovethefloor, how long doesit take block 2 to reach thefloor?
A locomotive pullsatrain of 10 identical cars with aforce of
2.0 x 10° N directed east. What is the force with which the
last car pullson the rest of thetrain?

A woman of mass 51 kg is standing in an elevator. If the ele-
vator floor pushes up on her feet with aforce of 408 N, what
isthe acceleration of the elevator?

A drag racer crosses the finish line of a 400.0-m track with a
final speed of 104 m/s. (a) Assuming constant acceleration
during the race, find the racer’s time and the minimum coeffi-
cient of static friction between the tires and the road. (b) If,
because of bad tires or wet pavement, the acceleration were
30.0% smaller, how long would it take to finish the race?
The graph in Fig. 3.37 shows the position x of a switch
engine in arail yard as a function of time t. At which of the
labeled times ty to t; is (a) a, < 0, (b) a, = 0, (c) a, > 0,
(d) v, =0, (€) the speed decreasing?

An elevator starts at rest on the ninth floor. At t = 0, a passen-
ger pushes a button to go to another floor. The graph in Fig.
3.38 shows the acceleration a, of the elevator as afunction of
time. Let the y-axis point upward. (a) Has the passenger gone
to a higher or lower floor? (b) Sketch a graph of the velocity

Figure 3.37 Problem71

(ma/sZ) 14

ty t t3 t(s)

Figure 3.38 Problem72
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74.
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78.

v of the elevator versus time. (c) Sketch agraph of the posi-
tiony of the elevator versustime. (d) If a1.40 x 10? b person
stands on a scale in the elevator, what does the scale read at
timesty, tp, and t3?

A dtreetcar named Desire travels between two stations
0.60 km apart. Leaving thefirst stetion, it acceleratesfor 10.0 s
at 1.0 m/s? and then travels at a constant speed until it is near
the second station, when it brakes at 2.0 m/s? in order to stop at
the station. How long did thistrip take? [Hint: What'sthe aver-
age velocity?]

The graph in Fig. 3.39 is the vertical velocity component v,
of abouncing ball asafunction of time. The y-axis points up.
Answer these questions based on the datain the graph. (a) At
what time does the ball reach its maximum height? (b) For
how long isthe ball in contact with the floor? (c) What is the
maximum height of the ball? (d) What is the acceleration of
the ball whilein the air? (e) What is the average acceleration
of the ball whilein contact with the floor?

A rocket engine can accelerate arocket launched from rest ver-
tically up with an acceleration of 20.0 m/s?. However, after
50.0 sof flight the enginefails. Neglect air resistance. (a) What
isthe rocket’s altitude when the engine fails? (b) When does it
reach its maximum height? (c) What is the maximum height
reached? [Hint: agraphical solution may be easiest.] (d) What
isthe velocity of therocket just beforeit hits the ground?

Two blocks lie side by side on a frictionless table. The block
on the left is of mass m; the one on the right is of mass 2 m.
The block on the right is pushed to the left with a force of
magnitude F, pushing the other block in turn. What force
doesthe block on theleft exert on the block to itsright?

A helicopter of mass M islowering atruck of mass monto the
deck of aship. (a) At first, the helicopter and the truck move
downward together (the length of the cable doesn’t change). If
their downward speed is decreasing at arate of 0.10g, what is
the tension in the cable? (b) As the truck gets close to the
deck, the helicopter stops moving downward. Whileit hovers,
it lets out the cable so that the truck is still moving downward.
If the truck’s downward speed is decreasing at arate of 0.10g,
whilethe helicopter is at rest, what isthe tension in the cable?
Fish don't move asfast asyou might think. A small trout hasa
top swimming speed of only about 2 m/s, which is about the
speed of abrisk walk (for ahuman, not afish!). It may seemto
move faster because it is capable of large accelerations—it
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can dart about, changing its speed or direction very quickly.
(8 If atrout starts from rest and acceleratesto 2 m/sin 0.05 s,
what isthetrout’s average acceleration? (b) During this accel-
eration, what is the average net force on the trout? Express
your answer as a multiple of the trout’s weight. (c) Explain
how the trout gets the water to push it forward.

Figure 3.31 shows a graph of speedometer readings obtained
as an automobile came to a stop. What is the displacement
along astraight line path in thefirst 16 s?

In Fig. 3.16a, two blocks are connected by a lightweight, flex-
ible cord that passes over a frictionless pulley. If my > m,,
find (8) the acceleration of each block and (b) the tension in
the cord.

Find the point of no return for an airport runway of 1.50 mi in
length if ajet plane can accelerate at 10.0 ft/s” and decelerate
at 7.00 ft/s2. The point of no return occurs when the pilot can
no longer abort the takeoff without running out of runway.
What length of time is available from the start of the motion
in which to decide on a course of action?

Two blocks, masses m; and m,, are connected by a massless
cord (Fig. 3.40). If the two blocks are accelerated uniformly
on africtionless surface by applying a force of magnitude T,
to a second cord connected to m,, what is theratio of the ten-
sionsin the two cordsin terms of the masses? T,/ T, = ?

In the human nervous system, signals are transmitted along
neurons as action potentials that travel at speeds of up to
100 m/s. (An action potentia is a traveling influx of
sodium ions through the membrane of a neuron.) The sig-
nal is passed from one neuron to another by the release of
neurotransmitters in the synapse. Suppose someone steps
on your toe. The pain signal travels along a 1.0-m-long
sensory neuron to the spinal column, across a synapse to a
second 1.0-m-long neuron, and across a second synapse to
the brain. Suppose that the synapses are each 100 nm wide,
that it takes 0.10 ms for the signal to cross each synapse,
and that the action potentials travel at 100 m/s. (a) At what
average speed does the signal cross a synapse? (b) How
long does it take the signal to reach the brain? (c) What is
the average speed of propagation of the signal?

A car traveling at 65 mi/h runsinto a bridge abutment after the
driver fals asleep at the wheel. (a) If the driver is wearing a
seat belt and comesto rest within a1.0-m distance, what is his
acceleration (assumed constant)? (b) A passenger who isn’t
wearing a seat belt isthrown into the windshield and comesto
astop in adistance of 10.0 cm. What is the acceleration of the
passenger? (c) Express these accelerationsin terms of the free
fall acceleration, g = 9.8 m/s?, and find “how many g's’ are
felt in each case. (Test pilots can black out at accelerations of
4g or greater; pressure suits are designed to help force blood
to the brain and prevent such aloss of consciousness.)
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Figure 3.40 Problems2
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ANSWERS TO PRACTICE PROBLEMS

Answers to Practice Problems 101

-

e ki,

3.1 Hisdisplacement is zero since he ends up at the same place
from which he started (home plate).

3.2 Ax=-2.9km, so the displacement is 2.9 km to the west.
3.3 1.05m/stothenorth

3.4 The velocity is increasing in magnitude, so AV and @ arein
the same direction as the velocity (the —x-direction). Thus a, is
negative.

3.5 () aa,x =—3.0 M/’ where the negative sign means the accel-
eration is directed to the northwest; (b) a, = —4.2 m/s? (northwest)

V)(
(m/s) Instantaneous
\ acceleration = i _opz)eoa;
\\ at=20s -~
20—\ _—84m/s _
\, = 05 =—42m/&
15 A\N - 24 m/s -
- m/\\ %= “ggs - 30MS
10 ; N\
205
5 \
I g
0

0 1 2 3 4 5 6 7 8
t(s)

3.6 1.84kN

3.7 For equal masses, a, = 0 and T = mg. The pull of gravity is
equal on the two sides. For dightly unequal masses, m; = m,, sO
again T = mg; the acceleration is very small since there is only a
slight excess pull of gravity on the heavier side but plenty of inertia.

3.8 60N
3.9 (8 20s; (b) 18 m/s east
3.10 5.00s

3.11 1f my > m, aisvery small and T = m,g. Block 1isso mas-
sive that it barely accelerates; block 2 is essentialy just hanging
there, being supported by the cord.

3.12 2500N

3.13 Itisimpossibleto pull the crate up with asingle pulley. The
entire weight of the crate would be supported by a single strand of
cable and that weight exceeds the breaking strength of the cable.
3.14 (a)3.8m:(b)3.00s

3.15 1.1kN

3.16 At first, constant acceleration: straight line with slope —g.
After along time, constant velocity.

_\/t

3.17 (a)392N; (b) 431N



