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Chapter4
Calculus of Variations

4.1 INTRODUCTION

Calculus of variations deals with certain kinds of
“external problems” in which expressions involving
integrals are optimized (maximized or minimized).
Euler and Lagrange in the 18th century laid the foun-
dations, with the classical problems of determining
a closed curve in the plane enclosing maximum area
subject to fixed length and the brachistochrone prob-
lem of determining the path between two points in
minimum time. The present day problems include
the maximization of the entropy integral in third law
of thermodynamics, minimization of potential and
kinetic energies integral in Hamilton’s principle in
mechanics, the minimization of energy integral in
the problems in elastic behaviour of beams, plates
and shells. Thus calculus of variations deals with the
study of extrema of “functionals”.

Functional: A real valued function f whose
domain is the set of real functions {y(x)} is known
as a functional (or functional of a single independent
variable). Thus the domain of definition of a func-
tional is a set of admissible functions. In ordinary
functions the values of the independent variables are
numbers.Whereas with functionals, the values of the
independent variables are functions.

Example: The length L of a curve, c whose equa-
tion is y = f (x), passing through two given points
A(x1, y1) and B(x2, y2) is given by

L =
∫ x2

x1

√
1 + y′2dx

where y ′ denotes derivative of y w.r.t. x.
Now the length L of the curve passing through

A and B depends on y(x) (the curve). Than L is a

function of the independent variable y(x), which is
a function. Thus

L{y(x)} =
∫ x2

x1

√
1 + y′2dx

Fig. 4.1
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defines a functional which associates a real number
L uniquely to each y(x) (the independent variable).
Further suppose we wish to determine the curve hav-
ing shortest (least) distance between the two given
points A and B, i.e., curve with minimum length L.
This is a classical example of a variational problem
in which we wish to determine, the particular curve
y = y(x) which minimizes the functional L{y(x)}
given by (1). Here the two conditions y(x1) = y1 and
y(x2) = y2,which are imposed on the curve y(x) are
known as end conditions of the problem. Thus varia-
tional problems involves determination of maximum
or minimum or stationary values of a functional. The
term extremum is used to include maximum or min-
imum or stationary values.

4.2 VARIATIONAL PROBLEM

Consider the general integral (a functional)

I {y(x)} =
∫ x2

x1

f (x, y, y′)dx (1)

4.1
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Extremal: A function y = y(x) which extremizes
(1) and satisfies the end conditions y(x1) = y1 and
y(x2) = y2 is known as an extremal or extremizing
function of the functional I (given by (1)). A
variational problem is to find such an extremal
function y(x).

Variation of a Function and a Functional

When the independent variable x changes to x +�x

then the dependent variable y of the function y =
f (x) changes to y +�y. Thus �y is the change of
the function, the differential dy provides the varia-
tion in y. Consider a function f (x, y, y ′) which for
a fixed x, becomes a functional defined on a set of
functions {y(x)}.
For a fixed value of x, if y(x) is changed to y(x) +

εη(x), where ε is independent of x, then εη(x) is
known as the variation of y and is denotd by δy.
Similarly, variation of y ′ is εη′(x) and is denoted by
δy ′. Now the change in f is given by

�f = f (x, y + εη, y′ + εη′) − f (x, y, y′)

Expanding the first term on R.H.S. by Maclaurins
series in powers of ε, we get

�f = f (x, y, y′) +
(
∂F

∂y
η + ∂F

∂y′ η
′
)
ε +

+
(
∂2F

∂y2
η2 + 2∂2F

∂yy′ ηη
′ + ∂2F

∂y′2 η
′2
)
ε2

2!
+

+ · · · − F (x, y, y′)

or approximately, neglecting higher powers of ε.

�f = ∂f

∂y
ηε + ∂f

∂y′ η
′εε = ∂f

∂y
δy + ∂f

∂y′ δy
′

Thus the variation of a functional f is denoted by δf
and is given by

δf = ∂f

∂y
δy + ∂f

∂y′ δy
′

which is analogous to the differential of a function.

Result: (a) δ(f1 ± f2) = δf1 ± δf2

(b) δ(f1f2) = f1δf2 + f2δf1

(c) δ(f η) = ηf η−1δf

(d) δ
(
f1
f2

)
= f2δf1−f1δf2

f 2
2

(e) d
dx
(δy) = d

dx
(εη) = ε

dη

dx
= εη′ =

δy ′ = δ
(
dy

dx

)
.

Thus taking the variation of a functional anddiffer-
entiating w.r.t. the independent variable x are com-
mutative operations.

Result: The necessary condition for the functional
I to attain an extremum is that its variation vanish
i.e., δI = 0.

4.3 EULER’S EQUATION

A necessary condition for the integral

I =
∫ x2

x1

f (x, y, y′)dx (1)

to attain an extreme value is that the extremizing
function y(x) should satisfy

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 (2)

for x1 ≤ x ≤ x2.

Note 1: The second order differential equation (2)
is known as Euler-Lagrange or simply Euler’s equa-
tion for the integral (1).

Note 2: The solutions (integral curves) of Euler’s
equation are known as extremals (or stationary func-
tions) of the functional. Extremum for a functional
can occur only on extremals.

Proof: Assume that the function y = y(x), is
twice-differentiable on [x1, x2], satisfies the end
(boundary) conditions y(x1) = y1 and y(x2) = y2
and extremizes (maximizes or minimizes) the inte-
gral I given by (1). To determine such a function
y(x), construct the class of comparison functions
Y (x) defined by

Y (x) = y(x) + εη(x) (2)

on the interval [x1, x2]. For any function η(x), y(x) is
a member of this class of functions {Y (x)} for ε = 0.
Assume that

η(x1) = η(x2) = 0 (3)
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Differentiating (2),

Y ′(x) = y′(x) + εη′(x) (4)

Replacing y and y ′ in (1) Y and Y ′ from (2) and (4),
we obtain the integral

I (ε) =
∫ x2

x1

f (x, Y, Y ′)dx (5)

which is a function of the parameter ε. Thus the
problem of determining y(x) reduces to finding the
extremumof I (ε) at ε = 0which is obtained by solv-
ing I ′(ε = 0) = 0. For this, differentiate (5) w.r.t. ε,
we get

dI

dε
= I ′(ε) =

∫ x2

x1

(
∂f

∂Y

∂Y

∂ε
+ ∂f

∂Y ′
∂Y ′

∂ε

)
dx

=
∫ x2

x1

(
∂f

∂Y
η + ∂f

∂Y ′ η
′
)
dx

putting ε = 0,

I ′(0) =
∫ x2

x1

(
∂f

∂y
η + ∂f

∂y′ η
′
)
dx (6)

because for ε = 0, we have from (2) Y = y and Y ′ =
y ′. Integrating the second integral in R.H.S. of (6) by
parts, we have

I ′(0) =
∫ x2

x1

∂f

∂y
η +

[
∂f

∂y′ η
∣∣∣∣x2
x1

−
∫ x2

x1

η
d

dx

(
∂f

∂y′

)
dx

]

Since by (3), η(x1) = η(x2) = 0, the second term
vanishes and using I ′(0) = 0, we get

I ′(0) =
∫ x2

x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η dx = 0 (7)

Since η(x) is arbitrary, equation (7) holds good only
when the integrand is zero

i.e.,
∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 (2)

Note: Equation (2) is not sufficient condition. Solu-
tion of (2) may be maximum or minimum or a hori-
zontal inflexion. Thus y(x) is known as extremizing
function or extremal and the term extremum includes
maximum or minimum or stationary value.

EQUIVALENT FORMS OF EULER’S
EQUATION:
(I) Differentiating f , which is a function of x, y, y ′,
w.r.t. x, we get

df

dx
= ∂f

∂x
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx

df

dx
= ∂f

∂x
+ y′ ∂f

∂y
+ y′′ ∂f

∂y′ (8)

Consider

d

dx

(
y′ ∂f
∂y′

)
= y′ d

dx

(
∂f

∂y′

)
+ ∂f

∂y′ y
′′ (9)

Subtracting (9) from (8), we have

df

dx
− d

dx

(
y′ ∂f
∂y′

)
= ∂f

∂x
+ y′ ∂f

∂y
− y′ d

dx

(
∂f

∂y′

)

Rewriting this

d

dx

{
f−y′ ∂f

∂y′

}
−∂f

∂x
=y′

{
∂f

∂y
− d

dx

(
∂f

∂y′

)}
(10)

Since by Euler’s Equation (2), the R.H.S. of (10) is
zero, we get another form of Euler’s equtaion

d

dx

{
f − y′ ∂f

∂y′

}
− ∂f

∂x
= 0 (11)

(II) Since ∂f

∂y′ is also function φ of x, y, y ′ say ∂f

∂y′ =
φ(x, y, y ′). Differentiating w.r.t. x

d

dx

(
∂f

∂y′

)
= ∂φ

∂x
+ ∂φ

∂y

dy

dx
+ ∂φ

∂y′
dy′

dx

= ∂

∂x

(
∂f

∂y′

)
+y′ ∂

∂y

(
∂f

∂y′

)
+y′′ ∂

∂y′

(
∂f

∂y′

)

d

dx

(
∂f

∂y′

)
= ∂2f

∂x∂y′ + y′ ∂2f
∂y∂y′ + y′′ ∂2f

∂y′2 (12)

Substituting (12) in the Euler’s equation (2), we have

∂f

∂y
− ∂2f

∂x∂y′ − y′ ∂2f
∂y∂y′ − y′′ ∂2f

∂y′2 = 0 (13)

General case: the necessary condition for the occur-
rence of extremum of the general integral∫ x2

x1

f (x, y1, y2, . . . , yη, y
′
1, y

′
2, . . . , y

′
η)dx

involving η functions y1, y2, . . . , yη, is given by the
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set of η Euler’s equations

∂f

∂yi
− d

dx

(
∂f

∂y′
i

)
= 0

for i = 1, 2, 3, . . . , η.
First integrals of the Euler-Lagrang’s equation:
Degenerate cases: Euler’s equation is readily inte-
grable in the following cases:

Case (a): If f is independent of x, then ∂f

∂x
= 0 and

equivalent form of Euler’s Equation (11) reduces to
d

dx

(
f − y′ ∂f

∂y′

)
= 0

Integrating, we get the first integral of Euler’s equa-
tion

f − y′ ∂f
∂y′ = constant (14)

Thus the extremizing function y is obtained as the
solution of a first-order differential equation (14)
involving y and y ′ only.

Case (b): If f is independent of y, then ∂f

∂y
= 0,

and the Euler’s Equation (2) reduces to
d

dx

(
∂f

∂y′

)
= 0

Integrating, we get the first integral of the Euler’s
equation as,

∂f

∂y′ = constant (15)

which is a first order differential equation involving
y ′ and x only.

Case (c): If f is independent of x and y then the
partial derivative ∂f

∂y′ is independent of x and y and is
therefore function of y ′ alone. Now (15) of case (b)
∂f

∂y′ = constant has the solution.

y′ = constant = c1

Integrating, the extremizing function is a linear func-
tion of x given by

y = c1x + c2

Case (d): If f is independent of y ′, then ∂f

∂y′ = 0
and the Euler’s Equation (2) reduces to

∂f

∂y
= 0

Integrating, we get f = f (x) , i.e., function of x
alone.

Geodesics: A geodesic on a surface is a curve on
the surface along which the distance between any
two points of the surface is a minimum.

4.4 STANDARD VARIATIONAL
PROBLEMS

Shortest distance

Example 1: Find the shortest smooth plane curve
joining two distinct points in the plane.

Fig. 4.2

Solution: Assume that the two distinct points be
P1(x1, y1) and P2(x2, y2) lie in theXY -Plane. If y =
f (x) is the equation of any plane curve c in XY -
Plane and passing through the points P1 and P2, then
the length L of curve c is given by

L[y(x)] =
∫ x2

x1

√
1 + (y′)2dx (1)

The variational problem is to find the plane curve
whose length is shortest i.e., to determine the func-
tion y(x) which minimizes the functional (1). The
condition for extrema is the Euler’s equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0

Here f =
√
1 + y ′2 so ∂f

∂y
= 0, ∂f

∂y′ = 1
2

2y′√
1+y′2

Then

0 − d

dx

(
y′√

1 + y′2

)
= 0

or y′ = k

√
1 + y′2 where k = constant

Squaring y′2 = k2(1 + y′2)
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i.e., y′ =
√

k2

1 − k2
= m = constant.

Integrating, y = mx + c, where c is the constant of
integration. Thus the straight line joining the two
points P1 and P2 is the curve with shortest length
(distance).

Brachistochrone (shortest time) problem

Example 2: Determine the plane curve down
which a particle will slide without friction from the
point A(x1, y1) to B(x2, y2) in the shortest time.

Fig. 4.3

Solution: Assume the positive direction of the y-
axis is vertically downward and let x1 < x2. Let
P (x, y) be the position of the particle at any time t ,
on the curve c. Since energy is conserved, the speed
v of the particle sliding along any curve is given by

v =
√
2g(y − y∗)

where y∗ = y1 −
(
v21
2g

)
. Here g is acceleration due

to gravity, v1 is the initial speed. Choose the origin
at A so that x1 = 0, y1 = 0 and assume that v1 = 0.
Then

ds

dt
= v =

√
2gy

Integrating this, we get the time taken by the particle
moving under gravity (and neglecting friction along
the curve and neglecting resistance of the medium)
from A(0, 0) to B(x2, y2) is

t[y(x)] =
∫

ds√
2gy

= 1√
2g

∫ x=x2

x=0

√
1 + y′2
√
y

dx (1)

subject to the boundary conditions y(0) = 0 and
y(x2) = y2. Integral (1) is convergent although it is
improper. Here

f =
√
1 + y′2
√
y

which is independent of x. Now

∂f

∂y′ = 1√
y

1√
1 + y′2 · 1

2
· 2y′

The Euler’s equation

d

dx

[
f − y′ ∂f

∂y′

]
= 0

reduces to

d

dx

[√
1 + y′2
√
y

− y′2
√
y
√
1 + y′2

]
= 0

Integrating√
1 + y′2√1 + y′2 − y′2

√
y
√
1 + y′2 = k1 = constant

or y(1 + y′2) = k2 (1)

where k2 =
(

1
k1

)2
, put y ′ = cotθ where θ is a

parameter. Then from (1)

y = k2

1 + y′2 = k2

1 + cot2θ
= k2 sin

2 θ = k2

2
(1 − cos 2θ )

(2)
Now

dx = dy

y′ =
k2
2 (+2 · sin 2θ )dθ

cotθ

= k22 · sin θ · cos θdθ
cotθ

= 2k2 sin
2 θdθ

dx = k2 · (1 − cos 2θ )dθ.

Integrating, x = k2
(
θ − sin 2θ

2

) + k3, where k3 is
constant of integration. So

x − k3 = k2

2
(2θ − sin 2θ ) (2)

Since y = 0 at x = 0, we have k3 = 0. Put 2θ = φ

in (1) and (2), then

x = k2

2
(φ − sin φ), y = k2

2
(1 − cos 2φ) (3)
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Equation (3) represents a one parameter family of
cycloids with k2

2 as the radius of the rolling circle.
Using the condition that the curve (cycloid) passes
through B(x2, y2), the value of the constant k2 can
be determined.

Note: A curve having this property of shortest time
is known as “brachistochrone” with Greek words
‘brachistos’meaning shortest and ‘chronos’meaning
time. In 1696 John Bernoulli advanced this ‘brachis-
tochrone’ problem, although it was also studied by
Leibnitz, Newton and L’Hospital.

Minimal surface area

Example 3: Find the curve c passing through two
given points A(x1, y1) and B(x2, y2) such that the
rotation of the curve c about x-axis generates a sur-
face of revolution having minimum surface area.

Fig. 4.4

Solution: The surface area S generated by revolv-
ing the curve c defined by y(x) about x-axis is

S[y(x)] =
∫ B

A

2πy ds =
∫ x2

x=x1
2πy

√
1 + y′2dx (1)

To find the extremal y(x) which minimizes (1).
Here f = y

√
1 + y ′2 which is independent of x. The

Euler’s equation is

d

dx

(
f − y′ ∂f

∂y′

)
= 0 or f − y′ ∂f

∂y′ = constant = c1

Substituting f and ∂f

∂y′ , we have

y

√
1 + y′2 − y′ y

2

1√
1 + y′2 · 2y′ = c1

y{(1 + y′2) − y′2}√
1 + y′2 = y√

1 + y′2 = c1 (2)

Put y ′ = sinh t , then from (2)

y√
1 + sin2 ht

= y

cosh t
= c1 or y = c1 cosh t (3)

So dx = dy

y′ = c1 sinh t dt

sinh t
= c1 dt

Integrating x = c1t + c2 (4)

where c2 is the constant of integration. Eliminating
‘t’ between (3) and (4)

t = x − c2

c1

therefore y = c1 cosh t = c1 cosh

(
x − c2

c1

)
(5)

Equation (5) represents a two parameter family of
catenaries. The two constants C1 and C2 are deter-
mined using the end (boundary) conditions y(x1) =
y1 and y(x2) = y2.

Solid of revolution with least resistance

Example 4: Determine the shape of solid of revo-
lution moving in a flow of gas with least resistance.

Fig. 4.5

Solution: The total resistance experienced by the
body is

F [y(x)] = 4πρv2
∫ L

0
yy′3 dx
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with boundary conditions y(0) = 0, y(L) = R. Here
ρ is the density, v is the velocity of gas relative to
solid. Heref = yy ′3 is independent of x. TheEuler’s
equation is

∂f

∂y
− d

dx

(
∂f

∂y′

)
= y′3 − d

dx
(3yy′2) = 0 (1)

Multiplying (1) by y ′, we get

d

dx
(yy′3) = 0

Integrating

yy′3 = c31 or y′ = c1

y
1
3

Integrating y
1
3 dy = c1dx yields

y
4
3

4
3

= c1x + c2

or y(x) = (c3x + c4)
3
4 (2)

Using boundary conditions

0 = y(0) = 0 + c4 ... c4 = 0

R = y(L) = (c3L)
3
4 ... c3 = R

4
3

L

The the required function y(x) is given by

y(x) = R
( x
L

) 3
4
.

Geodesics

Example 5: Find the geodesics on a sphere of
radius ‘a’.

Solution: In spherical coordinates r, θ, φ, the dif-
ferential of arc length on a sphere is given by

(ds)2 = (dr)2 + (rdθ )2 + (r sin θdφ)2

Since r = a = constant, dr = 0. So(
ds

dθ

)2

= a2 + a2 sin2 θ

(
dφ

dθ

)2

Integrating w.r.t. θ between θ1 and θ2,

s =
∫ θ2

θ1

a

√
1 + sin2 θ

(
dφ

dθ

)2

dθ

Heref = a

√
1 + sin2 θ ·

(
dφ

dθ

)2
is independent ofφ,

but is a function of θ and dφ

dθ
. Denoting dφ

dθ
= φ′, the

Euler’s equation reduces to

d

dθ

(
∂f

∂φ′

)
= 0 or

∂f

∂φ′ = constant.

i.e., a · 1√
1 + sin2 θφ′2

· 1
2
2 · sin2 θ · φ′ = k = constant

Squaring a2 sin4 θ · φ′2 = k2(1 + sin2 θ · φ′2)

or
dφ

dθ
= φ′ = k

sin θ ·
√
sin2 θ − k2

= kcosec2θ√
1 − c2cosec2θ

Integrating, we get

φ(θ ) =
∫

kcosec2θ dθ√
(1 − k2) − (kcotθ )2

+ c2

φ(θ ) = cos−1

{
kcotθ√
1 − k2

}
+ c2

where c2 is constant of integration. Rewriting

kcotθ√
1 − k2

= cos(φ − c2) = cosφ · cos c2 + sin φ · sin c2

or cotθ = A cosφ + B sin φ

where A= (cos c2)(
√
1 − k2)

k
,

B = (sin c2)
(
√
1 − k2)

k

Multiplying by a sin θ , we have

a cos θ = A · a · sin θ · cosφ + B · a · sin θ · sin φ
Since r = a, the spherical coordinates are x =
a sin θ cosφ, y = a sin θ sin φ, z = a cos θ , so

z = Ax + By

which is the equation of plane, passing through ori-
gin (0, 0, 0) (since no constant term) the centre of
sphere. This plane cuts the sphere along a great cir-
cle. Hence the great circle is the geodesic on the
sphere.
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WORKED OUT EXAMPLES

Variational problems.
f is dependent on x, y, y′

Example 1: Find a complete solution of the Euler-
Lagrange equation for∫ x2

x1

[
y2 − (y′)2 − 2y cosh x

]
dx (1)

Solution: Here f (x, y, y ′) = y2 − (y ′)2 −
2y cosh x, which is a function of x, y, y ′. The
Euler-Lagrange equation is

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 (2)

Differentiating (1) partially w.r.t. y and y ′, we get
∂f

∂y
= 2y − 2 cosh x (3)

∂f

∂y′ = −2y′ (4)

Substituting (3) and (4) in (2), we have

2y − 2 cosh x − d

dx
(−2y′) = 0

y′′ + y = cosh x (5)

The complimentary function of (5) is

yc = c1 cos x + c2 sin x

and particular integral of (5) is

y = 1

2
cosh x.

Thus the complete solutionEuler-LagrangeEquation
(5) is

y(x) = c1 cos x + c2 sin x + 1

2
cosh x.

f is independent of x

Example 1: Find the extremals of the functional

I [y(x)] =
∫ x2

x1

(1 + y2)

y′2 dx

Solution: Here f = 1+y2
y′2 which is independent of

x. So the Euler’s equation becomes

d

dx

(
f − y′ ∂f

∂y′

)
= 0 (1)

Here
∂f

∂y′ = ∂

∂y′

(
1 + y2

y′2

)
= −2(1 + y2)

y′3 (2)

Substituting (2) in (1), we have

d

dx

(
1 + y2

y′2 −y′ (−2)(1 + y2)

y′3

)
= 3

d

dx

(
1 + y2

y′2

)
=0

y′2(2yy′) − (1 + y2)2y′y′′

y′4 = 0

or (1 + y2)y′′ − yy′2 = 0 (3)

Put y ′ = p, then y ′′ = d
dx
y ′ = d

dx
p = dp

dy

dy

dx
=

y ′ dp
dy

= p
dp

dy
. Putting these values in (3),

(1 + y2)p
dp

dy
− yp2 = 0 or

dp

dy
= py

1 + y2

Integrating
dp

p
= y dy

1 + y2
= 1

2

d(1 + y2)

(1 + y2)

p2 = c21(1 + y2).

so p = c1

√
(1 + y2) or

dy

dx
= c

√
1 + y2

Integrating
dy√
1 + y2

= c1 dx we get

sinh−1 y = c1x + c2

Thus the required extremal function is

y(x) = sinh(c1x + c2)

where c1 and c2 are two arbitrary constant.

f is independent of y

Example 3: If the rate of motion v = ds
dt
is equal to

x then the time t spent on translation along the curve
y = y(x) from one point P1(x1, y1) to another point
P2(x2, y2) is a functional. Find the extremal of this
functional, when P (1, 0) and P2(2, 1).

Solution: Given
ds

dt
= x or

ds

x
= dt .

But ds =
√
1 + y ′2dx so

√
1 + y ′2 dx

x
= dt .
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Integrating from P1 to P2∫ x2

x1

dt =
∫ x2

x1

√
1 + y′2
x

dx. The functional is

t[y(x)] =
∫ x2

x1

√
1 + y′2
x

dx

Here f =
√

1+y′2
x

which is independent of y. Euler’s

equation is d
dx

{
∂f

∂y′
}

= 0

d

dx

{
1

x
· 1
2

· 1√
1 + y′2 · 2y′

}
= 0

x
√
(1 + y′2)y′′ − y′

{
(1 + y′2) + xy′y′′

}

x2(1 + y′2)
3
2

= xy′′ − y′(1 + y′2)

x2(1 + y′2)
3
2

= 0

or xy′′ − y′(1 + y′2) = 0.

Put y ′ = u, then x du
dx

− u(1 + u2) = 0

du

u(1 + u2)
= du

u
− udu

1 + u2
= dx

x

Integrating
(
u
x

)2 = c21(1 + u2)

y′2 = c21x
2(1 + y′2)

or y′ = c1x

√
(1 + y′2).

Put y ′ = tan v, then
√
1 + y ′2 = √

1 + tan2 v =√
sec2v

so x = y′

c1(1 + y′2)
= 1

c1

tan v

secv
= 1

c1
sin v (1)

and dx = 1

c1
cos v dv

Now
dy

dx
= y′ = tan v

dy = tan v dx = tan v · 1

c1
· cos v dv =

= 1

c1
sin v dv

Integrating y = −c2 cos v + c3 (2)

where c2 = 1

c1
or y − c3 = −c2 cos v (3)

Squaring (1) and (3) and adding

x2 + (y − c3)
2 = (c2 sin v)

2 + (−c2 cos v)2

= c22 = c4 (4)

Equation (4) represents a two-parameter family of
circles. If (4) passes throughP1(1, 0) Then y(0) = 1.
Then (4) becomes

1 + (0 − c3)
2 = c4 or 1 + c23 = c4

If (4) passes through P2(2, 1) then y(2) = 1.
So from (4),

4 + (1 − c3)
2 = c4 = 1 + c23 ... c3 = −2

and c4 = 5. Thus the required extremal satisfying the
end points P1 and P2 is

x2 + (y + 2)2 = 5.

Invalid variational problem

Example 4: Test for an extremum of the functional

I [y(x)]=
∫ 1

0
(xy + y2 − 2y2y′)dx, with y(0)=1, y(1)=2.

Solution: Here f = xy + y2 − 2y2y ′. Differenti-
ating partially w.r.t. y and y ′, we have

∂f

∂y
= x + 2y − 4yy′ and

∂f

∂y′ = −2y2.

Substituting these in the Euler’s equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
= (x + 2y − 4yy′) − d

dx
(−2y2) = 0

= x + 2y − 4yy′ + 4yy′ = 0

or x + 2y = 0 i.e., y = −x

2
.

However, this function y = f (x) does not satisfy the
given boundary conditions y(0) = 1 and y(1) = 2
i.e., 1 = y(0) �= 0 and 2 = y(1) �== − 1

2 . Thus an
extremum can not be achieved on the class of con-
tinuous functions.

Geodesics

Example 5: Determine the equation of the
geodesics on a right circular cylinder of radius ‘a’.
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Solution: In cylindrical coordinates (r, θ, z), the
differential of arc ds on a cylinder is given by

(ds)2 = (dr)2 + (rdθ )2 + (dz)2

Since radius r = a = constant, dr = 0. Then

(
ds

dθ

)2

= a2 +
(
dz

dθ

)2

or
ds

dθ
=

√
a2 +

(
dz

dθ

)2

Integrating

s =
∫ θ2

θ1

√
a2 +

(
dz

dθ

)2

dθ.

Since geodesic is curve with minimum length, we

have to find minimum of s. Here f =
√
a2 + (

dz
dθ

)2
which is independent of the variable z. Now the
Euler’s equation is

d

dθ

(
∂f

∂z′

)
= 0 or

∂f

∂z′
= constant = k

so
∂f

∂z′
=

{√
a2 +

(
dz

dθ

)2
}

= 1

2

2 · z′√
a2 + z′2

= k

or z′2 = k2(a2 + z′2)

z′2 = k2a2

1 − k2

i.e., z′ = dz

dθ
= ka√

1 − k2

Integrating z(θ ) = kaθ√
1−k2

+ c1. Thus the equation of

the geodesics which is a circular helix is

z= k∗θ + c1 and r = a

where k∗ = ka√
1 − k2

.

Example 6: Find the geodesics on a right circular
cone of semivertical angle α.

Solution: In spherical coordinates (r, θ, φ) the dif-
ferential of an arc ds on a right circular cone is given
by

(ds)2 = (dr)2 + (rdθ )2 + (r sin α dφ)2.

With vertex of the cone at the origin and z-axis as
the axis of the cone, the polar equation of cone is
θ = α = constant so dθ = 0.

Then (
ds

dφ

)2

=
(
dr

dφ

)2

+ r2 sin2 α

Integrating w.r.t., φ

s =
∫ φ2

φ1

√(
dr

dφ

)2

+ r2 sin2 α · dφ

The arc length s of the curve is to beminimized. Here

f =
√(

dr
dφ

)2
+ r2 sin2 α is independent of φ. Then

the integral of Euler’s equation is

f − r ′
∂f

∂r ′
= constant = k

or
√
r ′2 + r2 sin2 α − r ′ · 1

2

2r ′√
r ′2 + r2 sin2 α

= k

r ′2 + r2 sin2 α − r ′2 = k

√
r ′2 + r2 sin2 α

squaring, r4 sin4 α = k2(r ′2 + r2 sin2 α)

r ′2 = r2 sin2 α(r2 sin2 α − k2)

k2

or
dr

dφ
= r sin α

k
·
√
r2 sin2 α − k2

i.e.,
kdr

r
√
r2 sin2 α − k2

= sin α · dφ.

Integrating k ·
∫

dr

r
√
r2 sin2 α − k2

= sin α · φ + c1

where c1 is the constant of integration. Introducing
r = 1

t
, dr = − 1

t2
dt, t = 1

r
, the L.H.S. integral trans-

forms to

k ·
∫

·t 1√
sin2 α
t2

− k2
·
(

−dt

t2

)
= −k

∫
dt√

sin2 α − k2t2

= cos−1
(

kt

sin α

)
.

Then cos−1
(

kt

sin α

)
= φ sin α + c1

kt

sin α
= cos(φ sin α + c1)

Thus
k

r sin α
= cos(φ sin α + c1)

and θ = α are the equations of the geodesics.
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EXERCISE

Variational problems

1. Test for extremum of the functional

I [y(x)] =
∫ π

2

0
(y′2 − y2)dx, y(0) = 0, y

(π
2

)
= 1.

Hint: Euler’s Equation (EE): y ′′ + y = 0, y =
c1 cos x + c2 sin x using B.C, c1 = 0, c2 = 1

Ans. y = sin x

Find the extremal of the following functionals

2.
∫ x2
x1
(y2 + y ′2 − 2y sin x)dx

Hint: EE: 2y − 2 sin x − 2y ′′ = 0

Ans. y = c1e
x + c2e

−x + sin x
2

3.
∫ 1
0 (y

′12 + 12xy)dx, y(0) = 0, y(1) = 1.

Hint: EE: y ′′ = 6x, y = x3 + c1x + C2, C =
0, c2 = 0

Ans. y = x3

4.
∫ π

2
0 (y ′2 − y2 + 2xy)dy, y(0) = 0, y

(
π
2

) = 0

Hint: EE: y ′′ + y = x, y = c1 cos x +
c2 sin x + x

Ans. y = x − π
2 sin x

5.
∫ x2
x1
(y2 + 2xyy ′)dx, y(x1) = y1, y(x2) = y2

Hint: EE: 2y + 2xy ′ − 2(xy ′ + y) = 0 i.e.,
0 = 0

Ans. Invalid problem

6.
∫ 2
1

x3

y′2 dx, y(1) = 1, y(2) = 4

Ans. y = x2

7.
∫ 3
2

y′2
x3
dx, y(2) = 1, y(3) = 16

Hint: EE: y
′′
y′ = 3

x
, y ′ = cx3, y = c1x

4 + c2

Ans. y = 3
13x

4 − 35
13

8.
∫ x1
x0
(y2 + y ′2 + 2yex) dx

Ans. y = Aex + Be−x + 1
2xe

x

9.
∫ π

0 (4y cos x − y2 + y ′2)dx, y(0) = 0, y(π ) =
0

Hint: EE: y ′′ + y = 2 cos x, y = c1 cos x +
c2 sin x + x sin x, c1 = 0, c2 = arbitrary

Ans. y = (C + x) sin x.

4.5 ISOPERIMETRIC PROBLEMS

In calculus, in problems of extrema with constraints
it is required to find the maximum or minimum of a
function of several variably g(x1, x2, . . . , xη) where
the variables x1, x2, . . . , xη are connected by some
given relation or condition known as a constraint.
The variational problems considered so far find

the extremum of a functional in which the argument
functions could be chosen arbitrarily except for pos-
sible end (boundary) conditions. However, the class
of variational problems with subsidiary conditions
or constraints imposed on the argument functions,
apart from the end conditions, are branded as isoperi-
metric problems. In the original isoperimetric (“iso”
for same, “perimetric” for perimeter) problem it is
required to find a closed curve of given length which
enclose maximum area. It is known even in ancient
Greece that the solution to this problem is circle. This
is an example of the extrema of integrals under con-
straint consists of maximumizing the area subject to
the constraint (condition) that the length of the curve
is fixed.
The simplest isoperimetric problem consists

of finding a function f (x) which extremizes the
functional

I [y(x)] =
∫ x2

x1

f (x, y, y′)dx (1)

subject to the constraint (condition) that the second
integral

J [y(x)] =
∫ x2

x1

g(x, y, y′)dx (2)

assumes a given prescribed value and satisfying the
prescribed end conditions y(x1) = y1 and y(x2) =
y2. To solve this problem, use the method of
Lagrange’s multipliers and form a new function

H (x, y, y′) = f (x, y, y′) + λg(x, y, y′) (3)

where λ is an arbitrary constant known as the
Lagrange multiplier. Now the problem is to find the
extremal of the new functional,
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I ∗[y(x)] = ∫ x2
x1
H (x, y, y ′)dx, subject to no con-

straints (except the boundary conditions). Then the
modified Euler’s equation is given by

∂H

∂y
− d

dx

(
∂H

∂y′

)
= 0 (4)

The complete solution of the second order Equation
(4) contains, in general, two constants of integration
say c1, c2 and the unknown Lagrange multiplier λ.
These 3 constants c1, c2, λ will be determined using
the two end conditions y(x1) = y1, y(x2) = y2 and
given constraint (2).

Corollary: Parametric form: To find the
extremal of the functional

I =
∫ t2

t1

f (x, y, x
.
, y
.
, t)dt

subject to the constraint

J =
∫ t2

t1

g(x, y, x
.
, y
.
, t)dt = constant

solve the system of two Euler equations given by

∂H

∂x
− d

dt

(
∂H

∂x
.

)
= 0 and

∂H

∂y
− d

dt

(
∂H

∂y
.

)
= 0

resulting in the solution x = x(t), y = y(t), which
is the parametric representation of the required func-
tion y = f (x) which is obtained by elimination of t .
Here x. = dx

dt
and y. = dy

dt
and

H (x, y, x
.
, y
.
, t) = f (x, y, x

.
, y
.
, t) + λ g(x, y, x

.
, y
.
, t)

The two arbitrary constants c1, c2 and λ are deter-
mined using the end conditions and the constraint.

4.6 STANDARD ISOPERIMETRIC
PROBLEMS

Circle

Example 1: Isoperimetric problem is to determine
a closed curve C of given (fixed) length (perimeter)
which encloses maximum area.

Solution: Let the parametric equation of the curve
C be

x = x(t), y = y(t) (1)

where t is the parameter. The area enclosed by curve
C is given by the integral

I = 1

2

∫ t2

t1

(xy
. − x

.
y)dt (2)

where x. = dx
dt
, y
. = dy

dt
. We have x(t1) = x(t2) = x0

and y(t1) = y(t2) = y0, since the curve is closed.
Now the total length of the curce C is given by

J =
∫ t2

t1

√
x
. 2 + y

. 2dt (3)

Form H = 1

2
(xy

. − x
.
y) + λ

√
x
. 2 + y

. 2 (4)

Here λ is the unknown Lagrangian multiplier. Prob-
lem is to find a curve with given perimeter for which
area (2) is maximum. Euler equations are

∂H

∂x
− d

dt

(
∂H

∂x
.

)
= 0 (5)

and
∂H

∂y
− d

dt

(
∂H

∂y
.

)
= 0 (6)

Differentiating H in (4) w.r.t. x, x. , y, y. and substi-
tuting them in (5) and (6), we get

1

2
y
. − d

dt

⎛
⎝−1

2
y + λx

.√
x
. 2 + y

. 2

⎞
⎠ = 0 (7)

−1

2
x
. − d

dt

⎛
⎝1

2
x + λy

.√
x
. 2 + y

. 2

⎞
⎠ = 0 (8)

Integrating (7) and (8) w.r.t. ‘t’, we get

y − λx
.√

x
. 2 + y

. 2
= c1 (9)

and x + λy
.√

x
. 2 + y

. 2
= c2 (10)

where c1 and c2 are arbitrary constants. From (9) and
(10) squaring (y − c1) and (x − c2) and adding, we
get

(x − c2)
2 + (y − c1)

2 =
⎛
⎝ −λy.√

x
. 2+y. 2

⎞
⎠

2

+
⎛
⎝ λx

.√
x
. 2+y. 2

⎞
⎠

2

= λ2
(x
. 2 + y

. 2)

(x
. 2 + y

. 2)
= λ2

i.e., (x − c2)2 + (y − c1)2 = λ2
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which is the equation of circle. Thus we have
obtained the well-known result that the closed curve
of given perimeter for which the enclosed area is a
maximum is a circle.

Catenary

Example 2: Determine the shape an absolutely
flexible, inextensible homogeneous and heavy
rope of given length L suspended at the points A
and B

Fig. 4.6

Solution: The rope in equilibrium take a shape such
that its centre of gravity occupies the lowest position.
Thus to find minimum of y-coordinate of the centre
of gravity of the string given by

I [y(x)] =
∫ x2
x1
y
√
1 + y′2dx∫ x2

x1

√
1 + y′2dx

(1)

subject to the constraint

J [y(x)] =
∫ x2

x1

√
1 + y′2dx = L = constant (2)

Thus tominimize the numerator in R.H.S. of (1) sub-
ject to (2). Form

H = y

√
(1 + y′2) + λ

√
1 + y′2 = (y + λ)

√
1 + y′2

(3)
where λ is Lagrangian multiplier. Here H is inde-
pendent of x. So the Euler equation is

H − y′ ∂H
∂y′ = constant = k1

i.e., (y + λ)(
√
1 + y′2) − y′(y + λ) · 1

2

2y′√
1 + y′2 = k1

(y + λ)

{
(1 + y′2) − y′2

}
= k1(

√
1 + y′2)

or y + λ = k1

√
1 + y′2 (4)

Put y ′ = sinh t , where t is a parameter, in (4)

Then y + λ= k1

√
1 + sin2 ht = k1 cosh t (5)

Now dx = dy

y′ = k1 sinh t dt

sinh t
= k1dt

Integrating x = k1t + k2 (6)

Eliminating ‘t’ between (5) and (6), we have

y + λ = k1 cosh t = k1 cosh

(
x − k2

k1

)
(7)

Equation (7) is the desired curve which is a catenary.

Note: The three unknowns λ, k1, k2 will be
determined from the two boundary conditions (curve
passing through A and B) and the constraint (2).

WORKED OUT EXAMPLES

Example 1: Find the extremal of the function
I [y(x)] = ∫ π

0 (y ′2 − y2)dx with boundary condi-
tions y(0) = 0, y(π ) = 1 and subject to the con-
straint

∫ π

0 y dx = 1.

Solution: Here f = y ′2 − y2 and g = y. So choose
H = f + λg = (y ′2 − y2) + λy where λ is the
unknown Lagrange’s multiplier. The Euler’s equa-
tion for H is

∂H

∂y
− d

dx

(
∂H

∂y′

)
= 0

Using derivatives of H w.r.t. y and y ′, we get

(−2y + λ) − d

dx
(2y′) = 0

or y′′ + y = λ

whose general solution is

y(x) = CF + PI = (c1 cos x + c2 sin x) + (λ) (1)
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The three unknowns c1, c2, λ in (1) will be deter-
mined using the two boundary conditions and the
given constraint. From (1)

0 = y(0) = c1 + c2 · 0 + λ or c1 + λ = 0

1 = y(π ) = −c1 + c2 · 0 + λ or − c1 + λ = 1

Solving λ = 1
2 , c1 = −λ = − 1

2
Now from the given constraint∫ π

0
y dx = 1, we have

∫ π

0
(c1 cos x + c2 sin x + λ)dx = 1

c1 sin x − c2 cos x + λx

∣∣∣∣π
0

= 1

(0 + c2 + λπ ) − (0 − c2 + 0) = 1

or 2c2 = 1 − πλ =
(
1 − π

2

)
Thus the required extremal function y(x) is

y(x) = −1

2
cos x +

(
1

2
− π

4

)
sin x + 1

2
.

Example 2: Show that the extremal of the isoperi-
metric problem I [y(x)] = ∫ x2

x1
y ′2 dx subject to the

condition J [y(x)] = ∫ x2
x1
y dx = constant = k is a

parabola. Determine the equation of the parabola
passing through the pointsP1(1, 3) andP2(4, 24) and
k = 36.

Solution: Here f = y ′2 and g = y. So form

H = f + λg = y′2 + λy.

The Euler equation for H is

∂H

∂y
− d

dx

(
∂H

∂y′

)
= 0

λ− d

dx
(2y′) = 0

or y′′ − λ

2
= 0

Integrating twice,

y(x) = λ

2

x2

2
+ c1x + c2 (1)

which is a parabola. Here c1 and c2 are constants of
integration. To determine the particular parabola, use

B.C’s y(1) = 3 and y(4) = 24 (i.e., passing through
points P1 and P2) and the given constraint. From (1)

3 = y(1) = λ

4
+ c1 + c2 (2)

Again from (1)

24 = y(4) = 4λ+ 4c1 + c2 (3)

Now from the constraint∫ x2=4

x1=1
y(x)dx = 36

or
∫ 4

1

(
λ

4
x2 + c1x + c2

)
dx = 36

i.e.,
λ

4
· x

3

3
+ c1

x2

2
+ c2x

∣∣∣∣4
1

= 36

or 42λ+ 60c1 + 24c2 = 288 (4)

From (2) & (3):

λ− c2 = 12

and from (3) & (4)

2λ− c2 = 8

Solving λ = −4, c2 = −16, c1 = 20. Thus the spe-
cific parabola satisfying the given B.C.’s (passing
through P1 and P2) is

y = −4

4
x2 + 20x − 16

i.e., y = −x2 + 20x − 16.

EXERCISE

1. Find the curve of given length L which joins
the points (x1, 0) and (x2, 0) and cuts off from
the first quadrant the maximum area.

Ans. (x − c)2 + (y − d)2 = λ2, c = x1+x2
2 ,

a = (x2−x1)
2 , λ2 = d2 + a2,

√
d2 + a2

cot−1
(
d
a

) = L
2 .

2. Determine the curve of given length L which
joins the points (−a, b) and (a, b) and gen-
erates the minimum surface area when it is
revolved about the x-axis.

Ans. y = c cosh x
c

− λ, where c = a

sin h−1
(
L
2

) , λ =
c
2

√
4 + L2 − b
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3. Find the extremal of I = ∫ π

0 y ′2dx subject to∫ π

0 y2dx = 1 and satisfying y(0) = y(π ) = 0

Hint: EE: y ′′ − λy = 0

Ans. yη(x) = ±
√

2
π
sin ηx, η = 1, 2, 3 . . .

4. Show that sphere is the solid of revolution
which has maximum volume for a given sur-
face area.

Hint: H = πy2 + λ[(2πy)
√
(1 + y ′2)], EE:

y ′ =
√

4λ2−y2
y

, (x − 2λ)2 + y2 = (2λ)2; cir-
cle, solid of revolution sphere.

5. Find the curve of given length L which mini-
mizes the curved surface area of the solid gen-
erated by the revolution of the curve about the
x-axis.

Ans. Catenary

6. Determine y(x) for which
∫ 1
0 (x

2 + y ′2)dx
is stationary subject to

∫ 1
0 y

2dx = 2, y(0) =
0, y(1) = 0.

Ans. y = ±2 sinmπx, where m is an integer.


