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INTRODUCTION

Chapter Introduction provide a quick
look into the concepts that will be
discussed in the chapter

Examples

Every chapter contains worked out
example problems which will guide
the student while understanding the
concepts and working out the
exercise problems

Chapter11
Special Functions—Gamma, Beta,

Bessel and Legendre

INTRODUCTION

We consider Fourier-Legendre series and Fourier-
Bessel series. Chebyshev-polynomials which are
useful in approximation theory are also presented.

Algebraic function f (x) is obtained by the alge-
braic operations of addition, subtraction, multipli-
cation, division and square rooting of x polynomial
and rational functions are such functions. Transcen-
dental functions include trigonometric functions
(sine, cosine, tan) exponential, logarithmic and
hyperbolic functions.

Algebraic and transcendental functions together
constitute the elementary functions. Special func-
tions (or higher functions) are functions other than
the elementary functions such as Gamma, Beta func-
tions (expressed as integrals) Bessel’s functions,
Legendre polynomials (as solutions of ordinary dif-
ferential equations). Special functions also include
Laguerre, Hermite, Chebyshev polynomials, error
function, sine integral, exponential integral, Fresnel
integrals, etc.

Many integrals which can not be expressed in
terms of elementary functions can be evaluated in
terms of beta and gamma functions.

Heat equation, wave equation and Laplace’s equa-
tion with cylindrical symmetry can be solved in terms
of Bessel’s functions, with spherical symmetry by
Legendre polynomials.

11.1 GAMMA FUNCTION

Gamma function denoted by �(p) is defined by
the improper integral which is dependent on the

parameter p,

�(p) =
∫ ∞

0
e−t tp−1 dt, (p > 0) (1)

Gamma function is also known as Euler’s integral of
the second kind.

Integrating by parts

�(p + 1) =
∫ ∞

0
e−t tp dt

= −e−t tp
∣∣∣∞
0

+ p

∫ ∞

0
e−t tp−1 dt

= 0 + p�(p)

Thus �(p + 1) = p�(p) (2)

(2) is known as the functional relation or reduction
or recurrence formula for gamma function.

Result:
�(n + a) = (n + a − 1)(n + a − 2)(n + a − 3) · · ·
a · �(a), n is integer.

By definition

�(1) =
∫ ∞

0
e−t dt = e−t

−1

∣∣∣∣
∞

0
= 1 (3)

By the reduction formula (2),

�(2) = 1 · �(1) = 1

and �(3) = 2 · �(2) = 2 · 1 = 2!

and in general when p is a positive integer n

�(n + 1) = n�(n) = n(n − 1)�(n − 1)

= n(n − 1)(n − 2)�(n − 2)

= n · (n − 1)(n − 2) · · · 3 · 2 · 1 = n!
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WORKED OUT EXAMPLES

Example 1: Find the degree of the following
homogeneous functions:

a. x2 − 2xy + y2 d. x
1
3 y− 4

3 tan−1(y/x)

b. log y − log x e. 3x2yz + 5xy2z + 4x4

c. (
√
x2 + y2)3 f. [z2/(x4 + y4)]

1
3

Ans:

a. 2

b. log y − log x = ln
(
y

x

) = x0 ln
(
y

x

)
degree zero

c. (
√
x2 + y2)3 = x3

√
1 + (

y

x

)2
degree 3

d. x
1
3 y− 4

3 tan−1(y/x) = x−1 · x− 4
3 y− 4

3 tan−1 y

x
=

x−1
(
x
y

) 4
3

tan−1 y

x
. degree: −1

e. degree 4

f.
[

z2

x4+y4

] 1
3 =

[
1
z2

z4

x4+y4

] 1
3 = z− 2

3

[
1

( x
z )4+( y

z )4

]
degree = −2/3.

Example 2: Verify Euler’s theorem for the fol-
lowing functions by computing both sides of Euler’s
Equation (1) directly:

i. (ax + by)
1
3 ii. x+ 1

3 y− 4
3 tan−1(y/x)

Solution: i. f = (ax + by)
1
3 is homogeneous

function of degree 1
3

Differentiating f partially w.r.t. x and y, we get

fx = ∂f

∂x
= 1

3
(ax + by)−

2
3 · a

fy = ∂f

∂y
= 1

3
(ax + by)−

2
3 · b

Multiplying by x and y and adding, we get the L.H.S.
of (1)

x fx + y fy = 1

3
(ax + by)−

2
3 ax + 1

3
(ax + by)−

2
3 by

= 1

3
(ax + by)−

2
3 (ax + by)

= 1

3
(ax + by)

1
3 = 1

3
f.

Since f is homogeneous function of degree 1
3 the

R.H.S. of (1) is nf = 1
3f .

Thus

x fx + y fy = L.H.S. = 1

3
f = R.H.S.

ii. f = x
1
3 y− 4

3 tan−1(y/x) is homogeneous func-
tion of degree −1

fx = 1

3
x− 2

3 y− 4
3 tan−1

(y
x

)
+ x

1
3 y− 4

3 · 1

1 + ( y
x

)2 ·
(−y

x2

)

fy = x
1
3

(
−4

3

)
y− 7

3 tan−1
(y
x

)
+ x

1
3 y− 4

3 · 1

1 + ( y
x

)2 1

x

so

xfx + yfy

= 1

3
· x 1

3 y− 4
3 tan−1(y/x) + x

4
3 y− 4

3

( −y

x2 + y2

)

−4

3
x

1
3 y− 4

3 tan−1(y/x) + x
4
3 y− 1

3 · 1

x2 + y2

= −x
1
3 y− 4

3 tan−1(y/x) = −f.

Example 3: If u = log x2+y2

x+y
, prove that

x ux + y uy = 1

Solution: Let

f = eu = x2 + y2

x + y
=

x2
(

1 + ( y
x

)2)
x
(
1 + y

x

) = xφ
(y
x

)
f is a homogeneous function of degree 1.

Applying Euler’s theorem for the function f , we
get

xfx + yfy = n · f = f.

Since f = eu, fx = eu · ux, fy = euuy

so x · euux + yeuuy = f = eu

since eu �= 0, x ux + y uy = 1.

Example 4: Show that x ux + y uy + z uz =
−2 cot u when

u = cos−1

(
x3 + y3 + z3

ax + by + cz

)

Solution: Let

f = cos u = x3 + y3 + z3

ax + by + cz

Here f is a homogeneous function of degree 2
in the three variables x, y, z. By Euler’s theorem



Exercises

In all the chapters there are exercise problems
within the text for the students to solve. This
will hone their problem-solving skills like noth-
ing else can. The answers to these exercises are
provided alongside for the students to verify

Figures
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EXERCISE

Solve the following:

1. (D4 + 10D2 + 9)y = cos (2x + 3)

Ans. y = c1 cos x + c2 sin x + c3 cos 3x
+ c4 · sin 3x − 1

15 cos (2x + 3)

2. (D2 + 2D + 5)y = 6 sin 2x + 7 cos 2x

Ans. y = e−x(c1 sin 2x + c2 cos 2x) + 2 sin 2x
− cos 2x

3. (D3 + D2 + D + 1)y = sin 2x + cos 3x

Ans. y = c1e
−x + c2 cos x + c3 sin x +

1
15 (2 cos 2x − sin 2x) − 1

80 (3 sin 3x + cos 3x)

4. (D2 + 4)y = sin x + sin 2x

Ans. y = c1 sin 2x + c2 cos 2x + sin x
3 − x cos 2x

4

5. (D2 − 8D + 9)y = 8 sin 5x

Ans. y = c1e
(4+√

7)x + c2e
(4−√

7)x + 1
29 (5 cos 5x

− 2 sin 5x)

6. (D2 + 16)y = e−3x + cos 4x

Ans. y = c1 cos 4x + c2 sin 4x + 1
25e

−3x

+ x
8 sin 4x

7. (D2 − 2D + 2)y = ex + cos x

Ans. y = ex(c1 cos x + c2 sin x) + (
cos x−2 sin x

5

)
.

8. (D2 + 9)y = cos2 x

Ans. y = c1 cos 3x + c2 sin 3x + 1
18 + 1

10 cos 2x

9. (D2 + 2D + 1)y = e2x − cos2 x

Ans. y = (c1 + c2x)e−x + 1
2 + 1

5 (2 sin 2x + cos 2x)

10. (D2 + 1)y = cos x

Ans. y = c1 cos x + c2 sin x + sin x ln sin x
− x cos x

11. (D2 − 4D + 13)y = 8 sin 3x,
y(0) = 1, y ′(0) = 2

Ans. y = 1
5

[
e2x(sin 3x + 2 cos 3x) + sin 3x

+ 3 cos 3x
]

12. (D4 + 2D2n2 + n4)y = cosmx

Ans. y = (c1 cos ηx + c2 sin ηx)(c3 + c4x) +
1

η2−m2 cosmx, with m �= η

13. (D2 + 4)y = cos x cos 3x

Ans. y = (c1 cos 2x + c2 sin 2x) − 1
24 cos 4x

+ x
8 sin 2x

14. (2D2 − 2D + 1)y = sin 3x · cos 2x

Ans. y = e
x
2
[
c1 cos x

2 + c2 sin x
2

]+ 10 cos 5x − 49 sin 5x
5002

+ 2 cos x−sin x
10

15. (D3 + 4D)y = sin 2x

Ans. y = c1 + c2 cos 2x + c3 sin 2x − x
8 sin 2x.

P.I. When F (x) = xm, m being a
Positive Integer

Case IV: Consider f (D)y = xm so that

P.I. = yp = 1

f (D)
xm

Expanding 1
f (D) in ascending power of D, we get

yp = [a0 + a1D + a2D
2 + · · · + amD

m]xm

since all the terms beyond Dm are omitted as
Dnxm = 0 when n > m.

This result can be extended when F (x) = Pm(x)
a polynomial in x of degree m so that

yp = [a0 + a1D + a2D
2 + · · · + amD

m][Pm(x)]

In particular for

(D + a)y = Pm(x)

we get

P.I. = yp = 1

D + a
[Pm(x)] = 1

a
[
1 + D

a

]Pm(x)

= 1

a

[
1 + D

a

]−1

Pm(x)

= 1

a

[
1 − D

a
+ D2

a2
+ · · · + (−1)m

Dm

am

]
Pm(x)

wherein terms of order higher than m are omitted.
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Fig. 6.22

Cartesian Form

Cylindrical disc method

I. Axis of revolution L is a part of the boundary of
the plane area. Consider the plane area ABCD
bounded by the curve y = f (x), x-axis, ordi-
nates x = a and x = b as shown in Fig. 6.23.
When the plane area ABCD is revolved about
x-axis, a solid of revolution is obtained, one
quarter of which is shown in Fig. 6.23. The
volume of an element circular disk of radius y

Fig. 6.23

and thickness dx is πy2dx. Integrating these
elements, the volume V of solid of revolu-
tion obtained by revolving about the x-axis the
plane area bounded by y = f (x), x = a, x = b,
x-axis is

V =
∫ b

a

πy2 dx

Similarly, when plane area bounded by the curve
x = g(y), y = c, y = d , y-axis, is revolved
about y-axis,

V =
∫ d

c

πx2 dy

II. Any axis of revolution:

V =
∫ b

a

πr2 dh

where r=perpendicular distance from the curve
to the axis of revolution AB (Fig. 6.24).

Fig. 6.24

III. The plane area is bounded by two curves: Let
the plane area bounded by two curves y = y1(x)
lower curve, y = y2(x) upper curve, the ordi-
nates x = a, x = b is revolved about x-axis,
then volume of solid of revolution generated
is the difference between the volume generated
by the upper curve and lower curve. Thus

V =
∫ b

a

πy2
2 dx −

∫ b

a

πy2
1 dx =

∫ b

a

π (y2
2 − y2

1 )dx

where y2 and y1 are the ordinates of the upper
and lower curves.

Cylindrical shell method

Axis of rotation AB is not part of the boundary of
the plane area DEFG, volume element generated
by revolving a rectangular strip about an axis AB
(Fig. 6.25).

Fig. 6.25
dr

dV = (mean circumference) × (height) × (thickness)

dV = (2πr)(h)(dr)

So V =
∫ r=b

r=a

2πrh dr

Figures are used exhaustively in the text to
illustrate the concepts and methods described.

Web supplement

The book is accompanied by a dedicated website at
http://www.mhhe.com/ramanahem

containing additional chapters on the following topics for the students

� Matrices & Determinants

� Sequence and Series

� Analytical Solid Geometry

� Calculus of Variations

� Linear Programming

It also has chapter-wise summaries.

.


