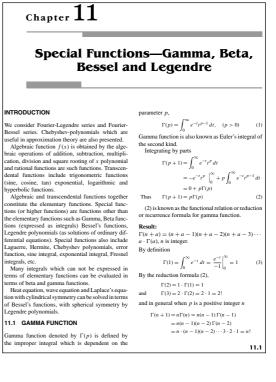
Visual Walkthrough

INTRODUCTION

Chapter Introduction provide a quick look into the concepts that will be discussed in the chapter

Examples

3.20 - HIGHER ENGINEERING MATHEMATICS-II	
WORKED OUT EXAMPLES	Since f is homogeneous function of degree $\frac{1}{3}$ the R.H.S. of (1) is $nf = \frac{1}{3}f$. Thus
Example 1: Find the degree of the following homogeneous functions:	$x f_x + y f_y = L.H.S. = \frac{1}{3}f = R.H.S.$
a. $x^2 - 2xy + y^2$ b. $\log y - \log x$ c. $3x^2yz + 5xy^2z + 4x^4$	ii. $f = x^{\frac{1}{3}}y^{-\frac{4}{3}}\tan^{-1}(y/x)$ is homogeneous function of degree -1
c. $(\sqrt{x^2 + y^2})^3$ f. $[z^2/(x^4 + y^4)]^{\frac{1}{3}}$ Ans:	$f_x = \frac{1}{3}x^{-\frac{2}{3}}y^{-\frac{4}{3}}\tan^{-1}\left(\frac{y}{x}\right) + x^{\frac{1}{3}}y^{-\frac{4}{3}} \cdot \frac{1}{1 + \left(\frac{y}{y}\right)^2} \cdot \left(\frac{-y}{x^2}\right)$
a. 2	$f_{y} = x^{\frac{1}{3}} \left(-\frac{4}{3}\right) y^{-\frac{2}{3}} \tan^{-1}\left(\frac{y}{x}\right) + x^{\frac{1}{3}} y^{-\frac{4}{3}} \cdot \frac{1}{1 + \left(\frac{y}{x}\right)^{2}} \frac{1}{x}$
b. $\log y - \log x = \ln \left(\frac{y}{x}\right) = x^0 \ln \left(\frac{y}{x}\right)$ degree zero	so $(x) = (x)^{2} x^{3}$
c. $(\sqrt{x^2 + y^2})^3 = x^3 \sqrt{1 + (\frac{y}{x})^2}$ degree 3	$xf_x + yf_y$
d. $x^{\frac{1}{3}}y^{-\frac{4}{3}}\tan^{-1}(y/x) = x^{-1} \cdot x^{-\frac{4}{3}}y^{-\frac{4}{3}}\tan^{-1}\frac{y}{x} =$	$= \frac{1}{3} \cdot x^{\frac{1}{3}} y^{-\frac{4}{3}} \tan^{-1}(y/x) + x^{\frac{4}{3}} y^{-\frac{4}{3}} \left(\frac{-y}{x^2 + y^2} \right)$
$x^{-1}\left(\frac{x}{y}\right)^{\frac{3}{2}} \tan^{-1}\frac{y}{x}$. degree: -1 e. degree 4	$-\frac{4}{3}x^{\frac{1}{3}}y^{-\frac{4}{3}}\tan^{-1}(y/x) + x^{\frac{4}{3}}y^{-\frac{1}{3}} \cdot \frac{1}{x^2 + y^2}$
f. $\left[\frac{z^2}{z^4+y^4}\right]^{\frac{1}{3}} = \left[\frac{1}{z^2}\frac{z^4}{z^4+y^4}\right]^{\frac{1}{3}} = z^{-\frac{2}{3}}\left[\frac{1}{\left(\frac{z}{z}\right)^4+\left(\frac{z}{z}\right)^4}\right]$ degree = $-2/3$.	$= -x^{\frac{1}{3}}y^{-\frac{4}{3}}\tan^{-1}(y/x) = -f.$ Example 3: If $u = \log \frac{x^2 + y^2}{x + y}$, prove that
Example 2: Verify Euler's theorem for the following functions by computing both sides of Euler's Equation (1) directly: i. $(ax + by)^{\frac{1}{2}}$ ii. $x^{+\frac{1}{2}}y^{-\frac{1}{2}}\tan^{-1}(y/x)$ Solution: i. $f = (ax + by)^{\frac{1}{2}}$ is homogeneous function of degree $\frac{1}{2}$ Differentiating f partially w.r.t. x and y , we get $f_x = \frac{af}{ax} = \frac{1}{3}(ax + by)^{-\frac{2}{3}} \cdot a$ $f_y = \frac{af}{by} = \frac{1}{3}(ax + by)^{-\frac{2}{3}} \cdot b$ Multiplying by x and y and adding, we get the L.H.S. of (1)	$xu_x + yu_y = 1$ Solution: Let $f = e^{w} = \frac{x^2 + y^2}{x + y} = \frac{x^2 \left(1 + \left(\frac{x}{2}\right)^2\right)}{x \left(1 + \frac{x}{2}\right)} = x\phi\left(\frac{y}{x}\right)$ <i>f</i> is a homogeneous function of degree 1. Applying Euler's theorem for the function <i>f</i> , we get $xf_x + yf_y = u \cdot f = f.$ Since $f = e^u, f_x = e^u \cdot u_x, f_y = e^u u_y$ so $x \cdot e^u u_x + ye^u u_y = 1.$ Example 4: Show that $xu_x + yu_y + zu_z = -2\cot u$ when $\left(x^3 + x^3, y^3, y^3\right)$
$x f_x + y f_y = \frac{1}{3}(ax + by)^{-\frac{2}{3}}ax + \frac{1}{3}(ax + by)^{-\frac{2}{3}}by$	$u = \cos^{-1}\left(\frac{x^3 + y^3 + z^3}{ax + by + cz}\right)$
$= \frac{1}{3} (ax + by)^{-\frac{2}{3}} (ax + by)$	Solution: Let $f = \cos u = \frac{x^3 + y^3 + z^3}{ax + by + cz}$
$=\frac{1}{3}(ax+by)^{\frac{1}{3}}=\frac{1}{3}f.$	Here f is a homogeneous function of degree 2 in the three variables x, y, z . By Euler's theorem



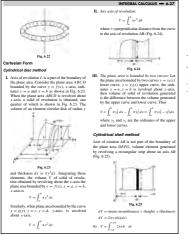
Every chapter contains worked out example problems which will guide the student while understanding the concepts and working out the exercise problems

Exercises

In all the chapters there are exercise problems within the text for the students to solve. This will hone their problem-solving skills like nothing else can. The answers to these exercises are provided alongside for the students to verify

9.16 - HIGHER ENGINEERING MATHEMATICS-III	
Exercise	12. $(D^4 + 2D^2n^2 + n^4)y = \cos mx$
Solve the following:	Ans. $y = (c_1 \cos \eta x + c_2 \sin \eta x)(c_3 + c_4 x) + \frac{1}{\sqrt{1-\eta}} \cos mx$, with $m \neq \eta$
	13. $(D^2 + 4)y = \cos x \cos 3x$
1. $(D^4 + 10D^2 + 9)y = \cos (2x + 3)$ Ans. $y = c_1 \cos x + c_2 \sin x + c_3 \cos 3x$	Ans. $y = (c_1 \cos 2x + c_2 \sin 2x) - \frac{1}{24} \cos 4x$
Ans. $y = c_1 \cos x + c_2 \sin x + c_3 \cos 3x$ + $c_4 \cdot \sin 3x - \frac{1}{15} \cos (2x + 3)$	$+\frac{\pi}{8}\sin 2x$
2. $(D^2 + 2D + 5)y = 6 \sin 2x + 7 \cos 2x$	14. $(2D^2 - 2D + 1)y = \sin 3x \cdot \cos 2x$
Ans. $y = e^{-x}(c_1 \sin 2x + c_2 \cos 2x) + 2 \sin 2x$ - $\cos 2x$	Ans. $y = e^{\frac{1}{2}} \left[c_1 \cos \frac{\pi}{2} + c_2 \sin \frac{\pi}{2} \right] + \frac{10 \cos 5x - 49 \sin 5}{5002} + \frac{2 \cos x - 40x}{10}$
3. $(D^3 + D^2 + D + 1)y = \sin 2x + \cos 3x$	15. $(D^3 + 4D)y = \sin 2x$
Ans. $y = c_1 e^{-x} + c_2 \cos x + c_3 \sin x + \frac{1}{12} (2 \cos 2x - \sin 2x) - \frac{1}{12} (3 \sin 3x + \cos 3x)$	Ans. $y = c_1 + c_2 \cos 2x + c_3 \sin 2x - \frac{x}{8} \sin 2x$.
4. $(D^2 + 4)y = \sin x + \sin 2x$	P.I. When $F(x) = x^{\infty}$, <i>m</i> being a Positive Integer
Ans. $y = c_1 \sin 2x + c_2 \cos 2x + \frac{\sin x}{3} - \frac{x \cos 2x}{4}$	Case IV: Consider $f(D)y = x^m$ so that
5. $(D^2 - 8D + 9)y = 8 \sin 5x$	$P.L = y_p = \frac{1}{C(D)}x^m$
Ans. $y = c_1 e^{(4+\sqrt{7})x} + c_2 e^{(4-\sqrt{7})x} + \frac{1}{29} (5 \cos 5x - 2 \sin 5x)$	Expanding $\frac{1}{f(D)}$ in ascending power of D, we get
6. $(D^2 + 16)y = e^{-3x} + \cos 4x$	$v_0 = [a_0 + a_1D + a_2D^2 + \dots + a_mD^m]x^m$
Ans. $y = c_1 \cos 4x + c_2 \sin 4x + \frac{1}{23}e^{-3x} + \frac{1}{8} \sin 4x$	since all the terms beyond D^m are omitted : $D^n x^m = 0$ when $n > m$.
7. $(D^2 - 2D + 2)y = e^x + \cos x$	This result can be extended when $F(x) = P_m(x)$ a polynomial in x of degree m so that
Ans. $y = e^x(c_1 \cos x + c_2 \sin x) + (\frac{\cos x - 2 \sin x}{5}).$ 8. $(D^2 + 9)y = \cos^2 x$	$\gamma_p = [a_0 + a_1D + a_2D^2 + \cdots + a_mD^m][P_m(x)]$
8. $(D^2 + 9)y = \cos^2 x$ Ans. $y = c_1 \cos 3x + c_2 \sin 3x + \frac{1}{16} + \frac{1}{10} \cos 2x$	In particular for
9. $(D^2 + 2D + 1)y = e^{2x} - \cos^2 x$	$(D + a)y = P_m(x)$
Ans. $y = (c_1 + c_2x)e^{-x} + \frac{1}{2} + \frac{1}{2}(2\sin 2x + \cos 2x)$	we get
10. $(D^2 + 1)y = \cos x$	$P.I. = y_p = \frac{1}{D+a}[P_m(x)] = \frac{1}{a\left[1+\frac{D}{2}\right]}P_m(x)$
Ans. $y = c_1 \cos x + c_2 \sin x + \sin x \ln \sin x$ - $x \cos x$	$= \frac{1}{a} \left[1 + \frac{D}{a} \right]^{-1} P_m(x)$
11. $(D^2 - 4D + 13)y = 8 \sin 3x$, y(0) = 1, $y'(0) = 2$	
Ans. $y = \frac{1}{2} \left[e^{2x} (\sin 3x + 2\cos 3x) + \sin 3x \right]$	$= \frac{1}{a} \left[1 - \frac{D}{a} + \frac{D^2}{a^2} + \dots + (-1)^m \frac{D^m}{a^m} \right] P_m(x)$
$+ 3 \cos 3x$	wherein terms of order higher than m are omitted.

Figures



Figures are used exhaustively in the text to illustrate the concepts and methods described.

Web supplement

The book is accompanied by a dedicated website at http://www.mhhe.com/ramanahem

containing additional chapters on the following topics for the students

- Matrices & Determinants
- Sequence and Series
- Analytical Solid Geometry
- Calculus of Variations
- Linear Programming

It also has chapter-wise summaries.