CGI with perl ;i_]
CGI WITH perl

perl isideally suited for use in CGI programming, so we’ll develop an application to do two simple
things:

« Filter form data.

o Generate HTML.
The CGI application also uses a similar employee database that was presented in Section 12.1
except this time we’ll access this database from our WWeb browser. Before doing that, you need to
know some HTML to understand the significance of its tags. You should then be able to make the
CGl perl program generate the right tags when it sends back data to the browser. The HTML
code presented below specifies a form with the <form> tag:

$ cat emp_form.html
<html> <head>

<title>The Employee Database</title> Appears on title bar
</head>
<body>
<h1> Employee Form </hl1> Appears in a large bold font
<hr> Adds a horizontal rule

<form action="http://localhost/~sumit/cgi-bin/emp_add.pl” method=get>
Emp-id: <input type="text” name="empid” size=4>

Name: <input type="text” name="ename” size=30>

Designation: <input type="text” name="desig” size=15>

Department: <input type="text” name="dept” size=15>

Date of birth: <input type="text” name="dtbirth” size=10>

Salary: <input type="text” name="salary” size=10>

<center>

<input type=submit value="Add”> The Add button is centered

</center>

</form>

</body>

</html>

The action attribute of this tag specifies a URL pointing to a perl program (emp_add.pl) on the
server. This program adds a line to the database. The form that accepts user input is shown next.

CGI with perl 2
N HMetscape: ped meets you M=l E3
File Edit “iew Go Communicator Help
' Back Foryard Reload Home Search Metscape Prirt Security E
| i Bookmarks A Location: [attp: //localhost/wsunit/enp_forn. hinl | @7 What's Related
A |
Employee Form
Emp—id; |2 347
Name:lcharles blondin
Designation: | consultant,
Department: | market ing
Date of birth: | 09/23/1972
Salary: | 150000
Add L
#
& | 100% | i g %S 2P B \é—”

emp_form.html: An HTML form viewed by Netscape

Every HTML document consists of some header and footer code. Since perl has to generate these
lines in most CGlI applications, we’ll create two subroutines to be used by our CGI programs.

The body of the HTML document specifies a form enclosed by the <form>and </form> tags. There
are six text boxes here which accept the six fields of the employee database. The values entered into
these fields are paired with their corresponding variable names—empid, ename, desig, and so on.
The
 tag is required to place each text box in a separate line.

The action attribute of the <form> tag specifies a URL on the localhost itself. This URL points to a
perl program emp_add.pl in cgi-bin (the directory where CGI programs are generally kept). The
program is executed the moment the button labeled Add and of type submit is clicked with the
mouse.

The Query String

The browser sends data to the server through its request header. To understand how form data is
structured, consider a form that has only three fields with names empid, ename and desig (the name
attribute of the <input> tag). Let’s put the values 1234, henry higgins and actor into these three
fields. On submission, the browser strings together the entire data as name=value pairs into a query
string in this manner:

empid=1234&ename=henry+higgins&desig=actor

This single string is sent to the server specified in the URL. The & here acts as the delimiter of each
name=value pair. Note that the browser has encoded the space character to a +.

To be able to use this data, perl has to split this string twice—once to extract all name=value pairs
and then to separate the names from their values. This can be done in two ways depending on the
method specified.

GET and POST: The Request Method

The <form> tag shows another attribute: method. This signifies the way data is transmitted to the
server. Generally, the query string shown above is sent in two ways:

o« GET This method appends the query string to the URL using the ? as the delimiter. With
this string, the URL will now look like this:

http://localhost/cgi-bin/emp_add.pl?empid=1234&ename=henry+higgins&desig=actor

The server parses the GET statement in the request header and stores the data following the ? in its
environment variable, QUERY_STRING. This variable can be used by any CGI program.

« POST With this method, the browser precedes this string with a number signifying the
number of characters the string holds. The server stores this number in the CONTENT_LENGTH
variable. It supplies the string as standard input to the CGI program. per1 reads this data with
its read function, and reads just as much as specified by CONTENT_LENGTH.

The method itself is available as the REQUEST METHOD variable in the server’s environment. Our
sample HTML form uses GET as the method. GET has the limitation that the string size is
restricted to 1024 characters. If you have a lot of data to transmit, then use POST. However, the
structure of the query string is the same in both cases, so the emp_add.pl script should be able to
handle the data using both methods. There was no compelling reason to choose GET rather than
POST for this example.

CGI with perl 4 I

The CGI program, emp_add.pl (shown later), has to parse the data in QUERY_STRING (for GET) or
STDIN (for POST). It then has to combine the extracted data into a single line and add it to a text
file acting as the database. To better understand what’s going on, we’ll print the contents of the
important CGI environment variables on the browser window. The CGI program must be able to
generate the HTML required to display these messages.

Creating the Subroutines for Header and Footer
Since all HTML documents have a common header and footer segment, let’s first frame two
subroutines for them. Htmlheader prints the header:

sub Htmlheader {
local ($title, $h1) = @_;

print << “MARKER”; A here document

<html>
<head>

<title> $title </title> Variable substitution enabled
</head>
<body>
<h1> $hl </h1>
MARKER Don’t indent this!

¥

Htmlheader accepts two arguments into the placeholders $title and $h1. This means you have the
option of specifying the title and first level header when calling the subroutine. Here, we have used
a single print statement like a here document. The double quotes surrounding the marker tag
ensure that variable substitution is enabled (required for $title and $hi).

The subroutine for the footer is simpler still:

sub Htmlfooter {
print “</body></html>\n";
}

Place these two subroutines (and another one that we’ll be discussing shortly) in a separate file,
web_lib.pl. They will be required at runtime by the CGI program. Make sure you add the statement
1; at the end of the file so that it always returns a true value.

emp_add.pl: The Main CGI Program

Before we take up the third subroutine, let’s have a look at the CGI program emp_add. pl specified
in the URL. Apart from printing some messages on the browser window, the program appends a
line built from form data to a text database:

CGI with perl 5 I

$ cat emp_add.pl
#1/usr/bin/perl

#

require “web_lib.pl” ;

open (OUTFILE, “>>/home/sumit/public_html/emp out.lIst”) ;
&Parse(*field) ;

print “Content-type: text/htmI\n\n”;

&Htmlheader (“Testing Query String”, “The QUERY_STRING Variable™) ;

print “The query string is $ENV{“QUERY_STRING’}
\n" ;

print “The method of sending data to server is $ENV{“REQUEST METHOD’}
\n" ;
print “THE content length is $ENV{“CONTENT LENGTH”}
\n" ;

print OUTFILE “$field{“empid’}|$Ffield{“ename’}|$field{ desig’}|$Field{“dept’}]
$field{“dthirth’}|$field{“salary’}
\n" ;

print “A record has been added <a href=\"http://localhost/cgi-bin/emp_query.pl\”
>Click here to see the records
\n” ;

&Htmlfooter ;
close (OUTFILE);

Since this program generates HTML, it has to explicitly spell out its Content-Type and then leave
ablank line (\n\n) before sending back data. The HT ML header is then printed with the Htmlheader
subroutine. The footer is printed at the end with Htmlfooter.

Observe that the array %field is passed by reference with the * prefix to the Parse subroutine
(discussed next). The next three print statements following &Htmlheader display the contents of
the server’s environment variables on the browser window. The fourth one uses the filehandle
OUTFILE to add a line to the database (the file emp_out. Ist), using the | as the field delimiter. The
final print statement prints a completion message and offers a hyperlink (with A HREF) to the
emp_query.pl program. You should be able to see all lines of emp_out. Ist when you click on this link.

The child HT TP process that communicates form data to the server runs as an ordinary user. For
the process to be able to create the file emp_out. Ist, the directory public_html must be world-
writable (with chmod 777). This is necessary for entering the first detail. Once the file is created, the
directory can have its old permissions.

The Parse Subroutine

Parse is the third subroutine that we need to use here. Parse makes each name=value pair available
as separate entries in the associative array, %field. To understand how perl makes the form values
available to the main program, we need to study this subroutine:

CGI with perl 6 I

sub Parse {
local (*in) = @_ ;
local (81, $key, $val) ; # Local variables
it (SENV{“REQUEST METHOD’} eq “GET”) { # Takes care of both GET

$in = $ENV{*QUERY_STRING’} ;
} elsif ($ENV{*REQUEST METHOD’} eq “POST”) { # ... and POST
read(STDIN, $in, SENV{*CONTENT LENGTH’}) ;

} # Query string in $in
@in = split(/&/, $in) ; # Break up into name=value pairs
foreach $i (0 .. $#in) {
$In[$i] =~ s/\+/ /g ; # Decode a + to a space
($key, $val) = split(/=/, $in[$i], 2) ; # Splits on the first =

$key =~ s/%(..)/pack(“c”,hex($1))/ge ;
$val =~ s/%(..)/pack(“c”,hex($1))/ge ;
$in{Skey} = $val ; # Name and value in associative array

return %in ;

}

Parse here accepts an array by reference. This array is copied to %in inside the subroutine. We used
the associative array %ENV to evaluate the server’s three environment variables we have previously
discussed. The query string is assigned to the variable $in irrespective of the method used. POSTed
data is also read into $in, but from standard input (STDIN is the filehandle) with the read function.
The number of characters read is determined by read’s third argument (the content length).

The query string uses the & as the delimiter of the name=value pairs. The first split stores every
such pair in the scalar array, @in. The s function decodes every + in the string to a space as encoding
(space to a +) takes place whenever there are spaces in the data. Many characters are encoded into
hexadecimal strings because they have special significance in the URL string. For instance, the /
that separates the elements of the date field is used to delimit directories in the URL string. As you
can see in the figure below, it is encoded to %2F before the query string is sent to the server.

The pack function converts these hex values back to their original ASCII characters. Note how the
s function identifies these characters with the pattern %(. .) that uses a TRE. The ge flags ensure
that pack is interpreted as an expression and not treated literally.

The foreach loop picks up each name=value pair from the array @in. After decoding, each element
of the array is split again, this time on the =, and stored in the variables $key and $val. The first is
set as the key and the other as the value in the associative array %in. This array is returned to the
calling program. Note that in this program we used in as a variable ($in), as a scalar list (@¢in) and
an associative array (%in) without conflict.

CGI with perl 7

N Hetscape: Testing Query String _ |3 %]
File Edit View Go Communicator Help
v Back Forward Reload Home Search Metscape Print Security atop
v J' Bookmarks & Location: [http: //localhost/cgi-hin/qery string. pl?enpid=23478enane= ,r‘| @' What's Related

The QUERY_STRING Variable

The query string is

ermpid=2347 &ename=charles+blondiné desig=consultanté dept=marketing & dtbirth=09% 2F23 % 2 F1972 & s alary=150000
The method of sending data to serveris GET

THE content length is

Arecord has been added Click here to see the records

& 100 % 9P B 2

Output of CGI program emp_add.pl

emp_query.pl: The Query Program

The figure above shows the output of emp_add.pl on the browser window after you have pressed
the Add button of the form shown previously. Note the hyperlink which offers to show all lines of
the database. A click here runs the emp_query.pl program and displays the list of people as elements
of a table. Here’s the listing of the program:

$ cat emp_query.pl
#1/usr/bin/perl
require “web_lib.pl” ;

open (OUTFILE, “/home/sumit/public_html/emp out.lst”) ;

print “Content-type: text/htmI\n\n”;

&Htmlheader (“Retrieving from Database”, “Result of Query:”) ;

print “<table border=1 bordercolor=magenta bgcolor=cyan>" ;

print “<tr><th>Emp-id</th><th>Full Name</th><th>Designation</th>" ;

print “<th>Department</th><th>Date of Birth</th><th>Salary (\$)</th></tr>" ;

while (<OUTFILE>) {
($empid, $ename, $desig, $dept, $dtbirth, $salary) = split (/\|/) ;
print “<tr><td>$empid</td><td>$ename</td><td>$desig</td>" ;
print “<td>$dept</td><td>$dthirth</td><td>$salary</td></tr>" ;

}
print “</table>” ;
&Htmlfooter ;

CGI with perl 8 I

The table headers are printed with the <tr> and <th> tags. The program picks up each line of
OUTFILE, splits it and then prints it as a table row with the <tr> and <td> tags.

Because of its powerful text manipulation capabilities, perl is the most widely used language for
CGlI programming on the Internet. However, CGI is a security threat on the Internet as a result of
which the server administrator often disables CGI operation by individual users. In case you find
this restriction on your system, contact the administrator.

N Hetscape: Testing Query String M[=] B3
File Edit View Go Communicator Help
r Back Forward Reload Home Search Mefscape Print Security Stop
' ¢~ Bookmarks A Location: fattp: //Localhost/coi-bin/emp_query. pl /| &7 what's Related

The QUERY_STRING Variable

Emp-id Full Name Designation Department Date of Birth Salary ($)
2347 charles blondin consultant marketing 09/23/1972 150000

v ep B 2

& | 100% i

Output of CGI program emp_query.pl

