Section A

Level-I

1. $v_{0}=7.0 \times 10^{14} \mathrm{~s}^{-1}$

$$
\begin{aligned}
v & =1.0 \times 10^{15} \mathrm{~s}^{-1} \\
K E & =h\left(v-v_{0}\right)=6.62 \times 10^{-34}\left(3.0 \times 10^{14}\right) \\
& =1.986 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

2. Energy of the incident photon $=E=\frac{h c}{\lambda}$

$$
\begin{aligned}
E & =\frac{6.62 \times 10^{-34} \times 3.0 \times 10^{8}}{3.0 \times 10^{-7}} \\
E & =6.62 \times 10^{-19} \mathrm{~J} \\
K E & =1.68 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1} \\
& =\frac{1.68 \times 10^{5}}{6.02 \times 10^{23}} \mathrm{~J}=2.79 \times 10^{-9} \mathrm{~J}
\end{aligned}
$$

Minimum energy required to remove an electron, W

$$
\begin{aligned}
& =E-K E \\
& =6.62 \times 10^{-19}-2.79 \times 10^{-19} \\
W & =3.83 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Maximum wavelength, $\lambda=\frac{h c}{W}$

$$
\begin{aligned}
\lambda & =\frac{6.62 \times 10^{-34} \times 3.0 \times 10^{8}}{3.83 \times 10^{-9}} \\
\lambda & =5.185 \times 10^{-7} \mathrm{~m} \\
& =518.5 \mathrm{~nm}
\end{aligned}
$$

3. $\lambda=4.0 x=$

$$
\begin{aligned}
& \frac{1 \times 4.0 \times 10^{-19}}{6.62 \times 10^{-34} \times 3.0 \times 10^{8}} \\
= & 2.01 \times 10^{16} \text { photons }
\end{aligned}
$$

4. Wavelength of the incident photon $=4 \times 10^{-7} \mathrm{~m}$

Work function $=2.13 \mathrm{eV}$
(i) Energy of the photon $E=\frac{h c}{\lambda}$

$$
\begin{aligned}
& =\frac{6.62 \times 10^{-34} \times 3.0 \times 10^{8}}{4.0 \times 10^{-7}} \\
& =4.965 \times 10^{-19} \mathrm{~J} \\
& =\frac{4.965 \times 10^{-19}}{1.60 \times 10^{-19}} \mathrm{eV}=3.10 \mathrm{eV}
\end{aligned}
$$

(ii) $K E=E-$ Work function

$$
\begin{aligned}
K E & =3.10-2.13=0.97 \mathrm{eV} \\
& =1.552 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

(iii) $K E=\frac{m v^{2}}{2}$

$$
\begin{aligned}
& v=\sqrt{\frac{2 K E}{m}} \sqrt{\frac{2 \times 1.552 \times 10^{-19}}{9.1 \times 10^{-31}}}=\sqrt{0.341 \times 10^{12}} \\
& v=5.8 \times 10^{5} \mathrm{~ms}^{-1}
\end{aligned}
$$

5. $\lambda=242 \times 10^{-9} \mathrm{~m}$

$$
\begin{aligned}
& E=\frac{h c}{\lambda}=\frac{6.62 \times 10^{-34} \times 3.0 \times 10^{8}}{234 \times 10^{-9}} \\
& E=8.207 \times 10^{-19} \mathrm{~J} \\
& E=494 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1} \\
& E=494 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

6. Number of lines $=\frac{n(n-1)}{2}$

$$
=\frac{6 \times(6-1)}{2}=15 \text { lines }
$$

7. Energy required to remove an electron completely from the $n=2$ orbit

$$
=\frac{2.18 \times 10^{-18}}{2^{2}}=5.45 \times 10^{-19} \mathrm{~J}
$$

Longest wavelength $\lambda=\frac{h c}{E}$

$$
=\frac{6.62 \times 10^{-34} \times 3.0 \times 10^{8}}{5.45 \times 10^{-9}}=3.644 \times 10^{-7} \mathrm{~m}
$$

$$
\begin{aligned}
& =3644 \AA \\
\lambda & =589 \mathrm{~nm}=5.89 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

Mass equivalence of one photon of this wavelength is equal to $h \frac{c}{\lambda}$

$$
=\frac{6.62 \times 10^{-34} \times 3.0 \times 10^{8}}{5.89 \times 10^{-9}}=3.37 \times 10^{-19} \mathrm{~J}
$$

9. $\Delta x=10^{-15} \mathrm{~m}$

$$
\begin{aligned}
& m=9.1 \times 10^{-31} \mathrm{~kg} \\
& \Delta x . m \Delta v \geq \frac{h}{4 \pi} \\
& \Delta v \geq \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 10^{-15}} \\
& \Delta v \geq 5.87 \times 10^{10} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

As Δv is greater than the speed of light. Hence, the electron cannot exist within the atomic nucleus.
10. (1) The energy of an electron in a H -atom depends only on the principal of quantum number while in case of many electron atoms, the energy depends on principal quantum number and azimuthal quantum number.
(2) The size of an orbital depends on principal quantum number
(3) The shape of an orbital depends on azimuthal quantum number
(4) The orientation of an orbital in space depends
11. (1) $2 s>1 s$
(2) $3 p>2 p$
(3) $3 d x y=3 d y z$
(4) $3 s=3 d$
(5) $4 \mathrm{f}<5 \mathrm{~s}$
12. (1) 1 s
(2) $3 p$
(3) $4 d$
(4) $4 f$
13. (1) 16 electron
(2) 2 electrons
14. $\frac{1}{\lambda}=R Z^{2}\left[\frac{1}{n_{\mathrm{L}}^{2}}-\frac{1}{n_{H}^{2}}\right]$

$$
\begin{align*}
\frac{1}{\lambda_{H}} & =R(1)^{2}\left[\frac{1}{n_{L}^{2}}-\frac{1}{n_{H}^{2}}\right] \tag{1}\\
\frac{1}{\lambda_{H e^{+}}} & =R(2)^{2}\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right] \\
\frac{1}{\lambda_{H e^{+}}} & =R(4)\left[\frac{3}{16}\right]=R \frac{3}{4} \tag{2}
\end{align*}
$$

Equating equation (1) and (2) gives

$$
\frac{1}{n_{L}^{2}}-\frac{1}{n_{H}^{2}}=\frac{3}{4}
$$

Solving for n_{L} and n_{H} gives

$$
n_{L}=1 \text { and } n_{H}=2
$$

15. $I E_{2}$ for $\mathrm{He}=(I E$ for $H) \times 4$

$$
\begin{aligned}
& =2.18 \times 10^{-18} \times 4 \\
& =8.72 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

Level-II

1. Second spectral line of Paschen Series is $n_{L}=3$ to $n_{H}=5$

$$
\begin{aligned}
\Delta E & =2.179 \times 10^{-19}\left[\frac{1}{3^{2}}-\frac{1}{5^{2}}\right] \\
& =2.179 \times 10^{-19}\left[\frac{16}{225}\right]=1.55 \times 10^{-20} \mathrm{~J} \\
v & =\frac{\Delta E}{\lambda}=\frac{1.55 \times 10^{-20}}{6.62 \times 10^{-34}}=2.34 \times 10^{13} \mathrm{~s}^{-1} \\
\lambda & =\frac{c}{v}=\frac{3.8 \times 10^{-8}}{2.34 \times 10^{-13}}=1.28 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

2. $\lambda=434 \mathrm{~nm}=4.34 \times 10^{-7} \mathrm{~m}$

$$
\begin{aligned}
n_{L} & =1 \\
\frac{1}{\lambda} & =1.097 \times 10^{7}\left[\frac{1}{n_{\mathrm{L}}^{2}} \frac{1}{n_{H}^{2}}\right] \mathrm{m}^{-1} \\
\frac{1}{4.34 \times 10^{-7}} & =1.097 \times 10^{7}\left[\frac{1}{2^{2}} \frac{1}{n_{H}^{2}}\right] \\
\frac{1}{4}-\frac{1}{n_{2}^{H}} & =\frac{1}{4.76} \\
n_{H}^{2} & =0.25-\frac{1}{1.76}=0.25-0.21=0.04 \\
\frac{1}{n_{H}^{2}} & =\frac{1}{0.04}=25 \\
n_{H} & =5
\end{aligned}
$$

3. (1) $\Delta E=54.38\left[\frac{1}{n_{L}^{2}}-\frac{1}{n_{H}^{2}}\right]$

$$
\begin{aligned}
& =54.38\left[\frac{1}{2^{2}}-\frac{1}{5^{2}}\right] \\
& =54.38\left[\frac{1}{4}-\frac{1}{25}\right]=54.38 \times \frac{21}{100}=11.42 \mathrm{eV} \\
1 \mathrm{eV} & =1.6 \times 10^{-19} \mathrm{~J} \\
\Delta E= & 11.42 \times 1.6 \times 10^{-19} \mathrm{~J} \\
& =18.27 \times 10^{-19} \mathrm{~J} \\
& =1.83 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

(2) $\Delta E=h v$

$$
\begin{aligned}
v & =\frac{\Delta E}{h}=\frac{1.83 \times 10^{-18}}{6.62 \times 10^{-34}}=2.76 \times 10^{-15} \mathrm{~s}^{-1} \\
\lambda & =\frac{c}{v}=\frac{3.0 \times 10^{8}}{2.76 \times 10^{15}}=1.087 \times 10^{-7} \mathrm{~m} \\
& =108.7 \mathrm{~nm}
\end{aligned}
$$

It belongs to ultraviolet region of the spectrum.
4. $\lambda=12.5 \mathrm{~cm}=12.5 \times 10^{-2} \mathrm{~m}$

Energy of radiation, $E_{1}=\frac{h c}{h}$

$$
E_{1}=\frac{6.62 \times 10^{-34} \times 3.0 \times 10^{8}}{12.5 \times 10^{-2}}=1.59 \times 10^{-24} \mathrm{~J}
$$

But energy of the radiation converted to heat $Q=m c \mathrm{D} t$

$$
\begin{aligned}
& =0.250 \times 4.2 \times 80 \\
& =84 \mathrm{~kJ}=84.0 \times 10^{-3} \mathrm{~J} \\
\therefore \quad Q & =N E_{1}
\end{aligned}
$$

where $N=$ number of photons
and

$$
\begin{aligned}
N & =\frac{Q}{E_{1}}=\frac{84.0 \times 10^{3}}{1.59 \times 10^{-24}} \\
& =5.283 \times 10^{28}
\end{aligned}
$$

5. $r_{3}=0.529\left(\frac{3^{2}}{1}\right) \AA=(3)^{2} \times 0.529 \times 10^{-10} \mathrm{~m}$
and

$$
\begin{aligned}
v & =\frac{n}{r}\left(\frac{h}{2 \pi \mathrm{~m}}\right) \\
v & =\frac{n}{r_{n}}\left(1.158 \times 10^{-4}\right)=\frac{3 \times\left(1.158 \times 10^{-4}\right)}{0.529 \times 3^{2} \times 10^{-10}} \\
v & =0.7296 \times 10^{-5} \\
& =7.296 \times 10^{+5} \mathrm{~ms}^{-1}
\end{aligned}
$$

We know that $2 \pi r=\lambda=\frac{\mathrm{v}}{v}$
Number of revolution per second $=\frac{v}{2 \pi r}$

$$
=\frac{7.296 \times 10^{5}}{2 \times 3.14 \times 4.761 \times 10^{-10}}=2.44 \times 10^{14}
$$

6. For H-atom, line with lowest frequency in Lymne series corresponds to $n_{L}=1 \rightarrow n_{H}=2$

$$
\begin{aligned}
\therefore \quad \frac{1}{\lambda} & =1.097 \times 10^{7}(1)^{2}\left[\frac{1}{I^{2}}-\frac{1}{2^{2}}\right] \mathrm{m}^{-1} \\
& =1.097 \times 10^{7} \times \frac{3}{4} \\
l & =\frac{4}{3 \times 1.097} \times 10^{-7} \times 10^{-7}=1.215 \times 10^{-7} \mathrm{~m}=122 \mathrm{~nm}
\end{aligned}
$$

Frequency,

$$
\begin{aligned}
v & =\frac{c}{\lambda}=\frac{3.0 \times 10^{8}}{1.215 \times 10^{-7}}=2.47 \times 10^{15} \mathrm{~s}^{-1} \\
\Delta E & =h v=6.62 \times 10^{-34} \times 2.47 \times 10^{15} \\
& =1.63 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

Energy for the corresponding line $\left(n_{L}=1 \rightarrow n_{H}=2\right)$ in the spectrum of $L i^{2+}$ is

$$
\begin{aligned}
\Delta E & =2.178 \times 10^{-18}(3)^{2}\left[\frac{1}{I^{2}}-\frac{1}{2^{2}}\right] \mathrm{J} \\
& =2.178 \times 10^{-18} \times 9 \times \frac{3}{4} \\
& =1.47 \times 10^{-17} \mathrm{~J}
\end{aligned}
$$

7. Number of moles of H -atom $=2.0 \mathrm{~mol}$
and number of atoms of hydrogen $=2.0 \times 6.023 \times 10^{23}$

$$
=12.046 \times 10^{23} \text { atom }
$$

Line of lowest frequency in the visible region of H -spectrum corresponds to the first Balmer line i.e. n_{L}

$$
=2 \text { to } n_{H}=3
$$

$\therefore \quad \Delta E=2.178 \times 10^{-18} \times(1)^{2}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right] \mathrm{J} \mathrm{atom}^{-1}$

$$
\Delta E=2.178 \times 10^{-18} \times \frac{5}{56}=3.025 \times 10^{-19} \mathrm{~J} \text { atom }^{-1}
$$

Therefore, for 12.046×10^{23} atoms of hydrogen, the energy is

$$
\begin{aligned}
12.046 \times 10^{23} \times 3.025 \times 10^{-19} & =3.64 \times 10^{4} \mathrm{~J} \\
& =364 \mathrm{~kJ}
\end{aligned}
$$

8. When metal was irradiated by light of frequency $3.2 \times 10^{16} \mathrm{~s}^{-1}$, then

$$
\begin{align*}
& E_{1}=h v=6.62 \times 10^{-34} \times 3.2 \times 10^{15} \\
& E_{1}=2.12 \times 10^{-18} \mathrm{~J}=K E_{1}+I E \tag{1}
\end{align*}
$$

When metal was irradiated by light of frequency $2.0 \times 10^{16} \mathrm{~s}^{-1}$. Then.

$$
\begin{align*}
& E_{2}=h v=6.62 \times 10^{-34} \times 2.0 \times 10^{15} \\
& E_{2}=1.32 \times 10^{-18} \mathrm{~J}=K E_{2}+I E \tag{2}
\end{align*}
$$

But

$$
K E_{1}=2 K E_{2}
$$

Therefore
$E_{1}=2 K E_{2}+I E$
or

$$
\begin{equation*}
2 K E_{2}+I E=2.12 \times 10^{-18} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
K E_{2}+I E=1.32 \times 10^{-18} \tag{4}
\end{equation*}
$$

Solving equation (3) and (4) gives

$$
K E_{2}=8.0 \times 10^{-19} \mathrm{~J}
$$

Ionization energy of the metal $=1.32 \times 10^{-18}-K E^{2}$

$$
\begin{aligned}
& =1.32 \times 10^{-18}-8.0 \times 10^{-19} \\
& =5.2 \times 10^{-19} \mathrm{~J} \text { per atom }
\end{aligned}
$$

IE per mole of metal $=5.2 \times 10^{-19} \times 6.023 \times 10^{23}$

$$
\begin{aligned}
& =3.13 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1} \\
& =313 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

9. Energy of the incident photon $=3.44 \times 10^{-19} \mathrm{~J}$

Velocity of the photoelectron $=1.03 \times 10^{6} \mathrm{~ms}^{-1}$
$\therefore \quad$ Kinetic energy of the photo electron

$$
\begin{aligned}
\frac{1}{2} m v^{2} & =\frac{1}{2} \times 9.1 \times 10^{-31} \times\left(1.03 \times 10^{6}\right)^{2} \\
& =4.83 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Ionization energy of the atom = Energy of the incident photon minus the kinetic energy of the photoelectron

$$
\begin{aligned}
& =3.44 \times 10^{-18}-4.83 \times 10^{-19} \\
& =2.957 \times 10^{-18} \mathrm{~J} \\
\text { But } \quad I E & =\frac{h c}{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad \lambda & =\frac{h c}{I E}=\frac{6.62 \times 10^{-34} \times 3.0 \times 10^{8}}{2.957 \times 10^{-18}} \\
\lambda & =6.72 \times 10^{-8} \mathrm{~m} \\
& =67.2 \mathrm{~nm}
\end{aligned}
$$

10. The ionization energy of H -atom $=13.6 \mathrm{eV}$

The energy of the incident photon $=1.5$ times $I E$

$$
=1.5 \times 13.6 \mathrm{eV}
$$

$\therefore \quad K E$ of the photoelectron $=(1.5 \times 13.613 .6) \mathrm{eV}$

$$
\begin{aligned}
& =6.8 \mathrm{eV} \\
& =6.8 \times 1.6 \times 10^{-19} \mathrm{~J} \\
& =1.09 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

But

$$
K E=\frac{m v^{2}}{2}
$$

$\therefore \quad$ Velocity of the photoelectron $=\sqrt{\frac{2 K E}{m}}$

$$
=\sqrt{\frac{2 \times 1.09 \times 10^{-18}}{9.1 \times 10^{-31}}}=1.55 \times 10^{6} \mathrm{~ms}^{-1}
$$

As photoelectron shows wave nature, therefore

$$
\begin{aligned}
& \frac{1}{\lambda}=\bar{v}=\frac{m v}{h} \\
& \bar{v}=\frac{9.1 \times 10^{-31} \times 1.55 \times 10^{6}}{6.62 \times 10^{9} \mathrm{~m}^{-1}} \\
& \bar{v}=2.13 \times 10^{9} \mathrm{~m}^{-1}
\end{aligned}
$$

11. $v=\frac{n h}{2 \pi m r}$

$$
\begin{aligned}
n & =1 \\
r & =0.0529 \mathrm{~nm}=0.0529 \times 10^{-9} \mathrm{~m}
\end{aligned}
$$

$\therefore \quad$ velocity of an electron in the innermost orbit of the H -atom is equal to

$$
\begin{aligned}
& =\frac{1 \times 6062 \times 10^{-34}}{2 \times 3.14 \times 9.1 \times 10^{-31} \times 0.0529 \times 10^{-9}} \\
& =2.19 \times 10^{6} \mathrm{~ms}^{-1}
\end{aligned}
$$

12. $\Delta x \cdot m \Delta v=\frac{h}{4 \pi}$

$$
m=0.5 \mathrm{~kg} \text { and } \Delta x=10^{-6} \mathrm{~m}
$$

$$
\therefore \quad \begin{aligned}
\Delta v & =\frac{h}{4 \pi m \Delta x} \\
\Delta v & \geq \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 0.5 \times 10^{-6}} \\
\Delta v & \geq 1.05 \times 10^{-28} \mathrm{~ms}^{-1}
\end{aligned}
$$

13. $\lambda=590 \mathrm{~nm}=590 \times 10^{-9} \mathrm{~m}$

$$
\begin{aligned}
\therefore \quad \text { Energy } & =\frac{h c}{\lambda} \\
& =\frac{6.62 \times 10^{-34} \times 3.0 \times 10^{8}}{590 \times 10^{-9}} \\
& =3.37 \times 10^{-19} \mathrm{~J} \\
\text { But } \quad E & =\mathrm{eV}
\end{aligned}
$$

\therefore Accelerating potential needed to excite this yellow line

$$
\begin{aligned}
& =\frac{3.37 \times 10^{-19}}{1.60 \times 10^{-19}} \\
& =2.11 \mathrm{~V}
\end{aligned}
$$

14. $\overline{P . E .}=-w$

$$
\begin{aligned}
= & -F \cdot a_{0} \\
& =-\frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}} \cdot a_{0}
\end{aligned}
$$

$$
\overline{P E}=\frac{-e^{2}}{4 \pi \varepsilon_{0} a_{0}}
$$

Given:

$$
\overline{K E}=\frac{1}{2} \overline{K E}
$$

\therefore Total average energy $=\overline{K E}+\overline{P E}$

$$
\begin{aligned}
& =+\frac{1}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}} \cdot+\left(\frac{-e^{2}}{4 \pi \varepsilon_{0} a_{0}}\right) \\
& =-\frac{1}{2}\left(\frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}}\right) \\
\overline{T E} & =+\frac{1}{2} \overline{P E}
\end{aligned}
$$

15. We know that $m v r=\frac{n h}{2 \pi}$

$$
\therefore \quad 2 \pi r=n \frac{h}{m v}
$$

But

$$
\begin{aligned}
\frac{h}{m v} & =\lambda(\text { de-Broglie equation }) \\
2 \pi r & =n \lambda
\end{aligned}
$$

Number of waves in the 3rd Bohr orbit $=2 \pi r=3 \lambda$

