# Contents

#### Preface xv

## 1. Introduction to Embedded Systems

- 1.1 Embedded System 1
- 1.2 Processor Embedded into a System 4
- 1.3 Embedded Hardware Units and Devices in a System 11
- 1.4 Embedded Software in a System and an Overview of Programming Languages 16
- 1.5 Introduction to Embedded-system design 21
- 1.6 Introduction to Embedded-system Architecture 22
- 1.7 Introduction to Embedded-system Model 23
- 1.8 Classification of Embedded Systems 25
- 1.9 Skills required for an Embedded-system Designer 26
- 1.10 Examples of the Embedded Systems 27

Summary 28 Keywords 29 Review Questions 33 Practice Exercises 34

## 2. Embedded Systems Design and Development Process

- 2.1 Embedded System-On-Chip (SoC) and Use of VLSI Circuit Design Technology 36
- 2.2 Complex Systems Design and Processors 40
- 2.3 Build Process for Embedded Systems 45
- 2.4 Design Process in Embedded System 45
- 2.5 Design Challenges in Embedded-System Design 50
- 2.6 Challenges in Embedded-System Design: Optimising the Design Metrics 51
- 2.7 Challenges and Issues Related to Embedded-Software Development 53
- 2.8 Hardware–Software Co-Design in an Embedded System 55
- 2.9 Embedded-System Design Technologies 57
- 2.10 Formalism of System Design 59
- 2.11 Design Process and Design Examples 59

Summary 67 Keywords 68 Review Questions 69 Practice Exercises 70

## 35-70

viii

#### Contents

## 3. 8051, AVR and ARM Microcontrollers, Real-World Interfacing, and the Inputs and Outputs Using Buses

- 3.1 Introduction to Microcontrollers and Microprocessors 72
- 3.2 Embedded Versus External Memory Devices 72
- 3.3 Example of a Microcontroller–8051 Architecture 73
- 3.4 ATMEL AVR Microcontrollers 82
- 3.5 ARM Microcontrollers 84
- 3.6 Computer-System Buses 85
- 3.7 Real-World Interfacing 91
- 3.8 I/O Performance 97
- 3.9 I/O Buses 98
- 3.10 Network-Oriented Bus Arbitration 101
- 3.11 Buses 102
- 3.12 Multilevel Buses 102 Summary 105 Keywords 105 Review Questions 108 Practice Exercises 109

### 4. Introduction to Advanced Architectures and Processor-Memory Organisations 110-143

- 4.1 Processor and Memory Organisation 110
- 4.2 Introduction to Advanced Processor Architectures 114
- 4.3 Processor Organisation 118
- 4.4 Instruction-Level Parallelism 120
- 4.5 Intel x86 Architecture (8086, 80386, 80486 and Pentium) 122
- 4.6 ARM *124*
- 4.7 SHARC 126
- 4.8 Memory Types and Addresses 127
- 4.9 Memory Addresses 134
- 4.10 Memory Hierarchy and Cache 135
- 4.11 Performance Metrics 136
- 4.12 Selection of Processor and Memory Devices 137

Summary 139 Keywords 139 Review Questions 142 Practice Exercises 142

#### 5. I/O Devices, Communication Buses and Distributed Networked Embedded Architectures

- 5.1 I/O Types and Examples 145
- 5.2 Serial Communication Devices 150
- 5.3 Parallel Device Ports 159

144-192



#### Contents

- 5.4 Sophisticated Interfacing Features in Device Ports 163
- 5.5 Wireless Devices 164
- 5.6 Timer and Counting Devices 164
- 5.7 Distributed Network Embedded Systems Architecture 167
- 5.8 Serial Bus Communication Protocols 169
- 5.9 Parallel Bus Device Protocols—Parallel Communication Network Using the ISA, PCI, PCI-X and Advanced Buses 175
- 5.10 Internet Enabled Systems—Network Protocols 178
- 5.11 Wireless and Mobile System Protocols 182 Summary 186 Keywords 187 Review Questions 191 Practice Exercises 191

#### 6. Device Drivers and Interrupts Service Mechanism

- 6.1 Port for Device Accessess without Interrupts Servicing Mechanism Using Programmed I/O 193
- 6.2 Interrupt-driven Input and Output 199
- 6.3 Interrupt Service Routine Concept 201
- 6.4 Interrupt Sources 202
- 6.5 Hardware Interrupts 203
- 6.6 Software Interrupts 204
- 6.7 Interrupt-servicing Mechanism 207
- 6.8 Multiple Interrupts 211
- 6.9 Interrupt Service Threads as Second-Level Interrupt Handlers 213
- 6.10 Context and the Periods for Context Switching 214
- 6.11 Interrupt Latency 214
- 6.12 Interrupt-Service Deadline 216
- 6.13 Classification of Processors' Interrupt-Service Mechanism from Context-Saving Angle 217
- 6.14 Direct Memory Access Driven I/O 217
- 6.15 Device Driver Programming 220 Summary 223 Keywords 224 Review Questions 226 Practice Exercises 226

#### 7. Programming Concepts and Embedded Programming in C, C++ and Java 227-262

- 7.1 Programming in Assembly Language (ALP) and in High-Level Language 'C' 228
- 7.2 'C' Program Elements: Header and Source Files and Preprocessor Directives 229

- 7.3 Program Elements: Macros and Functions 231
- 7.4 Program Elements: Data Types, Data Structures, Modifiers, Statements, Loops and Pointers 233
- 7.5 Use of Loops, Infinite Loops and Conditions 241
- 7.6 Use of Function Calls 245
- 7.7 Multiple Function Calls in Cyclic Order 246
- 7.8 Function Pointers and Function Queues 247
- 7.9 Queuing of Functions on Interrupts and Interrupt-Service-Routine Queues 248
- 7.10 Embedded C and C++: Overview of Additional Features 250
- 7.11 Objected-Oriented Programming 254
- 7.12 Embedded Programming in C++ 254
- 7.13 Optimisation of Codes and Memory Needs in Embedded C++ Programs to Eliminate the Disadvantages 255
- 7.14 Embedded Programming in Java 256

Summary 258 Keywords 259 Review Questions 262 Practice Exercises 262

## 8. Program Modeling Concepts

- 8.1 Program Models 264
- 8.2 Data-Flow Graph-Based Program Models 268
- 8.3 State-Machine Programming Models for Event-Controlled Programs 272
- 8.4 Modeling of Multiprocessor Systems 278
- 8.5 UML Modeling 282 Summary 287 Keywords 287 Review Questions 288 Practice Exercises 288

# 9. Real Time Operating Systems– I: Processes, Tasks and Threads and their Synchronization Using Inter-process Communication

- 9.1 Multiple Processes in an Application 291
- 9.2 Multiple Threads in an Application 293
- 9.3 Tasks 294
- 9.4 Task and Thread States 295
- 9.5 Tasks and Data 297
- 9.6 Clear-cut Distinction between Function, ISR, IST and Task by their Characteristics 299
- 9.7 Inter-process Communication and Synchronisation 300
- 9.8 Signals 301



#### 263-289



- 9.9 Concept of Semaphores 303
- 9.10 Disabling and Enabling Functions 314
- 9.11 Shared Data Problem 315
- 9.12 Queues and Mailboxes 318
- 9.13 Pipe and Socket Functions 323
- 9.14 Remote Procedure Call Functions 328 Summary 328 Keywords 329 Review Questions 330 Practice Exercises 331

#### 10. Real Time Operating Systems II: Basic Functions of OS and RTOS 332-365

- 10.1 Operating System Services 333
- 10.2 Process Management 335
- 10.3 Timer Functions 335
- 10.4 Event Functions 337
- 10.5 Memory Management 338
- 10.6 Device, File, and I/O Subsystems Management 339
- 10.7 Interrupt Routines in RTOS Environment and Handling of Interrupt-Source Calls 344
- 10.8 Introduction to Real-Time Operating Systems 347
- 10.9 Basic Design Using a Real-Time Operating System 348
- 10.10 RTOS Task-Scheduling Models 356
- 10.11 OS Security Issues 357
- 10.12 OS Standards: POSIX 358
- 10.13 RTOS Interrupt Latency and Response Times of the Tasks as Performance Metrics 360
- 10.14 OS Performance Guidelines 361
- 10.15 Middleware: Meaning and Examples 361
- 10.16 Application-layer Software: Meanings and Examples 362
   Summary 362
   Keywords 363
   Review Questions 364
   Practice Exercises 364

#### 11. Real-time Operating System Programming: MicroC/OS-II and VxWorks 366-424

- 11.1 Real-Time Operating Systems (RTOSes) 367
- 11.2 μC/OS-II (MUCOS) 370
- 11.3 Introduction to Unix-based Real-time Operating Systems 399
- 11.4 RTOS VxWorks 400 Summary 421



Keywords422Review Questions424Practice Exercises424

### 12. Real-Time Linux, Windows CE, OSEK, Handheld Devices and Automotives Operating Systems

- 12.1 POSIX Compliant Operating Systems 426
- 12.2 Real-Time Linux Operating systems 426
- 12.3 Windows CE 436
- 12.4 OSEK 451

Summary 454 Keywords 456 Review Questions 459 Practice Exercises 459

#### 13. Design Examples and Case Studies of Program-Modeling and Programming with RTOS

- 13.1 Case Study of Coding for an Automatic Chocolate Vending Machine using MUCOS RTOS 462
- 13.2 Case Study of Digital Camera 471
- 13.3 Application to Communication—Network Router for IP Packets 477
- 13.4 Embedded Systems in Robotics: Case Study of Orchestra Playing Robots 484
- 13.5 RTOS for Control Systems 491
- 13.6 Case Study of an Embedded System for an Adaptive Cruise Control (ACC) System in a Car 492
- 13.7 General Language Characteristics, Features of MISRA-C for Embedded Programming in Automobiles 499
- 13.8 Case Study of an Embedded System for a Smart Card, Access Control Systems (Smart Cards, RFIDs, Fingerscan) 500
- 13.9 Case Study of a Mobile-Phone Software for Key Inputs 505 Summary 514 Keywords 515

Review Questions 518 Practice Exercises 519

## 14. Embedded Software Development Process and Tools520-546

- 14.1 Introduction to Embedded Software-Development Process and Tools 520
- 14.2 Host and Target Machines 525
- 14.3 Linking and Locating Software 527
- 14.4 Getting Embedded Software into the Target System 532

461-519

#### Contents



547-564

- 14.5 Issues in Hardware Software Design and Co-Design 533
- 14.6 Program-Level Performance Analysis and Performance Modeling 541

14.7 Performance and Performance Accelerators 542
Summary 543
Keywords 543
Review Questions 545
Practice Exercises 546

## 15. Testing, Simulation, and Debugging Techniques and Tools

- 15.1 Integration and Testing of Embedded Hardware 548
- 15.2 Testing Methods 550
- 15.3 Debugging Techniques 553
- 15.4 Laboratory Tools and Target Hardware Debugging 557

Summary 563 Keywords 563 Review Questions 564 Practice Exercises 564

Appendix A 565

Appendix B 567

**Index** 573