
Embedded Systems Project Management

1. EMBEDDED SYSTEM PROJECT MANAGEMENT

There are two approaches for the embedded system design: (1) The software life cycle ends

and the life cycle for the process of integrating the software into the hardware begins at the time

when a system is designed. (2) Both cycles concurrently proceed when co-designing a time

critical sophisticated system. The final design, when implemented, gives the targeted embedded

system and thus the final product. Therefore, an understanding of the (a) software and hardware

designs and integrating both into a system and (b) hardware–software co-designing are important

aspects of designing embedded systems.

Refer to an interview of Jean-Louis Brelet in an article “Exploring Hardware/ Software

Co-design with Vertex-II Pro FPGAs” [Xcell Journal, pp. 24-29, Summer issue, 2002]. A Brelet

reply, quoted verbatim, when asked about the expertise required for successful implementation is

as follows: “Software people must understand the nature of hardware design and type of

problems encountered by hardware team. They also must understand the possibilities and

capabilities of hardware. Likewise hardware team must have a good understanding of software

and how the applications operate. Both teams must have a good understanding of each other’s

language and a willingness to adapt.”

Wayne Wolf, Burak Ozer and Tiehan Lu, Embedded Systems Group, Princeton University

recently reported research findings in a paper “Smart Cameras as Embedded System” by Micro -

IEEE Computer, pp48-53, Sept. 2002. The paper clearly demonstrates that the selection of the

right hardware during hardware design and an understanding of the possibilities and capabilities

of hardware during software design is critical especially for a sophisticated embedded system

development.

Recall Section 8 and Table 9 of web material ‘Software Engineering Approach in Embedded

System Development Process’ (SWE). It explained software project management using

Pressman’s famous four Ps: people, product, process and project. The embedded systems project

management is similar to this. People involved here are a team of software development,

hardware development and system integration engineers. Table 9 listed these four Ps. Embedded

system’s project management also means organizing these four Ps. Table 1 shows how these four

can be organised for the development process of an embedded systems project.

Table 1

Embedded System Project Management’s Four Components

Component Roles What is not advised

Senior
Manager

 Same as defined in Table 9 of web material on
SWE

Same as defined in
Table 9

Project
Technical
manager or
Team leader

(i) Selects software and hardware languages,
tools and software development process life-
cycle models for the software and hardware
development process (ii) Tunes and reorganizes
available software and hardware specifications,
designs and components and existing processes
and (iii) to (v) described in Table 9

Lack of
appreciation to
implementers
perceptions and
uncoordinated
development

Implementer
s

Implements software and hardware development
process and integration process by using
modeling, source code engineering, testing,
simulating, debugging and product verification
tools.

Not following the
agreed and
accepted design
and lack of
coordination
among fellow
implementers

People

Customer of
an embedded
system

Specifies the product and its quality
requirements and negotiates cost with senior
manager (s)

Interference in the
development
process, changing
the product
specifications after
agreeing to these

 Designing and Developing an Embedded System 3

End-users Uses the product within the suggested
boundaries

Not using product
as per guidelines.
For example,
driving with ACC
control system on
an icy road
[Section 12.3.]

Product (embedded
system)

Same as in Table 9 Lack of correct
product
specifications

Process Using layering model (Table 1 of web article on
SWE), partition the system into layers between
the application and hardware and adapt the
process similar to the one given in Table 9

Incorrect
partitioning and
adaptation of
incorrect model

Project Embedded system project management goal is to
create a successful product based on the criteria
listed in Table 9.

Improper planning,
incorrect effort,
estimates, and lack
of successful goal-
oriented focus,
keeping people
busy in non-project
activities

2. EMBEDDED SYSTEM DESIGN AND CO-DESIGN ISSUES IN SYSTEM

DEVELOPMENT PROCESS

2.1 Embedded System Development Process Goal

The goal to be achieved in the last phase of an embedded system development process is to

produce a thoroughly tested and verified system.

2 Action Plan

Recall the software development process life cycle model. Refer to Section 2 and Table 1 of web

material on SWE. It gives us the action plan for an embedded system development process also.

Even a simple small-scale embedded system needs a detailed plan.

Defining an action plan is the first step in any system design. Figure 1 shows an action plan

for designing a system in its development phase.

Action Plan

Design Concept

Software and Hardware Layout

Software

Language Functions Tasks

Detailed Design

If not as per Specifications

Implementation by Burning
the Codes using Device Programmer

Coding,Simulating,Testing,Debugging
and Finalising

ISRs Memory Power
Unit

Other
Circuits,
Sensors
and
Actuators

Processor
or
Microcontroller
or
PLC or DSP or
FPGA or SoC

Hardware

Design
Reuse
Concept

Class
Diagram

Based Design

Object
Diagram

Based Design

Sequence
Diagram

Based Design

Activity
Diagram

Based Design

Needed
Functions
and
Modules

Time
Schedule
for Delivery
on Time

Product
Life
Cycle

Sensors Operating
Environment

Human
Machine
Interaction
and
Ergometric Consideration

Clarity of Specifications

Figure 1: An action plan for designing a system in its development phase

 Designing and Developing an Embedded System 5

Consider a plan for the development of a small-scale embedded system for an automatic

washing machine. [A ‘Clothes In Clothes Out’ embedded system!] We consider this example with

a view to get an easier understanding of the action plan needed in any embedded system

development. For the user, it is a simple clothes-in and clothes-out system. For an embedded

system designer, the things are not that soft! For the system designer, it is ‘Bytes In Bytes Out’

system in place of the Clothes In-Clothes Out machine. The designer has to design according to a

full-fledged action plan. The following are the steps needed for the system development process.

2.3 Complete Specifications and System Requirements

The first step is to have complete clarity about the specifications for the needed system..

Specifications given in the first column of Table 2 have to be completely to the development

team.

Table 2

Specifications of the System

System
Specification
s

Explanation

Product
functions and
tasks

Understanding the functions and user tasks needed for the system are
essential. Consider an embedded system design for a robot. What are the
functions expected from it? What are the degrees of freedom required to
move of all its parts (waist, shoulder, elbows, hand and fingers)? What
are the tasks it should accomplish? Is it smart?

Delivery
Time
Schedule

Time schedules for delivery are important. Tight delivery schedule will
force high-speed rapid development model after suitably adapting linear
sequential development process or force the use of a combination of the
object orientation, 4th generation tools and readily available hardware
design, employing general-purpose processor.

Product Life-
Cycle

Life cycle of the product. When product cycle is short, it will need
frequent design changes by the developer team.

Load on
System

System load is important specification. System can fail on over-loading.
For example, consider automatic washing machine embedded system.

Load can be small, medium and full tank load of cloths. The answer will
have bearing on the motor capacity, time and level of incoming water
during washing and rinsing cycles. Another example is that hardware and
processor for processing an image, a video clip and real time video will
have different loads.

Human-
Machine
Interaction

Specifications are needed that answer the questions given below. What
will be the human - machine interactions? This has a bearing on the plan
for the keypad inputs and display outputs. What and how are the displays
to be specified? The answer has a bearing on the interface circuit and the
program for the displays. For example, refer to the keypad for remote-
controller for a TV.

Operating
Environment

Operating temperatures, humidity and environment parameters
specifications are essential. A system may fail on the mountains or may
fail in high temperature in the vicinity.

Sensors Sensor specifications for sensitivity, precession, resolution and accuracy
are essential for designing as per the requirement. Video-conferencing
image sensor and video images sensor will generate system input in
different pixel resolutions, formats and rates.

Power
Requirement
and
Environment

A system having greater load will need greater power requirement.
Battery-dependent system will need power management solutions by
clever power saving software design and hardware design. . A system
operating under continuous power availability condition and interrupted
power availability will have different specifications. The design is
simpler in case of the former as there is no memory needed to frequently
save the system status.

System Cost Maximum bearable cost must be specified to decide whether a project is
acceptable to a development team and the amount of efforts to be made
by the team.

C+]m Specifications

System specifications for the following must be prepared before starting the design

process. (i) Product functions and tasks (ii) Delivery Time Schedule (iii) Product Life-Cycle

(iv) Load on System (v) Human-Machine Interaction (vi) Operating Environment (vii)

Sensors (viii) Power Requirement and Environment (viii) System Cost.

 Designing and Developing an Embedded System 7

2.4 Conceptual Design

The second step is developing a conceptual design of the system. The question to be addressed is

as follows: What will be the model of the system development process? Let us recall Section 6.5.

A conceptual design model can be developed, using UML approach. A conceptual design can use

UML 'User Diagram', 'Object Diagram', 'Sequence Diagram', 'State Diagram’, 'Class Diagram' and

'Activity Diagram'. A conceptual design helps in developing the application software and

hardware structure and layout.

UML Class diagram, 'User Diagram', 'Object Diagram', 'Sequence Diagram', 'State

Diagram’ help in developing a conceptual design and later on get the structure and layout

of the application software and hardware.

2.5 Software and Hardware Layout Design

The third step is the development of a software and hardware structure and layout of the

system. There can be two approaches.

(1) Independent Design Approach Followed by Integration: Software life cycle ends and life

cycle for the process of integrating into the hardware starts at the time when the system is

designed.

(2) Concurrent Co-design approach: Both cycles concurrently proceed when co-designing a time

critical sophisticated system.

When developing a software layout, we answer the following question. What will be the

software modules needed? The exemplary three modules in an automatic washing machine

system may be as follows:

(i) A software module, which takes the user inputs and provides the human–machine

interaction with the machine using the LED outputs. Examples of the functions for

human-machine interactions are as follows: (a) Current default user settings on

LEDs are shown at the start. Human–machine interaction can be made smart. [The

default settings can be according to the user’s previous preferences. Woolen

preference in winter and cotton preference in summer!] (b) A key pressing can

cyclically set the clothes load (if that is not automatic) among the three

possibilities. An LED shows the selection at an instant. The user stops further

pressing when the desired load is set. The processor, if it does not find any further

pressing at the corresponding port, loads an input in EEPROM memory. (c)

Another key pressing can cyclically set the clothes type. It can be one among the

three possibilities: wool, polyester and cotton. The module also stores this user

directive.

(ii) When there is a user directive to start, which signals after a key is pressed or after a

remote switch signal or even an Internet message (in Internet compliant systems),

there has to be another software module, which initiates the cycles and schedules

each cycle-time. It initiates the cycles (for wash, rinse and dry). (a) This has to be

done after ensuring that the clothes insertion and picking door are closed. (b) The

power supply output has to be according to need. (c) The power sources to the

motor and solenoid valves have to be available according to need. (d) There has to

be a reset of the machine status in EEPROM, if the need is to initiate the cycles

from the beginning. (e) If the machine status indicates left-over cycles and

functions due to some interruption during the previously run cycles in the machine,

then it decides the alternative actions to be taken.

(iii) Another module is to start a wash cycle. Exemplary functions will be as follows:

(a) Let the water inlet be on. (b) The water inlet must be off after the level sensors

arrays output shows that the water is there up to the needed level for the given

clothes load. The water inlet should also be off after a preset time to have a

watchdog action for the level sensor inputs. (c) Start the motor in slow or medium

spinning mode.

Hardware and Software Implementation Tools Specifications

The foremost question before developing a layout and a detailed design is as follows: What are

the elements (hardware and software requirements) of the development process? The answer can

 Designing and Developing an Embedded System 9

be given by selecting the elements needed to fulfill the specifications mentioned in Table 12.1.

For example, for an automatic washing machine the elements are as follows: (a) Motor Tank. (b)

Water-level sensor-array. (c) Power sources for the motor and electronic circuit. (d) General-

purpose or embedded processor or microcontroller. For example, an eight-bit microcontroller

with adequate internal ROM, EEPROM and RAM, timers, interrupt handlers, peripheral serial or

ports controllern. (e) An ergonomically designed key array and LEDs. Input keys are for user

directives. LEDs indicate machine status and the cycles completed or remaining. (g) Interface

circuits. (h) Power source 220V and solenoid valves for water inlet and outlet.

We may refer to different exemplary systems hardware units and refer to Sections 1.2 and

1.3 that described hardware elements. These guide us to take a decision on the hardware

requirements specifications.

There are two design approaches. The first is an independent design, which follows

system integration. This approach is that software life cycle ends and life cycle for the

process of integrating into the hardware starts when a system is designed. Another

approach needed for a sophisticated embedded system is a concurrent co-design approach.

Both cycles concurrently proceed when co-designing a time critical sophisticated system.

There are a number of software and hardware tools to implement the designed system easily

with simple efforts.

2.6 Detailed Design

The fourth step is the detailed design of the codes and the target system by first selecting the

processor and memory. Then decide about the functions that are to be implemented in the

hardware and in the software. Software and hardware layout later helps in the detailed design for

the implementation of detailed software codes and the circuit for obtaining the target system.

2.7 Implementation Tools

We may refer to Table 3, which lists hardware tools during system development process.

Table 3

Hardware tools for the detailed design

Hardware

Tools

Application

Emulator A circuit for emulating the target system that remains independent of a

particular targeted system and processor, usable during the development

phase for most of the target systems that will incorporate a particular

microcontroller chip. It provides great flexibility and ease for developing

various applications on a single system in place of multiple targeted

systems. It works independently as well as by connecting to the PC

through a serial link.

In-Circuit

Emulator

An emulator circuit that also emulates the target processor circuit and that

must connect to the PC through a serial link and to the target system

processor or microcontroller using a ribbon cable. Emulates various

versions of a microcontroller family during development phase.

Logic

Analysers

A power tool to collect through its multiple input lines (say, 24 or 48)

from the buses, ports, etc. many bus transactions (about 128 or more). It

displays these on the monitor (screen) to debug real-time triggering

conditions. It helps in sequentially finding the signals as the instructions

execute.

Device

Programmer
@

A programming system for a device, which may be a PROM or EPROM

chip or a unit in a microcontroller or PLA, GAL or PLC. A device

inserted into a socket (at the device programmer circuit) programs on

transferring the bytes for each address using a software tool at the

computer and interconnecting the computer with this circuit. Device

program needs in the output the locator output records. These outputs

 Designing and Developing an Embedded System 11

must reflect the final design or a boot program plus the compressed

record, which the processor decompresses before the embedded system

processor starts execution.
@ Refer detail later in Section 13.4.1

Hardware tools for hardware design and system integration are emulator and In-

Circuit Emulator. Software tools are simulators, editors, compilers, assemblers, source code

engineering tool, profiler (for viewing time spent at each function or set of instructions),

memory scope, stethoscope-like view of code execution, memory and code coverage scope.

2.8 Testing

We divide the problem into small parts so that testing is easy at the initial stages. Define inputs

and outputs from each stage clearly and identify and make the data flow graphs (DFGs) (Section

6.1).

Recall Sections 7 and 8 of SWE. A test technique is testing by calling the interrupt service

routines. The use of an assert macro is another important test technique. For example, consider a

command, “assert (pPointer != NULL);”. When the pPointer becomes NULL, the program will

halt. We insert the codes in the program that check whether a condition or a parameter actually

turns true or false. If it turns false, the program stops. We can use the assert macro at different

critical places in the application program.

Testing and debugging have to be there at each stage as well as at the final stage when the

modules are put together. Religiously follow the rule, wrong until confirmed right, for testing and

debugging. Documentation in detail for each stage is also a necessity.

There are software tools for assembly language programming, high level language

programming, RTOS, debugging and system integration tools for decision on software

requirements specifications.

