
This appendix also provides guidance to the reader to integrate the learning of control system analysis and design
material with the learning of how one computes the answers with MATLAB software package. The appendix is
not meant to be a substitute for the MATLAB software manuals. Mathworks [152] provides extensive documen-
tation in both printed and online format to help you learn about, and use, all the features of MATLAB. The online
help provides task-oriented, and function reference information. Our attempt here is only to expedite the process
of making full use of the power of the package for control system design problems.

The MATLAB statements/responses given in this appendix are from MATLAB version 7 and Control System
Toolbox version 6.1, on the Windows platform. Refer [151] for an introduction to the MATLAB environment.

A sequence of characteristic steps of MATLAB-aided control system design follows.

����������	�
�����

For time-invariant systems, mathematical model-building based on physical laws normally results in a set of
differential equations. These equations, when rearranged as a set of first-order differential equations, result in a
state-space model of the following form:

�x = f (x, u)
(A.1)

y = h(x, u)

where f (�) and h(�) are nonlinear functions of their arguments; x(t) is the n � 1 internal state vector, u(t) is the
p � 1 control input vector, and y(t) is the q � 1 measured output vector. Overdot represents differentiation with
respect to time t. The first equation, called the state equation, captures the dynamical portion of the system and
has memory inherent in the n integrators. The second equation, called the output or measurement equation,
represents how we chose to measure the system variables; it depends on the type and availability of sensors.

Model-building and its validation will require simulation of the model. The nonlinear state-space equations
of the form (A.1) are very easy to simulate on a digital computer. MATLAB provides many Runge–Kutta
numerical integration routines for solving ordinary differential equations; the function ode23 usually sufffices
for our applications. Use of ode23 function for solving ordinary differential equations of the type (A.1) will be
demonstrated later.

Linearization of equations of the form (A.1) leads to a model of the form given below:
�x = Ax + Bu

y = Cx + Du
(A.2)

����������	��
�����
���	���	�����

���	�������
������

���	����

� Digital Control and State Variable Methods

The n � 1 vector x is the state of the system, A is the constant n � n system matrix, B is the constant n �� p input
matrix, C is the constant q � n output matrix, and D is the constant q �� p matrix.

While considering only single-input, single-output (SISO) problems, we take the number of inputs, p, and the
number of outputs, q, to be one. For SISO problems, the state variable model may be expressed as

�x = Ax + bu
(A.3)

y = cx + du

Note that matrices B, C, and D of the MIMO (multi-input, multi-output) representation, now become vectors
b and c, and scalar d, respectively; and the input vector u and output vector y of the MIMO representation, now
become scalar variables u and y respectively.

Validation of the linear model with experimental data or simulation data obtained from (A.1), will require
simulation of Eqns (A.2)/(A.3). MATLAB provides many functions for simulation of linear models. We consider
here some functions important from the control-engineering perspective.

For the state-space representation (A.2)/(A.3), the data for the model consists of four matrices. For conven-
ience, the MATLAB provides customized data structure (LTI object). This is called the SS object. This object
encapsulates the model data and enables you to manipulate the LTI system as a single entity, rather than as a
collection of data vectors and matrices.

An LTI object of the type SS is created whenever you invoke the construction function ss.

sys = ss(A,B, C,D) (A.4)
creates the state-space model (A.2).

When the four matrices of the model (A.3) are entered,

sys = ss(A,b,c,d) (A.5)
creates a state-space model for SISO systems.

Depending on the type of design model you use, the data for your model may consist of a simple numerator/
denominator pair for transfer functions or four matrices for state-space models. MATLAB provides LTI objects
TF for transfer functions.

An LTI object of the type TF is created whenever you invoke the construction function tf.
sys = tf(num,den) (A.6)

num and den vectors specify n(s) and d(s) respectively, of the transfer function G(s) = n(s)/d(s).
MATLAB has the means to perform model conversions. Given the SS model sys_ss, the syntax for conversion

to TF model is

sys_tf = tf(sys_ss)
Common pole-zero factors of G(s) must be cancelled, before we can claim that we have the transfer function

representation of the system. To assist us in pole-zero cancellation, MATLAB provides minreal function.

sysr = minreal(sys_tf)
Given the TF model sys_tf, the syntax for conversion to SS model is

sys_ss = ss(sys_tf)
Process transfer function models frequently have deadtime (input-output delay). TF object for transfer

functions with deadtime can be created using the syntax
sys = tf(num,den,‘InputDelay’, value)

������	����	��������������

There are various standard methods for discretization of continuous-time models. None of these methods is exact
for all types of inputs, because no sampled system has access to the input time history between samples. In
essence, each approximation makes a different assumption about what the continuous input is doing between
samples. MATLAB software has functions that allow use of various approximations. We consider here a couple
of functions important from the control-engineering perspective.

Appendix A: MATLAB Aided Control System Design: Conventional Control �

State-space model of a discrete-time SISO system is of the form

x(k + 1) = Fx(k) + gu(k)

y(k) = cx(k) + du(k) (A.7)

Construction of the SS object for this discrete-time model, requires four matrices F, g, c and d, and the sampling
interval T.

sysd = ss(F,g,c,d,‘T’)
Transfer function model of a discrete-time SISO system is of the form

G(z) =
n z

d z

()

()
 =

num

den

Construction of the TF object for this discrete-time model requires num and den polynomials in z, and the sam-
pling interval T.

sysd = tf(num, den,‘T’)
For a continuous-time model sysc, the command

sysd = c2d(sysc,T) % T is sampling period in seconds
performs ZOH conversion by default.

sysc is continuous-time state-space system (A.3) and sysd is the discrete-time system (A.7), assuming a zero-
order hold on the input—the control input is assumed piecewise constant over the sample time T.

[F,g,c,d] = ssdata(sysd)
c2d can also be used with transfer function models. Continuous-time system sysc representing

G(s) =
num

den
gets converted to the discrete-time system sysd, representing

Gh0G(z) =
numz

denz

[numd,dend] = tfdata(sysd,‘v’)
returns numerator and denominator of transfer function as row vectors.
To use alternative conversion schemes, specify the method.

sysd = c2d(sysc,T,‘tustin’) % Use Tustin approximation
The function c2d(sysc,T,‘tustin’) converts a continuous-time system to discrete-time system using trapezoidal
rule for integration, also called the bilinear transformation. (The function d2c is an inverse operation—it converts
discrete-time models to continuous-time form).

���������������������	�	��������������

The function bode(sys) generates the Bode frequency-response plot for LTI model sys. This function
automatically selects the frequency values by placing more points in regions where the frequency response is
changing quickly. This range is user-selectable utilizing the logspace function. When invoked with left-hand
arguments,

[mag,phase,w] = bode(sys)

[mag,phase] = bode(sys,w)

return the magnitude and phase of the frequency response at the frequencies w.
The function margin determines gain margin, phase margin, gain crossover frequency and phase crossover

frequency.

� Digital Control and State Variable Methods

The function bode handles both continuous-time and discrete-time models. For continuous-time models, it
computes the frequency response by evaluating the transfer function G(s) on the imaginary axis s = j�. For
discrete-time models, the frequency response is obtained by evaluating the transfer function Gh0G(z) on the unit
circle z = e j�T; where T is the sample time.

mag(�) = |Gh0G(e j�T)|

phase(�) = �Gh0G(e j�T)

The discrete-time model of the plant Gh0G(z) = num/den, may be transformed with bilinear mapping using the
MATLAB function d2c. Construction of discrete-time model requires numerator polynomial num in z, denomi-
nator polynomial den in z, and value of the sampling interval T.

sysd = tf(num,den,‘T’)
Conversion to w-domain is given by

sysw = d2c(sysd,‘tustin’)
The Nichols frequency-response plot can be generated using Nichols function; the frequency range is user-
selectable. A Nichols chart grid is drawn on the existing plot with the ngrid function. These functions are appli-
cable to both continuous-time and discrete-time systems.

You can analyze the frequency response using the GUI, (graphical user interface) for viewing and manipulat-
ing response plots of LTI models. For example, nichols (sys) will open a window displaying the Nichols plot of
the LTI system sys. Once initialized, the GUI assists you with the analysis of the response by facilitating such
functions as zooming into regions of response plot; calculating response characteristics such as resonance peak,
resonance frequency, bandwidth, stability margins, and many other useful features.

MATLAB function rlocus(sys) calculates and plots the root locus of the open-loop SISO model sys. If sys has
transfer function

G(s) =
n s

d s

()

()
rlocus adaptively selects a set of positive gains K, and produces a smooth plot of the roots of

d(s) + Kn(s) = 0

Alternatively, rlocus(sys,K) uses the user-specified vector K, of gains to plot the root locus.
The function rlocfind returns the feedback gain associated with a particular set of poles on the root locus.

[K,poles] = rlocfind(sys) is used for interactive gain selection. The function rlocfind puts up a crosshair cursor
on the root locus plot that you use to select a particular pole location. The root locus gain associated with this
point is returned in K and the column vector poles contains the closed-loop poles for this gain. To use this
command, the root locus must be present in the current figure window.

The functions rlocus and rlocfind work with both the continuous-time and discrete-time SISO systems. The
functions sgrid/spchart and zgrid/zpchart, are used for �n and � grid on continuous-time and discrete-time root
locus, respectively.

MATLAB provides many functions for simulation of transfer functions. For the transfer function model
sys = tf(num,den), step(sys) will generate a plot of unit-step response y(t) from the transfer function

Y s

U s

()

()
 = G(s) =

num

den

The time vector is automatically selected when t is not explicitly included in the step command. If you wish to
supply the time vector t at which the response will be computed, the following command is used.

step(sys,t)
You can specify either a final time t = tfinal or a vector of evenly spaced time samples of the form

t = 0 : dt : tfinal

Appendix A: MATLAB Aided Control System Design: Conventional Control �

When invoked with left-hand arguments such as

[y,t] = step(sys)
y = step(sys,t)

no plot is generated on the screen. Hence, it is necessary to use a plot command to see the response curve. The
vector y has one column and one row for each element in time vector t.
Other time-response functions of interest to us are

impulse(sys) % impulse response
lsim(sys,u,t) % response to input time history in

% vector u having length (t) rows.
MATLAB provides similar functions for simulation of discrete-time systems. step(sys) will generate a plot of

unit-step response y(k) of the discrete-time system (transfer function model) sys. The number of sample points is
automatically determined when time is not explicitly included in the command.

If you wish to supply the sample points vector at which the response will be computed, the following com-
mand is used.

step(sys,t)
You can specify t as a vector of sample points:

t = 0:T:tfinal
where T is the sample time.
When invoked with left-hand arguments, no plot is generated on the screen; it is necessary to use a plot command
to see the response curves.

You can analyze the time response using the GUI (graphical user interface) for viewing and manipulating
response plots of LTI models. For example, step (sys) will open a window displaying the step response of the LTI
model sys. Once initialized, the GUI assists you with the analysis of the response by facilitating such functions,
as zooming into regions of the response plots, calculating response characteristics such as peak response, settling
time, rise time, steady-state, toggling the grid on or off the plot, and many other useful features.

Controllability and observability of a system in state variable form can be checked using the MATLAB func-
tions ctrb and obsv, respectively. The inputs to the ctrb function are the system matrix A and the input matrix b;
the output of ctrb function is the controllability matrix U. Similarly, the inputs to the obsv function are the
system matrix A and the output matrix c; the output is observability matrix V. The function rank gives the
controllability and observability properties.

Pole-placement design may be carried out using the MATLAB function acker. However, the computation of
the controllability matrix has very poor numerical accuracy and this carries over to Ackermann’s formula. The
function acker can be used for the design of SISO systems with a small (� 5) number of state variables. For more
complex cases, a more reliable formula is available, implemented in MATLAB with the function place. A modest
limitation on place is that none of the desired closed-loop poles may be repeated, that is, the poles must be
distinct; a requirement that does not apply to acker.

The MATLAB function lyap solves Lyapunov matrix equation. The solution to discrete matrix Lyapunov
equation is found with dlyap. The function lqr solves the linear quadratic regulator problem and associated
Riccati equation. Discrete linear quadratic regulator design is carried out using the function dlqr.

MATLAB provides many functions for simulation of state-space models. For model sys in (A.5), step(sys)
will generate a plot of unit-step response y(t) (with zero initial conditions). The time vector is automatically
selected when t is not explicitly included in the step command.

If you wish to supply the time vector t at which the response will be computed, the following command is used.

step(sys,t)
You can specify either a final time t = tfinal or a vector of evenly spaced time samples of the form

t = 0: dt : tfinal

� Digital Control and State Variable Methods

When invoked with left-hand arguments such as

[y,t] = step(sys)

[y,t,X] = step(sys)

y = step(sys,t)
no plot is generated on the screen. Hence, it is necessary to use a plot command to see the response curves. The
vector y and matrix X contain the output and state response of the system, respectively, evaluated at the computation
points returned in the time vector t (X has as many columns as states and one row for each element in vector t).
Other time-response functions of interest to us are

impulse(sys) % impulse response
initial(sys,x0) % free response to initial state vector x0

lsim(sys,u,t) % response to input time history in vector u
lsim(sys,u,t,x0) % having length (t) rows

For MIMO models (A.4), these functions produce an array of plots.
MATLAB provides similar functions for simulation of discrete-time state-space models. step(sys) will

generate a plot of unit-step response y(k) of the discrete-time system state-space model sys. Zero initial state is
assumed. The number of sample points is automatically determined when time is not explicitly included in the
command.

If you wish to supply the sample-points vector at which the response will be computed, the following com-
mand is used.

step (sys, t)
You can specify t as a vector of sample points:

t = 0 : T : tfinal
where T is the sample time.
You can analyze the time response using the GUI (graphical user interface) for viewing and manipulating re-
sponse plots of LTI models.
After reaching the best compromise on controller design choice, the next step is to build a computer model, and
compute (simulate) the performance of the design. At this stage, we are required to compute a digital equivalent
of the analog controller. This allows the final design to be implemented using digital processor logic.

Given the analog controller
D(s) = num /den

the following commands give the discrete equivalent

D(z) = numz /denz

of the controller, with T as the sampling period.

sysc = tf(num,den)
sysd = c2d(sysc,T,‘tustin’)

��
��	��	���������
��������	���������

After reaching the best compromise among process modification, actuator and sensor selection, and controller
design choice, run a computer model of the system. This model should include important nonlinearities—such as
actuator saturation, and the parameter variations you expect to find during operation of the system. The simulation
will confirm stability and robustness and allow you to predict the true performance you can expect from the system.

To use the MATLAB numerical integration routines, the system dynamics must be written into an M-file. The
state-space description makes this very direct; in fact, ordinary differential equation solver function ode23 ,
requires the dynamics in state-space form (A.1).

Appendix A: MATLAB Aided Control System Design: Conventional Control

As an example, consider Van der Pol oscillator which has dynamics
��y + � (y2 – 1) �y + y = u

Defining the states as x1 = position, x2 = velocity, we get

�x1 = x2

�x2 = � (1 – x1
2) x2 – x1 + u

For the Van der Pol oscillator, the required M-file is

function xdot = vdpol (t, x)
alpha = 0.8; u = 0;

xdot = [x(2); alpha*(1 – x(1)^2)*x(2) – x(1) + u];
where it is assumed that u(t) = 0. Now the sequence of commands required to invoke ode23 and obtain time
history plots, for instance, over a time horizon of 50 sec is

t0 = 0; tf = 50;

x0 = [0.1;0.1];
[t,x] = ode23(‘vdpol’, [t0 tf], x0);

plot(t, x)
The phase-plane plot of x1 versus x2 is obtained using the command:

plot(x(:,1), x(:,2))

���������	
���

In the simulation process, the computer is provided with appropriate input data and other information about
system structure, operates on this input data and generates output data, which it subsequently displays. Several
software packages that have been produced over the last two decades, include computer programs that allow
these simulation operations. Over the years, these simulation packages have become quite sophisticated, power-
ful and very “user-friendly”. The usefulness and importance of these software packages is undeniable, because
they greatly facilitate the analysis and design of control systems. They provide a tremendous tool in the hands of
control engineers.

MATLAB/Simulink is one of the most successful software packages currently available, and is particularly
suited for work in control. It is a powerful, comprehensive and user-friendly software package for simulation
studies. Our objective here is to help the reader gain a basic understanding of this software package, by showing
how to set up and solve a simulation problem. Interested readers are encouraged to further explore this very
complete and versatile mathematical computational package [151, 152].

A very nice feature of Simulink is that it visually represents the simulation process by using simulation block
diagrams. Especially, functions are represented by “subsystem blocks” that are then interconnected to form a
Simulink block diagram that defines the system structure. Once the structure is defined, parameters are entered in
the individual subsystem blocks that correspond to the given system data. Some additional simulation parameters
must also be set, to govern how the numerical computation will be carried out and how the output data will be
displayed. As a matter of fact, the Simulink block diagrams are essentially the same we have used in the text to
describe control system structures and signal flow.

Because Simulink is graphical and interactive, we encourage you to jump right in and try it. For a technical
introduction to Simulink, read the MATLAB document “Using Simulink” [152]. To help you start using Simulink
quickly, we describe here the simulation process through a demonstration example on Microsoft Windows plat-
form with MATLAB version 7, Control Toolbox version 6.1 and Simulink version 6.1.

To start Simulink, enter simulink command at the MATLAB prompt. Simulink Library Browser appears
which displays tree-structured view of the Simulink block libraries. It contains several nodes; each of these nodes

! Digital Control and State Variable Methods

represents a library of subsystem blocks that is used to construct simulation block diagrams. You can expand/

collapse the tree by clicking on the + − boxes beside each node, and block in the block set pan.

Expand the node labelled Simulink. Subnodes of this node are displayed. Expanding the Sources subnode
displays a long list of Sources library blocks; contents are displayed in the diagram view. The purpose of the
block Step is to generate a step function. The block Constant generates a specified real or complex value,
independent of time. Simply click on any block to learn about its functionality in the description box.

You may now collapse the Sources subnode, and expand the Sinks subnode. A list of Sinks library blocks
appears. The purpose of block labelled XY Graph is to display an X-Y plot of signals using a MATLAB figure
window. The block has two scalar inputs; it plots data in the first input (the x direction) against data in the second
input (the y direction). This block is useful for phase-plane analysis. The block Scope displays its inputs
(signals generated during a simulation) with respect to simulation time. The block To Workspace transfers the
data to MATLAB workspace.

You may now collapse the Sinks subnode and expand the Continuous subnode. A list of library blocks corre-
sponding to this subnode, appears. The purpose of the Derivative block is to output the time derivative of the input.
We will use this block for phase-plane analysis. The State-Space block implements a linear system whose behav-
iour is described by a state variable model. The Transfer Fcn block implements a transfer function.

The Discontinuities subnode has blockset of various nonlinearities: Backlash, Coulomb and Viscous
Friction, Deadzone, Saturation, etc.

The Math Operations subnode has several blocks. The block Sum generates the sum of inputs.
It is useful as an error detector for control system simulations. The Sign block indicates the sign of the input
(The output is 1 when the input is greater than zero: the output is 0 when the input is equal to zero; and the output
is –1 when the input is less then zero). We can use this block to represent on-off nonlinearity.

Expand now the node Control System Toolbox. The block LTI system accepts the continuous and discrete
objects as defined in the Control System Toolbox. Transfer functions and state-space formats are
supported in this block.

We have described some of the subsystem libraries available, that contain the basic building blocks of simu-
lation diagrams. The reader is encouraged to explore the other libraries as well. You can also customize and
create your own blocks. For information on creating your own blocks, see the MATLAB documentation on
“Writing S-Functions” [152].

We are now ready to proceed to the next step, which is the construction of a simulation diagram. To do this, we
need to open a new window. Click the New button on the Library Browser’s toolbar. A new window that opens
up, will be used to build up an interconnection of Simulink blocks from the subsystem libraries. This is an
untitled window; we call it the Simulation Window. We consider here phase-plane analysis of nonlinear system
of Fig. A.1.

1
+ 1s

1
s

4.0
r = 0 + y

–

Slope = 1

��������

With the Discontinuities subnode of Simulink node expanded, move the pointer and click the block
labelled Saturation, and while keeping the mouse button pressed down, drag the block and place it inside the
Simulation Window, and release the mouse button.

With the Control System Toolbox node expanded, click the block labelled LTI system, drag to the
Simulation Window and place it on one side of the Saturation block. Duplicate LTI system on the other side of
Saturation block.

e

Appendix A: MATLAB Aided Control System Design: Conventional Control "

You can duplicate blocks in a model as follows. While holding down the Ctrl key, select the block with the
mouse button; then drag it to the new location and release the mouse button.

Drag the block labeled Sum from the Math Operations subnode of Simulink node, the block Constant from
the Sources subnode of Simulink node, the blocks XY Graph and To Workspace from Sinks subnode of
Simulink node, and the block Derivative from the Continuous subnode of Simulink node.

We have now completed the process of dragging subsystem blocks from the appropriate libraries and placing
them in the Simulation Window. The next step is to interconnect these subsystem blocks and obtain the structure
of simulation block diagram. To do this, we just need to work in the Simulation Window.

The first step is to rearrange the blocks in the Simulation Window in a specified structure. This will require
moving a block from one place to another within the Simulation Window. This can be done by clicking inside
the block, keeping the mouse button pressed, dragging the block to the new desired location and releasing the
mouse button.

Lines are drawn to interconnect these blocks as per the desired structure. A line can connect the output port of
one block with the input port of another block. A line can also connect the output port of one block with input
ports of many blocks by using branch lines.

To connect the output port of one block to the input port of another block, position the pointer on the first
block’s output port; the pointer shape changes to a crosshair. Press and hold down the mouse button. Drag the
pointer to the second block’s input port. You can position the pointer on or near the port; the pointer shape
changes to a double crosshair. Release the mouse button. Simulink replaces the port symbols by a connecting line
with an arrow showing the direction of signal flow.

A branch line is a line that starts from an existing line and carries its signal to the input port of a block. Both
the existing line and the branch line carry the same signal. To add a branch line, position the pointer on the line
where you want the branch line to start. While holding down the Ctrl key, press and hold down the mouse button.
Drag the pointer to the input port of the target block, then release the mouse button and the Ctrl key.

The branch lines are usually an interconnection of line segments. With the Ctrl key pressed, identify the
branch point and drag the mouse (horizontally/vertically) to an unoccupied area of the diagram and release the
mouse button. An arrow appears on the unconnected end of the line. To add another line segment, position the
pointer over the end of the segment and draw another segment.

To move a line segment, position the pointer on the segment you want to move. Press and hold down the left
mouse button. Drag the pointer to the desired location and release.

To disconnect a block from its connecting lines, hold down the Shift key, then drag the block to a new
location. You can insert a block in a line by dropping the block on the line.

You can cancel the effects of an operation by choosing Undo from the Edit menu of the Simulation Window.
You can thus undo the operations of adding/deleting a line/block. Effects of Undo command may be reversed by
choosing Redo from the Edit menu.

To delete a block/line, select a block/line to be deleted and choose Clear or Cut from the Edit menu. The Cut
command writes the block/line into the clipboard, which enables you to Paste it into a model. Clear command
does not enable you to paste the block/line later.

This gives us a generic diagram, because we have not yet specified the LTI system, nor set parameter values
of saturation, reference input, and error detector. Our next priority is to go into each of these blocks and set
the parameters that correspond to our specific nonlinear system. In addition, we need to set some simulation
parameters.

We begin with the reference input to the feedback system by double-clicking on the block labeled Constant
in the Simulation Window. A dialog box pops up. Only one parameter need to be set: constant value. Set the
value to 0 since our reference input is zero. When we are done, we click OK.

Next, we set the Sum block. In the dialog box for this block, we enter Icon shape: round, and list of signs,
+ –. This gives us an error detector for negative feedback system.

#$ Digital Control and State Variable Methods

Next, we set the LTI system blocks. There are two blocks on the two sides of the saturation nonlinearity. The
first block has the transfer function 1/(s + 1), and the second block has the transfer function 1/s. To carry out
simulation study with respect to initial condition –1.6 on output, we convert the transfer functions to state-
space form. Enter the initial condition –1.6 in the dialog box of the second block.

Saturation block dialog box requires upper limit and lower limit of saturation. 0.4 and –0.4 are the values as
per our problem.

Next, we need to set the parameters for the XY Graph block. Dialog box requires x-min, x-max, y-min and
 y-max. The values [–1 2 –2 1] may be entered.

To Workspace block requires variable name and the format. We use Array format for our data and enter
variable names x_1 and x_2 in the dialog boxes.

Finally, we need to set the parameters for the simulation run. We move the pointer to the menu labelled
Simulation, and enter configuration parameters: start time, stop time, in the dialog box.

All block names in a model must be unique and must contain at least one character. By default, block names
appear below blocks. To edit a block name, click on the block name and insert/delete/write text. After you are
done, click the pointer somewhere else in the model, the name is accepted or rejected. If you try to change the
name of a block to a name that already exists, Simulink displays an error message.

At this point in the simulation process, we have generated the appropriate Simulink block diagram (shown in
Fig. A.2) and entered the specific parameters for our system and simulation. We are now ready to execute the
program, and have the computer perform the simulation. We move the pointer to the Simulation menu and
choose Start. A new window that shows the phase trajectory pops up.

Reference

0

ss(tf(1, [1 1])) (ss(tf(1, [1 0]))

LTI System1 Saturation

du/dt

LTI System2

X to Workspace

Phase Plane

Y to WorkspaceDerivative

x_2

x_1

+

–

��������

You may now execute the following program in MATLAB workspace.

figure (1);

plot (x1, x2); grid;

axis ([–1 2 –2 1]);

hold on

Resimulate for an initial condition of –0.74 and plot the phase trajectory.
We have used an example to show how to enter data and carry out a simulation in the Simulink environment.

The reader will agree that this is a very simple process. Download the file SimulinkFigA.2 from URL:
http:/www.mhhe.com/gopal/dc3e. Open this file in MATLAB environment. Double-click each block and study
the properties of the block (You may change these properties as per your analysis requirement).

Study/modify simulation parameters, and execute the program.

Appendix A: MATLAB Aided Control System Design: Conventional Control ##

Problems

Each problem covers an important area of control-system analysis or design. Important MATLAB commands are
given at the URL:

URL: http:/www.mhhe.com/gopal/dc3e
as help to these problems. Open these files in MATLAB environment. In attempting a problem, the reader can use
the MATLAB commands given in the script file, in an interactive manner; or use the script file as an M-file. The
description of the MATLAB functions in the script files can easily be accessed from the help file using help
command.

Simulink files are included as help to some problems. Download the simlink files from the URL. Open these
files in MATLAB environment. Doube-click and study the properties of each block.

Following each problem, one or more what-if’s may be posed to examine the effect of variations of the key
parameters. Comments to alert the reader to the special features of MATLAB commands are included in the script
files to enhance the learning experience. Partial answers to the problems are also included.

�� ��!"�
���#� ���$���	�� Consider a unity-feedback system with open-loop transfer function

G(s) =
1

1s s()+
(a) Plot the step response of the feedback system and determine error constants Kp, K�

 and Ka.
(b) Discretize the system (sampling interval T = 1 sec) and plot the step response of the resulting feedback

system. Also determine the error constants.
(c) Approximate the sampled system by an equivalent analog system with input delay of T/2. Plot the step

response of the resulting analog feedback system.
(d) Using GUI, determine peak overshoot and settling time of analog and sampled systems.

��%��!"�
���#�%���$���	�� Consider a unity-feedback system with open-loop transfer function

G(s) =
K

s s()+ 2

(a) Sketch root locus plot and determine the range of gain K, for which the system is stable.
(b) Discretize the system (sampling interval T = 0.4 sec) and sketch root locus plot. Find the range of gain K for

which the system is stable.
(c) Repeat (b) for T = 3 sec.

��#��!"�
���#�#���$���	�� Consider a system with transfer function

G(s) =
e

s s

s−

+

1 5

1

.

()
Discretize this system (sampling time T = 1 sec) and report the result in zero-pole-gain form.

��&��!"�
���%� '���$���	�� A unity-feedback sampled-data system (sampling interval T = 0.04 sec) has plant

transfer function

G(s) =
10

1 0 5 1 0 1 1 0 05(.)(.)(.)+ + +s s s

An approximating analog system is a unity-feedback system with plant transfer function G(s)e–Ts/2. Show that the
analog controller

#� Digital Control and State Variable Methods

D(s) =
0 67 1

2 1

.

()

s

s

+
+

meets the specification: phase margin � 40º. Determine the bandwidth of the compensated system.
Discretize the design, and analyze the step response of the digital system using GUI (Ans: Peak overshoot

13%; Settling time 1.16 sec)

��(��!"�
���&�#���$���	�� A unity-feedback system has open-loop transfer function

G(s) =
K

s s()+ 5

It is desired to have the velocity error constant K
�
 = 10. Furthermore, we desire that the phase margin of the

system be about 40º and bandwidth about 5.5 rad/sec. Design a digital control scheme (T = 0.1 sec) to meet these
specifications.

Using GUI, determine peak overshoot and settling time from the step response of the feedback system (Ans:
Peak overshoot 34%; Settling time 3 sec)

Are your results different from the ones given in the text? Why?

��)��!"�
���&�&���$���	�� Repeat Problem A.5 under the constraint that we use phase-lead compensation

to achieve the following performance specifications:
(i) K

�
 = 10

(ii) Phase margin = 40º
(iii) Bandwidth = 12 rad/sec (Ans: Peak overshoot 35%; Settling time 1 sec)

��'��!"�
���&�'���$���	�� A unity-feedback system has open-loop transfer function

G(s) =
K

s s()+ 2

It is desired that dominant closed-loop poles provide damping ratio � = 0.5, and have undamped natural fre-
quency �n = 4 rad/sec. Velocity error constant K

�
 is required to be about 2.5.

Design a digital control scheme (T = 0.2 sec) for the system to meet these specifications.
Perform simulation study on the compensated system using GUI
(Ans: Peak overshoot 15%; Settling time 2.2 sec)

��*��!"�
���&�*���$���	�� The plant of sampled-data system of Fig. 4.30 is described by the transfer function

G(s) =
1

10 1s s()+
The sampling period is 1 sec.

The problem is to design a digital controller D(z) to realize the following specifications: overshoot < 16%;
settling time < 10 sec; K

�
 � 1.

Use frequency responce plots of Gh0G(e j�T) for the design.

��+ In the following, we point the reader to important matrix functions in MATLAB. Access the description of

these functions from the help file, and execute each function, taking suitable data from the text.

Identity matrix : eye(n)
Dimensions : size(A)
Utility matrices : ones(n), ones(m,n), ones(size(A)),

zeros(n), zeros(m,n), zeros(size(A))

Appendix A: MATLAB Aided Control System Design: Conventional Control #�

Complex-conjugate transpose : ctranspose(A); A�

Non-conjugate transpose : transpose(A); A�

Determinant : det(A)
Inverse : inv(A)
Rank : rank(A)
Trace : trace(A)
Spectral norm : norm(A)
(Largest singular value)

Euclidean norm of a vector : norm(x)
Condition number with : cond(A)
respect to inversion

Eigenvalues : eig(A)
Eigenvectors : [P,A1] = eig(A)
Characteristic equation : poly(A)
Matrix exponential : expm(A)

�� , Given the transfer function

G(s) =
s

s s s3 22 2 5 0 5+ + +. .
(a) Obtain a state-space model sys, equivalent to the given G(s).
(b) Discretize the model sys (sampling interval T = 0.1 sec) to obtain sysd.
(c) Simulate and plot the response of the models sys and sysd, when the input is

u(t) =
2 0 2

0 5 2

;

. ;

≤ ≤
≥

RST
t

t

and the initial condition is x(0) = [1 0 2]T.

�� ��!"�
���'�%���$���	�� Linearized equations governing the inverted pendulum system of Fig. 5.16 are

�x = Ax + bu

x = [� �θ z �z]T

A =

0 1 0 0

16 3106 0 0 0

0 0 0 1

0637 0 0 0

.

–1.

L

N

M
M
M
M

O

Q

P
P
P
P

; b =

0

0

0 9639

–1.4458

.

L

N

M
M
M
M

O

Q

P
P
P
P

(a) Show that the open-loop system is unstable.
(b) Design state feedback u = – kx that results in closed-loop poles at – 0.7999 ± j 1.5618, – 10, – 11. Note

that the complex-conjugate poles correspond to the requirement of peak overshoot of 20% and settling
time of 5 sec (2% tolerance).

(c) Simulate the feedback system; given initial state

x(0) = [0.1 0 0 0]T.

Check the robustness of your design through simulation study using nonlinear plant model given by Eqns
(5.104).

#� Digital Control and State Variable Methods

(d) For this system, design an observer with the onserver poles placed at – 2, –2 ± j 1, –3.
(e) Simulate the observer-based feedback system for the initial conditions given in part (c). Check the robstness

of your design through simulation study using nonlinear plant model given by Eqns (5.104).

�� %��!"�
���'� ���$���	�� The plant model of a satellite attitude control system (Refer Figs 7.3–7.4) is

�x = Ax + bu

y = cx

with A =
0 1

0 0

L
NM

O
QP

; b =
0

1

L
NM
O
QP

; c = [1 0]

(a) Design state feedback u = –kx that results in closed-loop poles at –4 ± j4.
(b) Assuming that the state vector x(t) is measurable, simulate the feedback system for x(0) = [1 0]T.
(c) Consider, now that state measurements are not practical. Design a state observer that yields estimated

states ~x(t). Place the observer poles at –10, –10.
(d) Obtain state variable model of the compensator by cascading the state feedback control law and the state

observer. Find the transfer function of the compensator.
(e) Set up state model of the form (7.57) for the observer-based regulator system, and simulate the model

(Note that x(0) = [1 0]T leads to ~x(0) = [1 0]T when �x (0) = 0).

�� #��!"�
���'� #���$���	�� The plant model of a satellite attitude control system (Refer Figs. 7.3–7.4) is

x(k + 1) = Fx(k) + gu(k)

y(k) = cx(k)

with

F =
1

0 1

TL
NM

O
QP ; g =

T

T

2 2/L
NM

O
QP

; T = 0.1 sec

c = [1 0]

The reference input �r is a step function.
Design state feedback u = – k1(x1(k) – �r) – k2x2(k) that results in deadbeat response.

Simulate the feedback system for a unit-step input �r.

�� & Reconsider the inverted pendulum regulator problem raised in Problem A.11, wherein you designed

state feedback control based on pole-placement.
Now design a state-feedback control law that minimizes the performace index

J =
1

2
0

()x QxT Tu Ru dt+
∞

z
with

Q =

150 0 0 0

0 1 0 0

0 0 40 0

0 0 0 1

L

N

M
M
M
M

O

Q

P
P
P
P

; R = 1

Simulate the feedback system for initial state x (0) = [0.1 0 0 0]T.

Appendix A: MATLAB Aided Control System Design: Conventional Control #�

�� (Reconsider the inverted pendulum system of Problem A.11.

(a) Discretize the plant model (sampling interval T = 0.1 sec).
(b) Introduce integral state in the plant equations (Refer Eqn. (7.109)) and show that the augmented system is

controllable.
(c) Design state feedback with integral control that minimizes the performance index

J =
1

2 0k =

∞

∑ [xT(k)Qx(k) + uT(k)Ru(k)]

with

Q =

10 0 0 0 0

0 1 0 0 0

0 0 100 0 0

0 0 0 1 0

0 0 0 0 1

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

; R = 1

(d) Simulate the digital servo (Refer Fig. 7.17) for a step input.

��)��-�$��.�!"�
���+�%���$���	�� Figure 9.49a shows the block diagram of a nonlinear system with

saturation nonlinearity.
(a) Sketch the Nyquist plot for the linear transfer function

G(s) =
1

1 2 1s s s()()+ +

(b) Superimpose on this plot, the plot of describing function of saturation nonlinearity.
(c) Show the existence of a stable limit cycle and determine its amplitude and frequency.
(d) Drag the following blocks from Simulink block libraries:

(i) Sum from “Math Operations” subnode of Simulink node;
(ii) Saturation from “Discontinuities” subnode of Simulink node;

(iii) LTI system from “Control System Toolbox node”: and
(iv) Scope from “Sinks” subnode of Simulink node.

Setup a simulation block diagram as per the feedback structure given in Fig. 9.49a. Simulate the system for an
initial condition of x(0) = [5 0 0]T. The Simulink response shows a limit cycle. Determine the amplitude and
frequency of the limit cycle and compare these parameters with the ones obtained in part (c).

�� '�����/�
��� ���$���	�� In Problem A.11, you have designed a controller and an observer using linearized

model of the pendulum. Apply the controller and the observer to the nonlinear plant model given by Eqns
5.104. Use MATLAB’s Simulink for this simulation study.

�� *�����	���� ,�%���$���	�� This section details a case study on feedback linearization of a 2-link robot

manipulator. Carry out MATLAB-aided design. Simulate the feedback system and compare your result with that
given in Fig. 10.3.

�� +����	���� ,�#���$���	�� Carry out MATLAB-aided design of model-reference adaptive control system

(Fig. 10.5) for the given plant. simulate the system and compare your result with that given in Fig 10.6.

#� Digital Control and State Variable Methods

��%,����	���� ,�&���$���	�� Carry out MATLAB-aided design of self-tuning regulator (Fig 10.7) for the

given plant. Simulate the system and compare your result with that given in Fig 10.8.

��% ����	���� ,�(���$���	�� This section details a case study on sliding-mode control of a 2-link robot

manipulator. Carry out MATLAB-aided design. Simulate the feedback system and conpare your result with that
given in Fig 10.10.

��%%����/�
��� *���$���	�� In Problem A.18, you have designed a PD controller for a 2-link robot manipulator

after feedback-linearization of the plant model. Apply the feedback-linearization loop and PD-controller to the
nonlinear plant model. Use MATLAB’s Simulink for this simulation study.

