VISUAL WALKTHROUGH

12.1 INTRODUCTION

The combinational and sequential digital circuits have been discussed in earlier
for performing basic digital operations and other functions, such as multiplexers, for performing basic digital operations and other functions, such as multiplexers, ,
comparators, code converters, shift registers and counters, etc. have also been di: referred to as fived-fiunction ILs, i.e. each one of them performs a specific, fixed func
designed by their manufacturers and are manufactured in large quantities to meet the designed by their manufacturers and are
of applications and are readily available
To design a circuit, a designer can select from the available ICs most appropriate
working from a block diagram design concept The design mave have
working from a block diagram design concept. The design may have to be modif
requirements of these devices. The advantages of this method are:

1. Low development cost,
2. Fast turn around of designs, and

Some of the disadvantages of this method are:

1. Large board space requirements,
2. Large power requirements,
3. Large boord space requirements,
4. Lacke power requirements,
5. Additity
4.e. the circuits can be copied by others, and
6. Additional cost, space, power requirements, etc. required to modify the desig
features.
To overcome the disadvantages of designs using fixed-function ICs, application spe
(ASICS) have been developed. The ASICs are designed by the users to meet the spe
(ASICs) have been developed. The ASICs are designed by the users to meet the spe
circuit and are produced by an IC manufacturer (foundry) as per the specification
Usually, the designs are too complex to be implemented using fixed-function ICs.
Us.
The advantages of this method are:
7. Reduced space requirement,
8. Reduced power requirement,

SECTIONS \& SUB-SECTION

Each chapter has been divided into Sections and Sub-sections to present the chapter's subject matter in a logical progression of ideas and concepts.

```
4.16 LOW-vOLTAGE CMOS LOGIC
Dynamic power dissipation in CMOS logic circuits decreases with the decrease ir  The reduced power supply voltage hellp in making transistors with thinner oxide ins
CMOS transistor's gate and its source and drain. This results in smaller transistor geon CMOS transistor s sgate and its source and drain. This results in smaller transistor geon placement of components also results in increased speed of operation. Because of thi from lower voltages, the IC manufacturers have produced a number of low-voltą which are commercially available
The Joint Electronic Device E the following standard logic power-supply voltages:
\(3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, 1.5 \pm 0.1 \mathrm{~V}, \ldots\)
The JEDEC standards also specify the input and output logic voltage levels for these power-supply voltage. 4.16.1 5-V Tolerant Inputs
5-V TTL devices and CMOS devices have been discussed in earlier sections. Bec popularity the 74 TTL logic gained, 74 HCT/ACT/AHCT/FCT CMOS logic devices \(h\) by the manufacturers which enabled the designers to make use of the advantages c devices by mixing them in systems.
With the lowering of supply-voltage in CMOS logic to 3.3 V and below, the problem.
oltage devices with the earlier 5 V devices of TTL and CMOS has become more seric to a CMOS gate greater than \(V_{c c}\) is not tolerated. When two different logic voltage rar he voltage appearing at the input of a low-voltage CMOS device may exceed its powe
damaging the low-voltage CMOS device. For example, 5 -V CMOS device may prod 4.0 volts which the 3.3 V devices will not be able to tolerate. To overcome this problem devices are oroduced which can tolerate 5 V innuts. These devices are referred to as LV
```


