Assets = Liabilities + Shareholders' equity	[2.1]
Revenues – Expenses = Income	[2.2]
Cash flow from assets = Cash flow to bondholders + Cash flow to shareholders	[2.3]
Current ratio = Current assets/Current liabilities	[3.1]
$Quick ratio = \frac{Current assets - Inventory}{Current liabilities}$	[3.2]
Cash ratio = Cash/Current liabilities	[3.3]
Net working capital to total assets = Net working capital/Total assets	[3.4]
Interval measure = Current assets/Average daily operating costs	[3.5]
Total debt ratio = [Total assets – Total equity]/Total assets = $[$3,588 - 2,591]/$3,588 = .28$	[3.6]
Debt/equity ratio = Total debt/Total equity - \$ 28/\$ 72 - 39	[3.7]
Equity multiplier = Total assets/Total equity = $1/$.72 = 1.39	[3.8]
Long-term debt ratio = $\frac{\text{Long-term debt}}{\text{Long-term debt} + \text{Total equity}}$ $= \$457/[\$457 + 2,591] = \$457/\$3,048 = .15$	[3.9]
Times interest earned ratio = EBIT/Interest = \$691/\$141 = 4.9 times	[3.10]
Cash coverage ratio = [EBIT + Depreciation]/Interest = [\$691 + 276]/\$141 = \$967/\$141 = 6.9 times	[3.11]
Inventory turnover = Cost of goods sold/Inventory = \$1,344/\$422 = 3.2 times	[3.12]
Days' sales in inventory = $365 \text{ days/Inventory turnover}$ = $365/3.2 = 114 \text{ days}$	[3.13]
Receivables turnover = Sales/Accounts receivable = \$2,311/\$188 = 12.3 times	[3.14]
Days' sales in receivables = 365 days/Receivables turnover = 365/12.3 = 30 days	[3.15]
NWC turnover = Sales/NWC = \$2,311/(\$708 - \$540) = 13.8 times	[3.16]

Fixed asset turnover = Sales/Net fixed assets = \$2,311/\$2,880 = .80 times	[3.17]
Total asset turnover = Sales/Total assets = \$2,311/\$3,588 = .64 times	[3.18]
Profit margin = Net income/Sales = \$363/\$2,311 = 15.7%	[3.19]
Return on assets = Net income/Total assets = \$363/\$3,588 = 10.12%	[3.20]
Return on equity = Net income/Total equity = \$363/\$2,591 = 14%	[3.21]
P/E ratio = Price per share/Earnings per share = \$157/\$11 = 14.27 times	[3.22]
Market-to-book ratio = Market value per share/Book value per share = \$157/(\$2,591/33) = \$157/\$78.5 = 2 times	[3.23]
ROE = Net income/Sales × Sales/Assets × Assets/Equity = Profit margin × Total asset turnover × Equity multiplier	[3.24]
Dividend payout ratio = Cash dividends/Net income = $$44/132 = $33{3}\%$	[4.1]
EFN = Increase in total assets – Addition to retained earnings = $A(g) - p(S)R \times (1 + g)$	[4.2]
$EFN = -p(S)R + [A - p(S)R] \times g$	[4.3]
$EFN = -p(S)R + [A - p(S)R] \times g$ g = pS(R)/[A - pS(R)] = .132(\$500)(2/3)/[\$500132(\$500)(2/3)] = 44/[500 - 44] = 44/456 = 9.65%	[4.4]
Internal growth rate = $\frac{ROA \times R}{1 - ROA \times R}$	[4.5]
EFN = Increase in total assets - Addition to retained earnings- New borrowing= A(g) - p(S)R × (1 + g) - pS(R) × (1 + g)[D/E]EFN = 0	[4.6]
$g^* = ROE \times R/[1 - ROE \times R]$	[4.7]

$$g^* = \frac{p(S/A)(1 + D/E) \times R}{1 - p(S/A)(1 + D/E) \times R}$$
[4.8]

EFN = Increase in total assets - Addition to retained earnings [4A.1]- New borrowing= A(g) - p(S)R × (1 + g) - pS(R) × (1 + g)[D/E]

$$ROE = p(S/A)(1 + D/E)$$

$$g^* = \frac{ROE \times R}{1 - ROE \times R}$$
[4A.2]

Future value =
$$(1 + r)^{t}$$
 [5.1]

$$PV = \$1 \times [1/(1+r)^{t}] = \$1/(1+r)^{t}$$
[5.2]

$$PV \times (1 + r)^{t} = FV_{t}$$

$$PV = FV_{t}/(1 + r)^{t} = FV_{t} \times [1/(1 + r)^{t}]$$
[5.3]

Annuity present value =
$$C \times \left(\frac{1 - \text{Present value factor}}{r}\right)$$
 [6.1]
= $C \times \left\{\frac{1 - [1/(1 + r)^{t}]}{r}\right\}$

Annuity due value = Ordinary annuity value $\times (1 + r)$ [6.1]

$$EAR = [1 + (Quoted rate/m)]^m - 1$$
[6.2]

$$EAR = e^q - 1$$
 [6.3]

Bond value =
$$C \times (1 - 1/(1 + r)^t)/r + F/(1 + r)^t$$
 [7.1]

$$1 + R = (1 + r) \times (1 + h)$$

$$1 + R = (1 + r) \times (1 + h)$$

$$R = r + h + r \times h$$
[7.3]

$$\mathbf{R} \approx r + h \tag{7.4}$$

[7.2]

[10.1]

NPV =
$$(c_o - c_N)/c_N \times \$1,000 - CP$$
 [7C.1]

$$\begin{aligned} \text{OCF} &= \text{EBIT} + D - \text{Taxes} \\ &= (S - C - D) + D - (S - C - D) \times T_c \\ &= \$200 + 600 - 80 = \$720 \end{aligned}$$

$$OCF = (S - C - D) + D - (S - C - D) \times T_c$$

$$= (S - C - D) \times (1 - T_c) + D$$

$$= Project net income + Depreciation$$

$$= \$120 + 600$$

$$= \$720$$
[10.2]

$$OCF = (S - C - D) + D - (S - C - D) \times T_c$$

$$= (S - C) - (S - C - D) \times T_c$$

$$= Sales - Costs - Taxes$$

$$= \$1,500 - 700 - 80 = \$720$$
[10.3]

$$OCF = (S - C - D) + D - (S - C - D) \times T_c$$

$$= (S - C) \times (1 - T_c) + D \times T_c$$
[10.4]

$$S - VC = FC + D$$

$$P \times Q - v \times Q = FC + D$$

$$(P - v) \times Q = FC + D$$

$$Q = (FC + D)/(P - v)$$
[11.1]

$$OCF = [(P - v) \times Q - FC - D] + D$$

$$= (P - v) \times Q - FC$$
[11.2]

$$Q = (FC + OCF)/(P - v)$$
 [11.3]

- Total dollar return = Dividend income + Capital gain (or loss)[12.1]
- Total cash if stock is sold = Initial investment + Total return [12.2] = \$3,700 + 518= \$4,218

$$Var(R) = (1/(T-1)) \left[(R_1 - \overline{R})^2 + \ldots + (R_T - \overline{R})^2 \right]$$
[12.3]

[13.1]

Risk premium = Expected return – Risk-free rate = $E(R_U) - R_f$ = 20% – 8% = 12%

$$E(R) = \sum_{j} O_{j} \times P_{j}$$
[13.2]

$$\sigma^{2} = \sum_{j} [O_{j} - E(R)]^{2} \times P_{j}$$

$$\sigma = \sqrt{\sigma^{2}}$$
[13.3]

$$E(R_P) = x_1 \times E(R_1) + x_2 \times E(R_2) + \dots + x_n \times E(R_n)$$
 [13.4]

$$\sigma_{P}^{2} = x_{L}^{2} \sigma_{L}^{2} + x_{U}^{2} \sigma_{U}^{2} + 2x_{L} \times U \text{CORR}_{L,U} \sigma_{L} \sigma_{U}$$

$$\sigma_{P}^{2} = \sqrt{\sigma_{P}^{2}}$$
[13.5]

- Total return = Expected return + Unexpected return [13.6] R = E(R) + U
- Announcement = Expected part + Surprise [13.7]
- R = E(R) + Systematic portion + Unsystematic portion. [13.8]
- Total risk = Systematic risk + Unsystematic risk [13.9]

$$E(R_i) = R_f + [E(R_M) - R_f] \times \beta_i$$
 [13.10]

$$R = \mathcal{E}(R) + \beta_I F_I + \beta_{GNP} F_{GNP} + \beta_r F_r + \epsilon$$
[13.11]

$$E(R) = R_F + E[(R_1) - R_F]\beta_1 + E[(R_2) - R_F]\beta_2$$

$$+ E[(R_3) - R_F]\beta_3 + \dots E[(R_K) - R_F]\beta_K$$
[13.12]

$$\sigma_P^2 = x_L^2 \sigma_L^2 + x_U^2 \sigma_U^2 + 2x_L x_U \text{CORR}_{L,U} \sigma_L \sigma_U$$
[13A.1]

$$\sigma^2 \sum_{i=1}^{N} \sum_{j=1}^{N} x_j \sigma_{ij}$$
[13A.2]

$$\frac{\delta \sigma_P^2}{\delta x_2} = 2 \sum_{j=1}^N x_j \sigma_{j2} = 2 [x_1 \text{COV}(R_1, R_2) + x_2 \sigma_2^2 + x_3 \text{ COV}(R_3, R_2)$$
[13A.3]

$$\beta_2 = \frac{\text{COV}(R_2, R_M)}{\sigma^2(R_M)}$$
[13A.4]

 $R_E = (D_1 / P_0) + g$ [14.1]

$$R_E = R_f + \beta_E \times [R_M - R_f]$$
 [14.2]
 $R_P = D/P_0$ [14.3]
 $V = E + D$ [14.4]

$$V = E + D$$
 [14.4]

$$100\% = E/V + D/V$$
 [14.5]

WACC =
$$(E/V) \times R_E + (D/V) \times R_D \times (1 - T_C)$$
 [14.6]

$$f_A = (E/V) \times f_E + (D/V) \times f_D = 60\% \times .10 + 40\% \times .05 = 8\%$$

$$\beta_{Portfolio} = \beta_{Levered firm} = \frac{\text{Debt}}{\text{Debt} + \text{Equity}} \times \beta_{Debt}$$

$$+ \frac{\text{Equity}}{\text{Debt} + \text{Equity}} \times \beta_{Equity}$$
[14A.1]

[14.7]

$$\beta_{Unlevered firm} = \frac{Equity}{Debt + Equity} \times \beta_{Equity}$$
[14A.2]

$$\beta_{Unlevered firm} = \frac{Equity}{Equity + (1 - T_C) \times Debt} \times \beta_{Equity}$$
[14A.3]

Number of new shares = Funds to be raised/Subscription price [15.1]
=
$$$5,000,000/$10 = 500,000$$
 shares

Number of rights needed to buy a share of stock = Old shares/New shares [15.2] = 1,000,000/500,000 = 2 rights

$$R_o = (M_o - S)/(N+1)$$
[15.3]

$$M_e = M_o - R_o$$
[15.4]
 $R_e = (M_e - S)/N$ [15.5]

Degree of financial levrage =
$$\frac{\text{Percentage change in EPS}}{\text{Percentage change in EBIT}}$$
 [16.1]

$$DFL = \frac{EBIT}{EBIT - Interest}$$
[16.2]

$$V_u = EBIT/R_E^{\ u} = V_L = E_L + D_L$$
 [16.3]

$$R_E = R_A + (R_A - R_D) \times (D/E)$$
[16.4]

$$\beta_E = \beta_A \times (1 + D/E) \tag{16.5}$$

Value of the interest tax shield =
$$(T_C \times R_D \times D)/R_D$$
 [16.6]
= $T_C \times D$

$$V_L = V_U + T_C \times D$$
[16.7]

$$R_E = \rho + (\rho - R_D) \times (D/E) \times (1 - T_C)$$
[16.8]

$$V_L = V_U + \left[1 - \frac{(1 - T_C) \times (1 - T_S)}{(1 - T_b)}\right] \times B$$
[16A.1]

Net working capital + Fixed assets = Long-term debt + Equity	[18.1]
Net working capital = (Cash + Other current assets)	[18.2]
 Current liabilities 	

- Cash = Long-term debt + Equity + Current liabilities [18.3] - Current assets (other than cash) - Fixed assets
- Operating cycle = Inventory period + Accounts receivable period [18.4] 105 days = 60 days + 45 days
- Cash cycle = Operating cycle Accounts payable period [18.5] 75 days = 105 days – 30 days
- Cash collections = Beginning accounts receivable + $1/2 \times$ Sales [18.6]
- Average daily float = Average daily receipts \times Weighted average delay [19.1] = $$266,666.67 \times 7.50 \text{ days} = $2,000,000$

Opportunity costs =
$$(C/2) \times R$$
 [19A.1]

Trading costs = $(T/C) \times F$ [19A.2]

Total cost = Opportunity costs + Trading costs = $(C/2) \times R + (T/C) \times F$		[19A.3]
$C^* = \sqrt{(2T \times F)/R}$		[19A.4]
$C^* = L + (3/4 \times F \times \sigma^2/R)^{1/3}$		[19A.5]
$U^* = 3 \times C^* - 2 \times L$		[19A.6]
Average cash balance = $(4 \times C^* - L)/3$		[19.A7]
Accounts receivable = Average daily sales \times ACP	[20.1]	
Cash flow (old policy) = $(P - v)Q$ = $($49 - 20) \times 100$ = \$2,900	[20.2]	
Cash flow (new policy) = $(P - v)Q'$ = $(\$49 - 20) \times 110$ = $\$3,190$	[20.3]	
PV = [(P - v)(Q' - Q)]/R	[20.4]	
Cost of switching = $PQ + v(Q' - Q)$	[20.5]	
NPV of switching = $-[PQ + v(Q' - Q)] + (P - v)(Q' - Q)/R$	[20.6]	
$\begin{split} \text{NPV} &= 0 = -[PQ + v(Q' - Q)] + (P - v)(Q' - Q)/R \\ Q' - Q &= (PQ)/[(P - v)/R - v] \end{split}$	[20.7]	
NPV = $-v + (1 - \pi)P'/(1 + R)$	[20.8]	
$NPV = -v + (1 - \pi)(P - v)/R$	[20.9]	
Score = $Z = 0.4 \times [Sales/Total assets] + 3.0 \times EBIT/Total assets$	[20.10]	
Total carrying costs = Average inventory × Carrying costs per unit = $(Q/2) \times CC$	[20.11]	
Total restocking cost = Fixed cost per order × Number of orders = $F \times (T/Q)$	[20.12]	
Total costs = Carrying costs + Restocking costs = $(Q/2) \times CC + F \times (T/Q)$	[20.13]	
Carrying costs = Restocking costs $(Q^*/2) \times CC = F \times (T/Q^*)$	[20.14]	
$Q^{*2} = \frac{2T \times F}{CC}$	[20.15]	

$$Q^* = \sqrt{\frac{2T \times F}{CC}}$$
[20.16]

$$Q^* = \sqrt{\frac{2T \times F}{CC}}$$
[20.17]

$$= \sqrt{\frac{(2 \times 46,800) \times \$50}{\$.75}}$$

= $\sqrt{6,240,000}$
= 2,498 units

$$EOQ^* = \sqrt{\frac{2T \times F}{CC}}$$

$$= \sqrt{\frac{(2 \times 600) \times \$20}{\$3}}$$

$$= \sqrt{8,000}$$

$$= 89.44 \text{ units}$$

$$[20.18]$$

 $E[S_1] = S_0 \times [1 + (R_{FC} - R_{CDN})]$

Net incremental cash flow = $P'Q \times (d - \pi)$

[20A.1]

[21.8]

$$NPV = -PQ + P'Q \times (d - \pi)/R$$
[20A.2]

$$(E[S_1] - S_0)/S_0 = h_{FC} - h_{CDN}$$
[21.1]

$$E[S_1] = S_0 \times [1 + (h_{FC} - h_{CDN})]$$

$$E[S_t] = S_0 \times [1 + (h_{FC} - h_{CDN})]^t$$
[21.2]
[21.3]

$$F_1/S_0 = (1 + R_{FC})/(1 + R_{CDN})$$
[21.4]

$$(F_1 - S_0)/S_0 = R_{FC} - R_{CDN}$$
[21.5]

$$F_1 = S_0 \times [1 + (R_{FC} - R_{CDN})]$$
[21.6]

$$F_t = S_0 \times [1 + (R_{FC} - R_{CDN})]^t$$
[21.7]

$$E[S_t] = S_0 \times [1 + (R_{FC} - R_{CDN})]^t$$
[21.9]

$$R_{CDN} - h_{CDN} = R_{FC} - h_{FC}$$
[21.10]

NPV =
$$V_B^*$$
 – Cost to Firm A of the acquisition [23.1]

$$C_1 = 0 \text{ if } (S_1 - E) \le 0$$
[25.1]

$$C_1 = S_1 - E \text{ if } (S_1 - E) > 0$$
 [25.2]

$$C_0 \ge 0$$
 if $S_0 - E < 0$ [25.4]
 $C_0 \ge S_0 - E$ if $S_0 - E \ge 0$

$$S_0 = C_0 + E/(1 + R_f)$$

$$C_0 = S_0 - E/(1 + R_f)$$
[25.5]

Call option value = Stock value – Present value of the exercise price [25.6] $C_0 = S_0 - E/(1 + R_f)^t$

$$C_0 = S_0 \times N(d_1) - E/(1 + R_f)^t \times N(d_2)$$
[25A.1]

$$d_1 = [\ln(S_0/E) + (R_f + 1/2 \times \sigma^2) \times t] / [\sigma \times \sqrt{t}]$$

$$d_2 = d_1 - \sigma \times \sqrt{t}$$
[25A.2]