$$
\begin{align*}
& \text { Assets }=\text { Liabilities }+ \text { Shareholders' equity } \\
& \text { Revenues }- \text { Expenses }=\text { Income } \\
& \text { Cash flow from assets }=\text { Cash flow to bondholders } \\
& \text { + Cash flow to shareholders } \\
& \text { Current ratio }=\text { Current assets/Current liabilities } \\
& \text { Quick ratio }=\frac{\text { Current assets }- \text { Inventory }}{\text { Current liabilities }} \tag{3.2}\\
& \text { Cash ratio }=\text { Cash/Current liabilities } \tag{3.3}\\
& =\$ 457 /[\$ 457+2,591]=\$ 457 / \$ 3,048=.15 \tag{3.9}\\
& \text { Times interest earned ratio }=\text { EBIT/Interest } \\
& =\$ 691 / \$ 141=4.9 \text { times } \\
& \text { Cash coverage ratio }=[\text { EBIT }+ \text { Depreciation }] / \text { Interest } \tag{3.11}\\
& =[\$ 691+276] / \$ 141=\$ 967 / \$ 141=6.9 \text { times } \\
& \text { Inventory turnover }=\text { Cost of goods sold/Inventory } \tag{3.12}\\
& \text { Days' sales in inventory }=365 \text { days/Inventory turnover } \tag{3.13}\\
& =365 / 3.2=114 \text { days } \\
& \text { Receivables turnover }=\text { Sales/Accounts receivable } \tag{3.14}\\
& =\$ 2,311 / \$ 188=12.3 \text { times } \\
& \text { Days' sales in receivables }=365 \text { days/Receivables turnover } \tag{3.15}\\
& =365 / 12.3=30 \text { days } \\
& \text { NWC turnover }=\text { Sales } / \text { NWC } \tag{3.16}
\end{align*}
$$

Fixed asset turnover $=$ Sales/Net fixed assets [3.17]

$$
=\$ 2,311 / \$ 2,880=.80 \text { times }
$$

Total asset turnover $=$ Sales/Total assets

$$
\begin{equation*}
=\$ 2,311 / \$ 3,588=.64 \text { times } \tag{3.18}
\end{equation*}
$$

Profit margin $=$ Net income $/$ Sales

$$
\begin{equation*}
=\$ 363 / \$ 2,311=15.7 \% \tag{3.19}
\end{equation*}
$$

Return on assets $=$ Net income/Total assets

$$
\begin{equation*}
=\$ 363 / \$ 3,588=10.12 \% \tag{3.20}
\end{equation*}
$$

Return on equity $=$ Net income/Total equity

$$
\begin{equation*}
=\$ 363 / \$ 2,591=14 \% \tag{3.21}
\end{equation*}
$$

P / E ratio $=$ Price per share/Earnings per share

$$
\begin{equation*}
=\$ 157 / \$ 11=14.27 \text { times } \tag{3.22}
\end{equation*}
$$

Market-to-book ratio $=$ Market value per share/Book value per share

$$
\begin{equation*}
=\$ 157 /(\$ 2,591 / 33)=\$ 157 / \$ 78.5=2 \text { times } \tag{3.23}
\end{equation*}
$$

$$
\begin{align*}
\text { ROE } & =\text { Net income } / \text { Sales } \times \text { Sales } / \text { Assets } \times \text { Assets } / \text { Equity } \tag{3.24}\\
& =\text { Profit margin } \times \text { Total asset turnover } \times \text { Equity multiplier }
\end{align*}
$$

Dividend payout ratio $=$ Cash dividends/Net income

$$
\begin{align*}
& =\$ 44 / \$ 132 \tag{4.1}\\
& =331 / 3 \%
\end{align*}
$$

$$
1
$$

$$
\begin{align*}
\mathrm{EFN} & =\text { Increase in total assets }- \text { Addition to retained earnings } \tag{4.2}\\
& =A(g)-p(S) R \times(1+g) \\
\mathrm{EFN} & =-p(S) R+[A-p(S) R] \times g \tag{4.3}\\
\mathrm{EFN} & =-p(S) R+[A-p(S) R] \times g \tag{4.4}\\
g & =p S(R) /[A-p S(R)] \\
& =.132(\$ 500)(2 / 3) /[\$ 500-.132(\$ 500)(2 / 3)] \\
& =44 /[500-44] \\
& =44 / 456=9.65 \%
\end{align*}
$$

Internal growth rate $=\frac{R O A \times R}{1-R O A \times R}$
EFN $=$ Increase in total assets - Addition to retained earnings - New borrowing

$$
\begin{equation*}
=A(g)-p(S) R \times(1+g)-p S(R) \times(1+g)[D / E] \tag{4.6}
\end{equation*}
$$

$\mathrm{EFN}=0$

$$
\begin{equation*}
g^{*}=R O E \times R /[1-R O E \times R] \tag{4.7}
\end{equation*}
$$

$$
\begin{align*}
g^{*}= & \frac{p(S / A)(1+D / E) \times R}{1-p(S / A)(1+D / E) \times R} \tag{4.8}\\
\text { EFN }= & \text { Increase in total assets }- \text { Addition to retained earnings } \\
& - \text { New borrowing } \\
= & A(g)-p(S) R \times(1+g)-p S(R) \times(1+g)[D / E] \\
\text { ROE }= & p(S / A)(1+D / E) \\
g^{*}= & \frac{R O E \times R}{1-R O E \times R}
\end{align*}
$$

Future value $=\$ 1 \times(1+r)^{t}$
$\mathrm{PV}=\$ 1 \times\left[1 /(1+r)^{t}\right]=\$ 1 /(1+r)^{t}$
$\mathrm{PV} \times(1+r)^{t}=\mathrm{FV}_{t}$
$\mathrm{PV}=\mathrm{FV}_{t} /(1+r)^{t}=\mathrm{FV}_{t} \times\left[1 /(1+r)^{t}\right]$
Annuity present value $=C \times\left(\frac{1-\text { Present value factor }}{r}\right)$

$$
\begin{equation*}
=C \times\left\{\frac{1-\left[1 /(1+r)^{t}\right]}{r}\right\} \tag{6.1}
\end{equation*}
$$

Annuity due value $=$ Ordinary annuity value $\times(1+r)$
EAR $=[1+(\text { Quoted rate } / m)]^{m}-1$
$\mathrm{EAR}=e^{q}-1$
Bond value $=C \times\left(1-1 /(1+r)^{t}\right) / r+F /(1+r)^{t}$
$1+R=(1+r) \times(1+h)$
$1+R=(1+r) \times(1+h)$
$R=r+h+r \times h$
$\mathrm{R} \approx r+h$
$\mathrm{NPV}=\left(c_{o}-c_{N}\right) / c_{N} \times \$ 1,000-C P$
OCF $=$ EBIT $+D-$ Taxes
$=(S-C-D)+D-(S-C-D) \times T_{c}$
$=\$ 200+600-80=\$ 720$

$$
\begin{aligned}
\text { OCF } & =(S-C-D)+D-(S-C-D) \times T_{c} \\
& =(S-C-D) \times\left(1-T_{c}\right)+D \\
& =\text { Project net income }+ \text { Depreciation } \\
& =\$ 120+600 \\
& =\$ 720
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{OCF}=(S-C-D)+D-(S-C-D) \times T_{c} \tag{10.3}\\
&=(S-C)-(S-C-D) \times T_{c} \\
&= \text { Sales }- \text { Costs }- \text { Taxes } \\
&= \$ 1,500-700-80=\$ 720 \\
& \tag{10.4}\\
& \text { OCF }=(S-C-D)+D-(S-C-D) \times T_{c} \\
&=(S-C) \times\left(1-T_{c}\right)+D \times T_{c} \\
& S-V C=F C+D \tag{11.1}\\
& P \times Q-v \times Q=F C+D \\
&(P-v) \times Q=F C+D \\
& Q=(F C+D) /(P-v) \tag{11.2}\\
& \mathrm{OCF}= {[(P-v) \times Q-F C-D]+D } \\
&=(P-v) \times Q-F C \tag{11.3}\\
& Q=(F C+O C F) /(P-v)
\end{align*}
$$

Total dollar return $=$ Dividend income + Capital gain (or loss)
Total cash if stock is sold $=$ Initial investment + Total return

$$
\begin{align*}
& =\$ 3,700+518 \tag{12.2}\\
& =\$ 4,218 \tag{12.3}
\end{align*}
$$

$\operatorname{Var}(R)=(1 /(T-1))\left[\left(R_{1}-\overline{\mathrm{R}}\right)^{2}+\ldots+\left(R_{T}-\overline{\mathrm{R}}\right)^{2}\right]$
Risk premium $=$ Expected return - Risk-free rate

$$
\begin{align*}
& =\mathrm{E}\left(R_{U}\right)-R_{f} \tag{13.1}\\
& =20 \%-8 \% \\
& =12 \%
\end{align*}
$$

$$
\begin{align*}
& \mathrm{E}(R)=\sum_{j} O_{j} \times P_{j} \tag{13.2}\\
& \sigma^{2}=\sum_{j}\left[O_{j}-\mathrm{E}(R)\right]^{2} \times P_{j} \tag{13.3}\\
& \sigma=\sqrt{\sigma^{2}} \tag{13.4}
\end{align*}
$$

$\mathrm{E}\left(R_{P}\right)=x_{1} \times \mathrm{E}\left(R_{1}\right)+x_{2} \times \mathrm{E}\left(R_{2}\right)+\ldots+x_{n} \times \mathrm{E}\left(R_{n}\right)$
$\sigma_{P}^{2}=x^{2} \sigma^{2}{ }_{L}+x^{2}{ }_{u} \sigma^{2} u+2 x_{L} x \operatorname{CORR}_{L, U} \sigma_{L} \sigma_{u}$
$\sigma_{P}=\sqrt{\sigma_{\rho}^{2}}$
Total return $=$ Expected return + Unexpected return

$$
\begin{equation*}
R=\mathrm{E}(R)+U \tag{13.6}
\end{equation*}
$$

Announcement $=$ Expected part + Surprise
$\mathrm{R}=\mathrm{E}(R)+$ Systematic portion + Unsystematic portion.

Total risk $=$ Systematic risk + Unsystematic risk

$$
\begin{align*}
& \mathrm{E}\left(R_{i}\right)=R_{f}+\left[\mathrm{E}\left(R_{M}\right)-R_{f}\right] \times \beta_{i} \tag{13.10}\\
& R=\mathrm{E}(R)+\beta_{I} F_{I}+\beta_{G N P} F_{G N P}+\beta_{r} F_{r}+\epsilon \tag{13.11}\\
& \mathrm{E}(R)=R_{F}+\mathrm{E}\left[\left(R_{1}\right)-R_{F}\right] \beta_{1}+\mathrm{E}\left[\left(R_{2}\right)-R_{F}\right] \beta_{2} \\
& +\mathrm{E}\left[\left(R_{3}\right)-R_{F}\right] \beta_{3}+\ldots \mathrm{E}\left[\left(R_{K}\right)-R_{F}\right] \beta_{K} \\
& \sigma^{2}{ }_{P}=x^{2}{ }_{L} \sigma^{2}{ }_{L}+x^{2}{ }_{U} \sigma^{2}{ }_{U}+2 x_{L} x_{U} \operatorname{CORR}_{L, U} \sigma_{L} \sigma_{U} \\
& \sigma^{2}{ }_{P} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{j} \sigma_{i j} \\
& \frac{\delta \sigma^{2}{ }_{P}}{\delta x_{2}}=2 \sum_{j=1}^{N} x_{j} \sigma_{i 2}=2\left[x_{1} \operatorname{COV}\left(R_{1}, R_{2}\right)+x_{2} \sigma^{2}{ }_{2}+x_{3} \operatorname{COV}\left(R_{3}, R_{2}\right)\right. \\
& \beta_{2}=\frac{\operatorname{COV}\left(R_{2}, R_{M}\right)}{\sigma^{2}\left(R_{M}\right)} \\
& R_{E}=\left(D_{1} / P_{0}\right)+g \tag{14.1}\\
& R_{E}=R_{f}+\beta_{E} \times\left[R_{M}-R_{f}\right] \tag{14.2}\\
& R_{P}=D / P_{0} \tag{14.3}\\
& V=E+D \tag{14.4}\\
& 100 \%=E / V+D / V \tag{14.5}\\
& \mathrm{WACC}=(E / V) \times R_{E}+(D / V) \times R_{D} \times\left(1-T_{C}\right) \tag{14.6}\\
& f_{A}=(E / V) \times f_{E}+(D / V) \times f_{D} \tag{14.7}\\
& =60 \% \times .10+40 \% \times .05 \\
& =8 \% \\
& \beta_{\text {Portfolio }}=\beta_{\text {Levered firm }}=\frac{\text { Debt }}{\text { Debt }+ \text { Equity }} \times \beta_{\text {Debt }} \\
& +\frac{\text { Equity }}{\text { Debt }+ \text { Equity }} \times \beta_{\text {Equity }}
\end{align*}
$$

Number of new shares $=$ Funds to be raised/Subscription price
[15.1]

$$
=\$ 5,000,000 / \$ 10=500,000 \text { shares }
$$

Number of rights needed to buy a share of stock $=$ Old shares/New shares [15.2]

$$
=1,000,000 / 500,000=2 \text { rights }
$$

[14A.3]

$$
\begin{align*}
R_{o} & =\left(M_{o}-S\right) /(N+1) \tag{15.3}\\
M_{e} & =M_{o}-R_{o} \tag{15.4}\\
R_{e} & =\left(M_{e}-S\right) / N \tag{15.5}
\end{align*}
$$

Degree of financial levrage $=\frac{\text { Percentage change in EPS }}{\text { Percentage change in EBIT }}$
$\mathrm{DFL}=\frac{\mathrm{EBIT}}{\text { EBIT }- \text { Interest }}$
$V_{u}=E B I T / R_{E}^{u}=V_{L}=E_{L}+D_{L}$
$R_{E}=R_{A}+\left(R_{A}-R_{D}\right) \times(D / E)$
$\beta_{E}=\beta_{A} \times(1+D / E)$

Value of the interest tax shield $=\left(T_{C} \times R_{D} \times D\right) / R_{D}$

$$
\begin{equation*}
=T_{C} \times D \tag{16.6}
\end{equation*}
$$

$V_{L}=V_{U}+T_{C} \times D$
$R_{E}=\rho+\left(\rho-R_{D}\right) \times(D / E) \times\left(1-T_{C}\right)$
$V_{L}=V_{U}+\left[1-\frac{\left(1-T_{C}\right) \times\left(1-T_{S}\right)}{\left(1-T_{b}\right)}\right] \times B$
[16A.1]
Net working capital + Fixed assets $=$ Long-term debt + Equity
Net working capital $=($ Cash + Other current assets $)$

- Current liabilities

Cash $=$ Long-term debt + Equity + Current liabilities

- Current assets (other than cash) - Fixed assets

Operating cycle $=$ Inventory period + Accounts receivable period 105 days $=60$ days +45 days

Cash cycle $=$ Operating cycle - Accounts payable period 75 days $=105$ days -30 days

Cash collections $=$ Beginning accounts receivable $+1 / 2 \times$ Sales
Average daily float $=$ Average daily receipts \times Weighted average delay [19.1]

$$
=\$ 266,666.67 \times 7.50 \text { days }=\$ 2,000,000
$$

Opportunity costs $=(C / 2) \times R$
[19A.1]
[19A.2]

$$
\begin{align*}
& \text { Total cost }=\text { Opportunity costs }+ \text { Trading costs } \\
& =(C / 2) \times R+(T / C) \times F \\
& C^{*}=\sqrt{(2 T \times F) / R} \\
& \mathrm{C}^{*}=\mathrm{L}+\left(3 / 4 \times \mathrm{F} \times \sigma^{2} / \mathrm{R}\right)^{1 / 3} \\
& \mathrm{U}^{*}=3 \times \mathrm{C}^{*}-2 \times \mathrm{L} \\
& \text { Average cash balance }=\left(4 \times C^{*}-L\right) / 3 \\
& \text { [19A.3] } \\
& \text { [19A.4] } \\
& \text { [19A.5] } \\
& \text { [19A.6] } \\
& \text { [19.A7] } \\
& \text { Accounts receivable }=\text { Average daily sales } \times \mathrm{ACP} \\
& \text { Cash flow }(\text { old policy })=(P-v) Q \\
& =(\$ 49-20) \times 100 \\
& =\$ 2,900 \\
& \text { Cash flow (new policy) }=(P-v) Q^{\prime} \tag{20.3}\\
& =(\$ 49-20) \times 110 \\
& =\$ 3,190 \\
& \mathrm{PV}=\left[(P-v)\left(Q^{\prime}-Q\right)\right] / R \tag{20.4}\\
& \text { Cost of switching }=P Q+v\left(Q^{\prime}-Q\right) \tag{20.5}\\
& \text { NPV of switching }=-\left[P Q+v\left(Q^{\prime}-Q\right)\right]+(P-v)\left(Q^{\prime}-Q\right) / R \tag{20.6}\\
& \mathrm{NPV}=0=-\left[P Q+v\left(Q^{\prime}-Q\right)\right]+(P-v)\left(Q^{\prime}-Q\right) / R \tag{20.7}\\
& \mathrm{Q}^{\prime}-Q=(P Q) /[(P-v) / R-v] \\
& \mathrm{NPV}=-v+(1-\pi) P^{\prime} /(1+R) \tag{20.8}\\
& \mathrm{NPV}=-v+(1-\pi)(P-v) / R \tag{20.9}\\
& \text { Score }=\mathrm{Z}=0.4 \times[\text { Sales } / \text { Total assets }]+3.0 \times \text { EBIT/Total assets } \tag{20.10}\\
& \text { Total carrying costs }=\text { Average inventory } \times \text { Carrying costs per unit } \tag{20.11}\\
& =(Q / 2) \times C C \\
& \text { Total restocking cost }=\text { Fixed cost per order } \times \text { Number of orders } \tag{20.12}\\
& =F \times(T / Q) \\
& \text { Total costs }=\text { Carrying costs }+ \text { Restocking costs } \tag{20.13}\\
& =(Q / 2) \times C C+F \times(T / Q) \\
& \text { Carrying costs }=\text { Restocking costs } \tag{20.14}\\
& \left(Q^{*} / 2\right) \times C C=F \times\left(T / Q^{*}\right) \\
& Q^{* 2}=\frac{2 T \times F}{C C} \tag{20.15}
\end{align*}
$$

$$
\begin{align*}
& Q^{*}=\sqrt{\frac{2 T \times F}{C C}} \tag{20.16}\\
& \begin{aligned}
Q^{*} & =\sqrt{\frac{2 T \times F}{C C}} \\
& =\sqrt{\frac{(2 \times 46,800) \times \$ 50}{\$.75}} \\
& =\sqrt{6,240,000} \\
& =2,498 \text { units }
\end{aligned} \tag{20.17}\\
& \begin{aligned}
\text { EOQ* } & =\sqrt{\frac{2 T \times F}{C C}} \\
& =\sqrt{\frac{(2 \times 600) \times \$ 20}{\$ 3}} \\
& =\sqrt{8,000} \\
& =89.44 \text { units }
\end{aligned}
\end{align*}
$$

Net incremental cash flow $=P^{\prime} Q \times(d-\pi)$
[20A.1]
[20A.2]
$F_{t}=S_{0} \times\left[1+\left(R_{F C}-R_{C D N}\right)\right]^{t}$
$\mathrm{E}\left[S_{1}\right]=S_{0} \times\left[1+\left(R_{F C}-R_{C D N}\right)\right]$

NPV $=V_{B}^{*}-$ Cost to Firm A of the acquisition
$C_{1}=0$ if $\left(S_{1}-E\right) \leq 0$
$C_{1}=S_{1}-E$ if $\left(S_{1}-E\right)>0$

$$
\begin{align*}
& C_{0} \leq S_{0} \tag{25.3}\\
& \quad C_{0} \geq 0 \text { if } S_{0}-E<0 \tag{25.4}\\
& C_{0} \geq S_{0}-E \text { if } S_{0}-E \geq 0 \\
& S_{0}=C_{0}+E /\left(1+R_{f}\right) \\
& C_{0}=S_{0}-E /\left(1+R_{f}\right) \\
& \text { Call option value }=\text { Stock value - Present value of the exercise price } \tag{25.6}\\
& \qquad \begin{array}{c}
0 \\
\\
C_{0}= \\
C_{0}= \\
S_{0} \times N\left(d_{1}\right)-E /\left(1+R_{f}\right)^{t} \\
d_{1}= \\
\left.=\left[\ln \left(S_{0} / E\right)+\left(R_{f}+1 / 2 \times \sigma^{2}\right) \times t\right]\right][\sigma \times \sqrt{t}]
\end{array}
\end{align*}
$$

