Assets = Liabilities + Shareholders' equity	[2.1]
Revenues – Expenses = Income	[2.2]
Cash flow from assets = Cash flow to bondholders + Cash flow to shareholders	[2.3]
Current ratio = Current assets/Current liabilities	[3.1]
$Quick ratio = \frac{Current assets - Inventory}{Current liabilities}$	[3.2]
Cash ratio = Cash/Current liabilities	[3.3]
Net working capital to total assets = Net working capital/Total assets	[3.4]
Interval measure = Current assets/Average daily operating costs	[3.5]
Total debt ratio = [Total assets – Total equity]/Total assets = [\$3,588 – 2,591]/\$3,588 = .28	[3.6]
Debt/equity ratio = Total debt/Total equity = \$.28/\$.72 = .39	[3.7]
Equity multiplier = Total assets/Total equity = \$1/\$.72 = 1.39	[3.8]
Long-term debt ratio = $\frac{\text{Long-term debt}}{\text{Long-term debt} + \text{Total equity}}$ $= $457/[$457 + 2,591] = $457/$3,048 = .15$	[3.9]
Times interest earned ratio = EBIT/Interest = \$691/\$141 = 4.9 times	[3.10]
Cash coverage ratio = [EBIT + Depreciation]/Interest = [\$691 + 276]/\$141 = \$967/\$141 = 6.9 times	[3.11]
Inventory turnover = Cost of goods sold/Inventory = \$1,344/\$422 = 3.2 times	[3.12]
Days' sales in inventory = 365 days/Inventory turnover = 365/3.2 = 114 days	[3.13]
Receivables turnover = Sales/Accounts receivable = \$2,311/\$188 = 12.3 times	[3.14]
Days' sales in receivables = 365 days/Receivables turnover = 365/12.3 = 30 days	[3.15]
NWC turnover = Sales/NWC = \$2,311/(\$708 - \$540) = 13.8 times	[3.16]
Fixed asset turnover = Sales/Net fixed assets = \$2,311/\$2,880 = .80 times	[3.17]

$$= $2,311/$3,588 = .64 \text{ times}$$
Profit margin = Net income/Sales
$$= $363/$2,311 = 15.7\%$$
Return on assets = Net income/Total assets
$$= $363/$3,588 = 10.12\%$$
Return on equity = Net income/Total equity
$$= $363/$2,591 = 14\%$$
P/E ratio = Price per share/Earnings per share
$$= $157/$311 = 14.27 \text{ times}$$
Market-to-book ratio = Market value per share/Book value per share
$$= $157/$31 = 14.27 \text{ times}$$
Market-to-book ratio = Market value per share/Book value per share
$$= $157/$31 = 14.27 \text{ times}$$
ROE = Net income/Sales × Sales/Assets × Assets/Equity
$$= \text{Profit margin} \times \text{Total asset turnover} \times \text{Equity multiplier}$$
Dividend payout ratio = Cash dividends/Net income
$$= $44/$312 \\ = 331/3\%$$
EFN = Increase in total assets - Addition to retained earnings
$$= A(g) - p(S)R \times (1 + g)$$
EFN = $-p(S)R + [A - p(S)R] \times g$ [4.3]EFN = $-p(S)R + [A - p(S)R] \times g$ [4.4]
$$= 9.5(R)/[A - pS(R)] \\ = .132($500)(2/3)/[$500 - .132($500)(2/3)] \\ = 44/[500 - 44] \\ = 44/[456 = 9.65\%]$$
Internal growth rate =
$$\frac{ROA \times R}{1 - ROA \times R}$$
 [4.5]
EFN = Increase in total assets - Addition to retained earnings
$$- \text{New borrowing} \\ = A(g) - p(S)R \times (1 + g) - pS(R) \times (1 + g)[D/E]$$
EFN = 0

$$g^* = ROE \times R/[1 - ROE \times R]$$
 [4.7]
$$g^* = \frac{p(S/A)(1 + D/E) \times R}{1 - p(S/A)(1 + D/E) \times R}$$
 [4.8]
EFN = Increase in total assets - Addition to retained earnings
$$- \text{New borrowing} \\ = A(g) - p(S)R \times (1 + g) - pS(R) \times (1 + g)[D/E]$$
EFN = Increase in total assets - Addition to retained earnings
$$- \text{New borrowing} \\ = A(g) - p(S)R \times (1 + g) - pS(R) \times (1 + g)[D/E]$$
EFN = Increase in total assets - Addition to retained earnings
$$- \text{New borrowing} \\ = A(g) - p(S)R \times (1 + g) - pS(R) \times (1 + g)[D/E]$$
EFN = Increase in total assets - Addition to retained earnings
$$- \text{New borrowing} \\ = A(g) - p(S)R \times (1 + g) - pS(R) \times (1 + g)[D/E]$$
Fulture value = \$1 \times (1 + g)^f

[3.18]

[5.2]

[5.3]

Total asset turnover = Sales/Total assets

 $PV = \$1 \times [1/(1+r)^t] = \$1/(1+r)^t$

 $\begin{aligned} & \text{PV} \times (1+r)^t = \text{FV}_t \\ & \text{PV} = & \text{FV}_t / (1+r)^t = & \text{FV}_t \times \left[1/(1+r)^t \right] \end{aligned}$

Annuity present value =
$$C \times \left(\frac{1 - \text{Present value factor}}{r}\right)$$
 [6.1]
= $C \times \left\{\frac{1 - 1/(1 + r)t}{r}\right\}$

Annuity due value = Ordinary annuity value
$$\times (1 + r)$$
 [6.1]

$$EAR = [1 + (Quoted rate/m)]^{m} - 1$$
 [6.2]

$$EAR = e^q - 1$$
 [6.3]

Bond value =
$$C \times (1 - 1/(1 + r)^t)/r + F/(1 + r)^t$$
 [7.1]

$$1 + R = (1+r) \times (1+h)$$
 [7.2]

$$1 + R = (1 + r) \times (1 + h)$$

$$R = r + h + r \times h$$
[7.3]

$$R \approx r + h$$
 [7.4]

$$NPV = (c_0 - c_N)/c_N \times \$1,000 - CP$$
 [7B.1]

$$P_0 = (D_1 + P_1)/(1+r)$$
 [8.1]

$$P_0 = D/r ag{8.2}$$

$$P_0 = \frac{D_0 \times (1+g)}{r-g} = \frac{D_1}{r-g}$$
 [8.3]

$$P_t = \frac{D_t \times (1+g)}{r-g} = \frac{D_t + 1}{r-g}$$
 [8.4]

$$(r-g) = D_1/P_0$$

$$r = D_1/P_0 + g$$
[8.5]

$$S - VC = FC + D$$

$$P \times Q - v \times Q = FC + D$$

$$(P - v) \times Q = FC + D$$

$$Q = (FC + D)/(P - v)$$
[11.1]

OCF = EBIT +
$$D$$
 - Taxes
= $(S - C - D) + D - (S - C - D) \times T_C$
= $$200 + 600 - 80 = 720

OCF =
$$(S - C - D) + D - (S - C - D) \times T_c$$

= $(S - C - D) \times (1 - T_c) + D$
= Project net income + Depreciation
= $\$120 + 600$
= $\$720$

OCF =
$$(S - C - D) + D - (S - C - D) \times T_C$$

= $(S - C) - (S - C - D) \times T_C$
= Sales - Costs - Taxes
= $\$1,500 - 700 - 80 = \720

OCF =
$$(S - C - D) + D - (S - C - D) \times T_c$$

= $(S - C) \times (1 - T_c) + D \times T_c$ [10.4]

$$OCF = [(P - v) \times Q - FC - D] + D$$

= $(P - v) \times Q - FC$ [11.2]

$$Q = (FC + OCF)/(P - v)$$
 [11.3]

Total dollar return = Dividend income + Capital gain (or loss) [12.1]

$$Var(R) = (1/(T-1)) [(R_1 - \overline{R})^2 + \dots + (R_T - \overline{R})^2]$$
 [12.3]

Risk premium = Expected return – Risk-free rate

$$= E(R_U) - R_f$$

$$= 20\% - 8\%$$

$$= 12\%$$
[13.1]

$$E(R) = \sum_{j} O_{j} \times P_{j}$$
 [13.2]

$$\sigma^{2} = \sum_{j} [O_{j} - E(R)]^{2} \times P_{j}$$
 [13.3]

$$E(R_p) = x_1 \times E(R_1) + x_2 \times E(R_2) + \dots + x_n \times E(R_n)$$
 [13.4]

$$\sigma^2_P = x^2_L \sigma^2_L + x^2_U \sigma^2_U + 2x_L x_U CORR_L, U\sigma_L \sigma_U$$
 [13.5]

Total return = Expected return + Unexpected return
$$R = E(R) + U$$
 [13.6]

$$R = E(R) + Systematic portion + Unsystematic portion$$
 [13.8]

$$E(R_i) = R_f + [E(R_M) - R_f] \times \beta_i$$
 [13.10]

$$R = E(R) + \beta_I F_I + \beta_{GNP} F_{GNP} + \beta_r F_r + \epsilon$$
 [13.11]

$$E(R) = R_F + E[(R_1) - R_F]\beta_1 + E[(R_2) - R_F]\beta_2 + E[(R_3) - R_F]\beta_3 + \dots E[(R_K) - R_F]\beta_K$$
[13.12]

$$\sigma^2_P = x^2_L \sigma^2_L + x^2_U \sigma^2_U + 2x_L x_U CORR_{L,U} \sigma_L \sigma_U$$
[13A.1]

$$\sigma^2 P \sum_{i=1}^{N} \sum_{j=1}^{N} x_j \sigma_{ij}$$
 [13A.2]

$$\frac{\delta \sigma^2_{P}}{\delta x_2} = 2\sum_{j=1}^{N} x_j \sigma_{i2} = 2[x_1 \text{COV}(R_1, R_2) + x_2 \sigma^2_2 + x_3 \text{ COV}(R_3, R_2)]$$
 [13A.3]

 $+ \ldots + x_N \text{COV}(R_N, R_2)$

$$\beta_2 = \frac{\text{COV}(R_2, R_M)}{\sigma^2(R_M)}$$
 [13A.4]

$$R_E = (D_1/P_0) + g ag{14.1}$$

$$R_E = R_f + \beta_E \times [R_M - R_f]$$
 [14.2]

$$R_{\mathcal{P}} = D/P_0 \tag{14.3}$$

[14.4]

V = E + D

Cash collections = Beginning accounts receivable + $1/2 \times Sales$	[18.6]
Average daily float = Average daily receipts × Weighted average delay	[19.1]
Opportunity costs = $(C/2) \times R$	[19A.1]
Trading costs = $(T/C) \times F$	[19A.2]
Total cost = Opportunity costs + Trading costs = $(C/2) \times R + (T/C) \times F$	[19A.3]
$C^* = \sqrt{(2T \times F)/R}$	[19A.4]
$C^* = L + (3/4 \times F \times \sigma^2/R)^{1/3}$	[19A.5]
$U^* = 3 \times C^* - 2 \times L$	[19A.6]
Average cash balance = $(4 \times C^* - L)/3$	[19.A7]
Accounts receivable = Average daily sales \times ACP	[20.1]
Cash flow (old policy) = $(P - \nu)Q$ = $(\$49 - 20) \times 100$ = $\$2,900$	[20.2]
Cash flow (new policy) = $(P - v)Q'$ = $(\$49 - 20) \times 110$ = $\$3,190$	[20.3]
$PV = [(P - \nu)(Q' - Q)]/R$	[20.4]
Cost of switching = $PQ + \nu(Q' - Q)$	[20.5]
NPV of switching = $-[PQ + \nu(Q' - Q)] + (P - \nu)(Q' - Q)/R$	[20.6]
$NPV = 0 = -[PQ + \nu(Q' - Q)] + (P - \nu)(Q' - Q)/R$	[20.7]
NPV = $-\nu + (1 - \pi)P'/(1 + R)$	[20.8]
$NPV = -\nu + (1 - \pi)(P - \nu)/R$	[20.9]
Score = $Z = 0.4 \times [Sales/Total assets] + 3.0 \times EBIT/Total assets$	[20.10]
Total carrying costs = Average inventory × Carrying costs per unit = $(Q/2) \times CC$	[20.11]
Total restocking cost = Fixed cost per order × Number of orders = $F \times (T/Q)$	[20.12]
Total costs = Carrying costs + Restocking costs = $(Q/2) \times CC + F \times (T/Q)$	[20.13]
Carrying costs = Restocking costs $(Q^*/2) \times CC = F \times (T/Q^*)$	[20.14]
$Q^{*2} = \frac{2T \times F}{CC}$	[20.15]
$Q^* = \sqrt{\frac{2T \times F}{CC}}$	[20.16]

$$Q^* = \sqrt{\frac{2T \times F}{CC}}$$
 [20.17]

$$EOQ^* = \sqrt{\frac{2T \times F}{CC}}$$
 [20.18]

Net incremental cash flow =
$$P'Q \times (d - \pi)$$
 [20A.1]

$$NPV = -PQ + P'Q \times (d - \pi)/R$$
 [20A.2]

$$(E[S_1] - S_0)/S_0 = h_{FC} - h_{CDN}$$
 [21.1]

$$E[S_1] = S_0 \times [1 + (h_{FC} - h_{CDN})]$$
 [21.2]

$$E[S_t] = S_0 \times [1 + (h_{FC} - h_{CDN})]^t$$
 [21.3]

$$F_1/S_0 = (1 + R_{FC})/(1 + R_{CDN})$$
 [21.4]

$$(F_1 - S_0)/S_0 = R_{FC} - R_{CDN}$$
 [21.5]

$$F_1 = S_0 \times [1 + (R_{FC} - R_{CDN})]$$
 [21.6]

$$F_t = S_0 \times [1 + (R_{FC} - R_{CDN})]^t$$
 [21.7]

$$E[S_1] = S_0 \times [1 + (R_{FC} - R_{CDN})]$$
 [21.8]

$$E[S_1] = S_0 \times [1 + (R_{FC} - R_{CDN})]$$
 [21.8]

$$R_{CDN} - h_{CDN} = R_{FC} - h_{FC}$$
 [21.10]

NPV =
$$V_B^*$$
 – Cost to Firm A of the acquisition [23.1]

$$C_1 = 0 \text{ if } (S_1 - E) \le 0$$
 [25.1]

$$C_1 = S_1 - E \text{ if } (S_1 - E) > 0$$
 [25.2]

$$C_0 \le S_0$$
 [25.3]

$$C_0 \ge 0 \text{ if } S_0 - E < 0$$
 [25.4] $C_0 \ge S_0 - E \text{ if } S_0 - E \ge 0$

$$S_0 = C_0 + E/(1 + R_f)$$
 [25.5] $C_0 = S_0 - E/(1 + R_f)$

Call option value = Stock value - Present value of the exercise price
$$C_0 = S_0 - E/(1 + R_f)^t$$
 [25.6]

$$C_0 = S_0 \times N(d_1) - E/(1 + R_f)^t \times N(d_2)$$
 [25A.1]

$$d_1 = [\ln(S_0/E) + (R_f + 1/2 \times \sigma^2) \times t] / [\sigma \times \sqrt{t}]$$
 [25A.2]