## MATC9 Ch 2.1 Key Concepts 3 Pythagorean Theorem Worked Example

Example 1: Use the Pythagorean theorem to find the unknown side of the triangle shown.

Solution: Since the hypotenuse is the unknown side, use the formula $c^{2}=a^{2}+b^{2}$ and substitute

11.2 m for $a$ and $b$.

$$
\begin{aligned}
\mathrm{c}^{2} & =11.2^{2}+6.1^{2} \\
& =162.65 \\
\mathrm{c} & =\sqrt{162.65} \\
& =12.8 \mathrm{~m}
\end{aligned}
$$

The hypotenuse measures 12.8 m .
Example 2: Use the Pythagorean theorem to find the unknown side of the triangle shown.

Solution: Since one of the shorter sides is the unknown side, use the

24.2 cm formula $c^{2}=a^{2}+b^{2}$ and substitute for c and a .

$$
\begin{aligned}
24.2^{2} & =19.8^{2}+b^{2} \\
b^{2} & =24.2^{2}-19.8^{2} \\
& =193.6 \\
b & =\sqrt{193.6} \\
& =13.9 \mathrm{~cm}
\end{aligned}
$$

The side measures 13.9 cm .

## Practice:

1. Use the Pythagorean theorem to find the hypotenuse of the triangle shown.

2. A radio transmitting antenna casts a shadow 16.4 m long. A guy wire 22.8 m long runs from the end of the shadow to the top of the antenna. Use the Pythagorean theorem to find the height of the antenna.

Answers: $1.11 .6 \mathrm{~cm} \quad 2.15 .8 \mathrm{~m}$

