MATC9 Ch02.5 Key Concepts 1 Maximizing the Area of a Rectangle (Four Sides) Worked Example

Example: What is the minimum amount of fencing needed to enclose an area of $225 \mathrm{~m}^{2}$?

Solution: The maximum area enclosed occurs when a square shape is chosen. The side of the square can be calculated:
$\mathrm{s}=\sqrt{225}$
$=15 \mathrm{~m}$
Therefore, the amount of fencing needed is $4 \times 15=60 \mathrm{~m}$.

Practice:

1. What is the minimum amount of fencing required to enclose an area of $1600 \mathrm{~m}^{2}$?
2. What is the minimum amount of fencing required to enclose an area of $1 \mathrm{~km}^{2}$?

Answers: 1. $160 \mathrm{~m} \quad 2.4 \mathrm{~km}$

