MATC9 Ch2.5 Key Concepts 2 Maximizing the Area of a Rectangle (Three Sides) Worked Example

Example: What is the minimum amount of fencing needed to enclose an area of $512 \mathrm{~m}^{2}$, if one side is along a river and needs no fence?

Solution: The maximum area enclosed occurs when the length is twice the width. Let the width be x and the length be $2 x$. The area is $x \times 2 x=2 x^{2}$. Therefore,
$2 x^{2}=512$
$x^{2}=256$
$x=16 \mathrm{~m}$
The amount of fencing needed is $16+16+32=64 \mathrm{~m}$.

Practice:

1. What is the minimum amount of fencing required to enclose an area of $5000 \mathrm{~m}^{2}$, if fencing is only required on three sides?
2. What is the minimum amount of fencing required to enclose an area of $1 \mathrm{~km}^{2}$, if fencing is only required on three sides?

Answers: $1.200 \mathrm{~m} \quad 2.2 .83 \mathrm{~km}$

