MATC9 Ch2.5 Key Concepts 2 Maximizing the Area of a Rectangle (Three Sides) Worked Example

Example: What is the minimum amount of fencing needed to enclose an area of 512 m^2 , if one side is along a river and needs no fence?

Solution: The maximum area enclosed occurs when the length is twice the width. Let the width be *x* and the length be 2*x*. The area is $x \times 2x = 2x^2$. Therefore,

 $2x^{2} = 512$ $x^{2} = 256$ x = 16 m

The amount of fencing needed is 16 + 16 + 32 = 64 m.

Practice:

1. What is the minimum amount of fencing required to enclose an area of 5000 m^2 , if fencing is only required on three sides?

2. What is the minimum amount of fencing required to enclose an area of 1 km², if fencing is only required on three sides?

Answers: 1. 200 m 2. 2.83 km