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LEARNING OBJECTIVES

After completing this supplement,
you should be able to:

1 Describe the type of problem that
would lend itself to solution using
linear programming.

2 Formulate a linear programming
model from a description of a
problem.

3 Solve simple linear programming
problems using the graphical
method.

4 Interpret computer solutions of
linear programming problems.

5 Do sensitivity analysis on the
solution of a linear programming
problem.
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L inear programming is a powerful quantitative tool used by operations managers and
other managers to obtain optimal solutions to problems that involve restrictions or

limitations, such as the available materials, budgets, and labour and machine time. These
problems are referred to as constrained optimization problems. There are numerous
examples of linear programming applications to such problems, including:

• Establishing locations for emergency equipment and personnel that will minimize
response time

• Determining optimal schedules for airlines for planes, pilots, and ground personnel

• Developing financial plans

• Determining optimal blends of animal feed mixes

• Determining optimal diet plans

• Identifying the best set of worker–job assignments

• Developing optimal production schedules

• Developing shipping plans that will minimize shipping costs

• Identifying the optimal mix of products in a factory

Introduction
Linear programming (LP) techniques consist of a sequence of steps that will lead to an
optimal solution to problems, in cases where an optimum exists. There are a number of
different linear programming techniques; some are special-purpose (i.e., used to find solu-
tions for specific types of problems) and others are more general in scope. This supplement
covers the two general-purpose solution techniques: graphical linear programming and com-
puter solutions. Graphical linear programming provides a visual portrayal of many of the
important concepts of linear programming. However, it is limited to problems with only two
variables. In practice, computers are used to obtain solutions for problems, some of which
involve a large number of variables.

Linear Programming Models
Linear programming models are mathematical representations of constrained optimization
problems. These models have certain characteristics in common. Knowledge of these char-
acteristics enables us to recognize problems that can be solved using linear programming.
In addition, it also can help us formulate LP models. The characteristics can be grouped
into two categories: components and assumptions. First, let’s consider the components.

Four components provide the structure of a linear programming model:

1. Objective.

2. Decision variables.

3. Constraints.

4. Parameters.

Linear programming algorithms require that a single goal or objective, such as the maxi-
mization of profits, be specified. The two general types of objectives are maximization
and minimization. A maximization objective might involve profits, revenues, efficiency,
or rate of return. Conversely, a minimization objective might involve cost, time, distance
travelled, or scrap. The objective function is a mathematical expression that can be used
to determine the total profit (or cost, etc., depending on the objective) for a given solution.

Decision variables represent choices available to the decision maker in terms of
amounts of either inputs or outputs. For example, some problems require choosing a com-
bination of inputs to minimize total costs, while others require selecting a combination of
outputs to maximize profits or revenues.

2 PART THREE SYSTEM DESIGN

objective function Mathemat-
ical statement of profit (or cost,
etc.) for a given solution.

decision variables Amounts
of either inputs or outputs.
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Constraints are limitations that restrict the alternatives available to decision makers.
The three types of constraints are less than or equal to (�), greater than or equal to (�),
and simply equal to (�). A � constraint implies an upper limit on the amount of some
scarce resource (e.g., machine hours, labour hours, materials) available for use. A � con-
straint specifies a minimum that must be achieved in the final solution (e.g., must contain
at least 10 percent real fruit juice, must get at least 30 km/L on the highway). The � con-
straint is more restrictive in the sense that it specifies exactly what a decision variable
should equal (e.g., make 200 units of product A). A linear programming model can
consist of one or more constraints. The constraints of a given problem define the set of all
feasible combinations of decision variables; this set is referred to as the feasible solution
space. Linear programming algorithms are designed to search the feasible solution space
for the combination of decision variables that will yield an optimum in terms of the
objective function.

An LP model consists of a mathematical statement of the objective and a mathemati-
cal statement of each constraint. These statements consist of symbols (e.g., x1, x2) that rep-
resent the decision variables and numerical values, called parameters. The parameters
are fixed values; the model is solved given those values.

Example S–1 illustrates the components of an LP model.

x1 � Quantity of product 1 to produceu x2 � Quantity of product 2 to produce

x3 � Quantity of product 3 to produce

Maximize 5x1 � 8x2 � 4x3 (profit) (Objective function)

Subject to

Labour 2x1 � 4x2 � 8x3 � 250 hours

Material 7x1 � 6x2 � 5x3 � 100 kg (Constraints)

Product 1 x1 � 10 units

x1, x2, x3 � 0 (Nonnegativity constraints)

First, the model lists and defines the decision variables. These typically represent
quantities. In this case, they are quantities of three different products that might be
produced.

Next, the model states the objective function. It includes every decision variable in the
model and the contribution (profit per unit) of each decision variable. Thus, product x1 has
a profit of $5 per unit. The profit from product x1 for a given solution will be 5 times the
value of x1 specified by the solution; the total profit from all products will be the sum of
the individual product profits. Thus, if x1 � 10, x2 � 0, and x3 � 6, the value of the
objective function would be:

5(10) � 8(0) � 4(6) � 74

The objective function is followed by a list (in no particular order) of three constraints.
Each constraint has a right-side numerical value (e.g., the labour constraint has a right-
side value of 250) that indicates the amount of the constraint and a relation sign that indi-
cates whether that amount is a maximum (�), a minimum (�), or an equality (�). The
left side of each constraint consists of the variables subject to that particular constraint and
a coefficient for each variable that indicates how much of the right-side quantity one unit
of the decision variable represents. For instance, for the labour constraint, one unit of x1

will require two hours of labour. The sum of the values on the left side of each constraint
represents the amount of that constraint used by a solution. Thus, if x1 � 10, x2 � 0, and 
x3 � 6, the amount of labour used would be:

2(10) � 4(0) � 8(6) � 68 hours

Decision 
variables 

SUPPLEMENT TO CHAPTER SIX LINEAR PROGRAMMING 3

constraints Limitations that
restrict the available
alternatives.

feasible solution space The
set of all feasible combinations
of decision variables as defined
by the constraints.

parameters Numerical
constants.

Example S–1
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Because this amount does not exceed the quantity on the right-hand side of the constraint,
it is feasible.

Note that the third constraint refers to only a single variable; x1 must be at least 10
units. Its coefficient is, in effect, 1, although that is not shown.

Finally, there are the nonnegativity constraints. These are listed on a single line; they
reflect the condition that no decision variable is allowed to have a negative value.

In order for linear-programming models to be used effectively, certain assumptions
must be satisfied. These are:

1. Linearity: the impact of decision variables is linear in constraints and the objective
function.

2. Divisibility: noninteger values of decision variables are acceptable.

3. Certainty: values of parameters are known and constant.

4. Nonnegativity: negative values of decision variables are unacceptable.

MODEL FORMULATION

An understanding of the components of linear programming models is necessary for
model formulation. This helps provide organization to the process of assembling infor-
mation about a problem into a model.

Naturally, it is important to obtain valid information on what constraints are appropri-
ate, as well as on what values of the parameters are appropriate. If this is not done, the
usefulness of the model will be questionable. Consequently, in some instances, consider-
able effort must be expended to obtain that information.

In formulating a model, use the format illustrated in Example 1. Begin by identifying
the decision variables. Very often, decision variables are “the quantity of” something,
such as x1 � the quantity of product 1. Generally, decision variables have profits, costs,
times, or a similar measure of value associated with them. Knowing this can help you
identify the decision variables in a problem.

Constraints are restrictions or requirements on one or more decision variables, and they
refer to available amounts of resources such as labour, material, or machine time, or to
minimal requirements, such as “make at least 10 units of product 1.” It can be helpful 
to give a name to each constraint, such as “labour” or “material 1.” Let’s consider some
of the different kinds of constraints you will encounter.

1. A constraint that refers to one or more decision variables. This is the most common
kind of constraint. The constraints in Example 1 are of this type.

2. A constraint that specifies a ratio. For example, “the ratio of x1 to x2 must be at least
3 to 2.” To formulate this, begin by setting up the ratio:

Then, cross multiply, obtaining

2x1 � 3x2

This is not yet in a suitable form because all variables in a constraint must be on the left side
of the inequality (or equality) sign, leaving only a constant on the right side. To achieve this,
we must subtract the variable amount that is on the right side from both sides. That yields:

2x1 � 3x2 � 0

[Note that the direction of the inequality remains the same.]
3. A constraint that specifies a percentage for one or more variables relative to one or

more other variables. For example, “x1 cannot be more than 20 percent of the mix.” Sup-
pose that the mix consists of variables x1, x2, and x3. In mathematical terms, this would be:

x1 � .20(x1 � x2 � x3)

x

x
1

2

3
2

�
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As always, all variables must appear on the left side of the relationship. To accomplish
that, we can expand the right side, and then subtract the result from both sides. Thus,

x1 � .20x1 � .20x2 � .20x3

Subtracting yields

.80x1 � .20x2 � .20x3 � 0

Once you have formulated a model, the next task is to solve it. The following sections
describe two approaches to problem solution: graphical solutions and computer solutions.

Graphical Linear Programming
Graphical linear programming is a method for finding optimal solutions to two-
variable problems. This section describes that approach.

OUTLINE OF GRAPHICAL PROCEDURE

The graphical method of linear programming plots the constraints on a graph and
identifies an area that satisfies all of the constraints. The area is referred to as the feasible
solution space. Next, the objective function is plotted and used to identify the optimal
point in the feasible solution space. The coordinates of the point can sometimes be read
directly from the graph, although generally an algebraic determination of the coordinates
of the point is necessary.

The general procedure followed in the graphical approach is:

1. Set up the objective function and the constraints in mathematical format.

2. Plot the constraints.

3. Identify the feasible solution space.

4. Plot the objective function.

5. Determine the optimum solution.

The technique can best be illustrated through solution of a typical problem. Consider
the problem described in Example S–2.

General description: A firm that assembles computers and computer equipment is about
to start production of two new types of microcomputers. Each type will require assembly
time, inspection time, and storage space. The amounts of each of these resources that can
be devoted to the production of the microcomputers is limited. The manager of the firm
would like to determine the quantity of each microcomputer to produce in order to
maximize the profit generated by sales of these microcomputers.

Additional information: In order to develop a suitable model of the problem, the manager
has met with design and manufacturing personnel. As a result of those meetings, the
manager has obtained the following information:

Type 1 Type 2

Profit per unit $60 $50
Assembly time per unit 4 hours 10 hours
Inspection time per unit 2 hours 1 hour
Storage space per unit 3 cubic feet 3 cubic feet

The manager also has acquired information on the availability of company resources.
These (daily) amounts are:

SUPPLEMENT TO CHAPTER SIX LINEAR PROGRAMMING 5

graphical linear program-
ming Graphical method for
finding optimal solutions to
two-variable problems.

Example S–2
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Resource Amount Available

Assembly time 100 hours
Inspection time 22 hours
Storage space 39 cubic feet

The manager met with the firm’s marketing manager and learned that demand for the
microcomputers was such that whatever combination of these two types of micro-
computers is produced, all of the output can be sold.

In terms of meeting the assumptions, it would appear that the relationships are linear:
The contribution to profit per unit of each type of computer and the time and storage
space per unit of each type of computer is the same regardless of the quantity produced.
Therefore, the total impact of each type of computer on the profit and each constraint is a
linear function of the quantity of that variable. There may be a question of divisibility
because, presumably, only whole units of computers will be sold. However, because this is
a recurring process (i.e., the computers will be produced daily, a noninteger solution such
as 3.5 computers per day will result in 7 computers every other day), this does not seem to
pose a problem. The question of certainty cannot be explored here; in practice, the man-
ager could be questioned to determine if there are any other possible constraints and
whether the values shown for assembly times, and so forth, are known with certainty. For
the purposes of discussion, we will assume certainty. Last, the assumption of nonnegativ-
ity seems justified; negative values for production quantities would not make sense.

Because we have concluded that linear programming is appropriate, let us now turn our
attention to constructing a model of the microcomputer problem. First, we must define the
decision variables. Based on the statement, “The manager … would like to determine 
the quantity of each microcomputer to produce,” the decision variables are the quantities
of each type of computer. Thus,

x1 � quantity of type 1 to produce

x2 � quantity of type 2 to produce

Next, we can formulate the objective function. The profit per unit of type 1 is listed as $60,
and the profit per unit of type 2 is listed as $50, so the appropriate objective function is

Maximize Z � 60x1 � 50x2

where Z is the value of the objective function, given values of x1 and x2. Theoretically, a
mathematical function requires such a variable for completeness. However, in practice,
the objective function often is written without the Z, as sort of a shorthand version. That
approach is underscored by the fact that computer input does not call for Z: it is under-
stood. The output of a computerized model does include a Z, though.

Now for the constraints. There are three resources with limited availability: assembly
time, inspection time, and storage space. The fact that availability is limited means that
these constraints will all be � constraints. Suppose we begin with the assembly con-
straint. The type 1 microcomputer requires 4 hours of assembly time per unit, whereas the
type 2 microcomputer requires 10 hours of assembly time per unit. Therefore, with a limit
of 100 hours available, the assembly constraint is

4x1 � 10x2 � 100 hours

Similarly, each unit of type 1 requires 2 hours of inspection time, and each unit of type 2
requires 1 hour of inspection time. With 22 hours available, the inspection constraint is

2x1 � 1x2 � 22

(Note: The coefficient of 1 for x2 need not be shown. Thus, an alternative form for this
constraint is: 2x1 � x2 � 22.) The storage constraint is determined in a similar manner:

3x1 � 3x2 � 39

6 PART THREE SYSTEM DESIGN
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SUPPLEMENT TO CHAPTER SIX LINEAR PROGRAMMING 7

There are no other system or individual constraints. The nonnegativity constraints are

x1, x2 � 0

In summary, the mathematical model of the microcomputer problem is

x1 � quantity of type 1 to produce

x2 � quantity of type 2 to produce

Maximize 60x1 � 50x2

Subject to

Assembly 4x1 � 10x2 � 100 hours

Inspection 2x1 � 1x2 � 22 hours

Storage 3x1 � 3x2 � 39 cubic feet

x1, x2 � 0

The next step is to plot the constraints.

PLOTTING CONSTRAINTS

Begin by placing the nonnegativity constraints on a graph, as in Figure 6S–1. The proce-
dure for plotting the other constraints is simple:

1. Replace the inequality sign with an equal sign. This transforms the constraint into an
equation of a straight line.

2. Determine where the line intersects each axis.

a. To find where it crosses the x2 axis, set x1 equal to zero and solve the equation for
the value of x2.

b. To find where it crosses the x1 axis, set x2 equal to zero and solve the equation for
the value of x1.

3. Mark these intersections on the axes, and connect them with a straight line. (Note: If a
constraint has only one variable, it will be a vertical line on a graph if the variable is
x1, or a horizontal line if the variable is x2.)

4. Indicate by shading (or by arrows at the ends of the constraint line) whether the in-
equality is greater than or less than. (A general rule to determine which side of the line
satisfies the inequality is to pick a point that is not on the line, such as 0,0, and see
whether it is greater than or less than the constraint amount.)

5. Repeat steps 1–4 for each constraint.

Nonnegativity
constraints

Area of
feasibility

Quantity of
type 2

Quantity of
type 1

0

= 0x2 

= 
0

x 1 

x1

x2 FIGURE 6S–1

Graph showing the
nonnegativity constraints
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8 PART THREE SYSTEM DESIGN

Consider the assembly time constraint:

4x1 � 10x2 � 100

Removing the inequality portion of the constraint produces this straight line:

4x1 � 10x2 � 100

Next, identify the points where the line intersects each axis, as step 2 describes. Thus
with x2 � 0, we find

4x1 � 10(0) � 100

Solving, we find that 4x1 � 100, so x1 � 25 when x2 � 0. Similarly, we can solve the
equation for x2 when x1 � 0:

4(0) � 10x2 � 100

Solving for x2, we find x2 � 10 when x1 � 0.
Thus, we have two points: x1 � 0, x2 � 10, and x1 � 25, x2 � 0. We can now add this

line to our graph of the nonnegativity constraints by connecting these two points (see
Figure 6S–2).

Next we must determine which side of the line represents points that are less than 100.
To do this, we can select a test point that is not on the line, and we can substitute the x1

and x2 values of that point into the left side of the equation of the line. If the result is less
than 100, this tells us that all points on that side of the line are less than the value of the
line (e.g., 100). Conversely, if the result is greater than 100, this indicates that the other
side of the line represents the set of points that will yield values that are less than 100. A
relatively simple test point to use is the origin (i.e., x1 � 0, x2 � 0). Substituting these
values into the equation yields

4(0) � 10(0) � 0

Obviously this is less than 100. Hence, the side of the line closest to the origin represents
the “less than” area (i.e., the feasible region).

The feasible region for this constraint and the nonnegativity constraints then becomes
the shaded portion shown in Figure 6S–3.

For the sake of illustration, suppose we try one other point, say x1 � 10, x2 � 10. Sub-
stituting these values into the assembly constraint yields

4(10) � 10(10) � 140

Clearly this is greater than 100. Therefore, all points on this side of the line are greater
than 100 (see Figure 6S–4).

Continuing with the problem, we can add the two remaining constraints to the graph.
For the inspection constraint:

1. Convert the constraint into the equation of a straight line by replacing the inequality
sign with an equality sign:

2x1 � 1x2 � 22 becomes 2x1 � 1x2 � 22

25 x10

10

x2

+ 10    = 100

x
1

x
2

4

FIGURE 6S–2

Plot of the first constraint
(assembly time)
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SUPPLEMENT TO CHAPTER SIX LINEAR PROGRAMMING 9

2. Set x1 equal to zero and solve for x2:

2(0) � 1x2 � 22

Solving, we find x2 � 22. Thus, the line will intersect the x2 axis at 22.

3. Next, set x2 equal to zero and solve for x1:

2x1 � 1(0) � 22

Solving, we find x1 � 11. Thus, the other end of the line will intersect the x1 axis at 11.

4. Add the line to the graph (see Figure 6S–5).

Note that the area of feasibility for this constraint is below the line (Figure 6S–5).
Again the area of feasibility at this point is shaded in for illustration, although when
graphing problems it is more practical to refrain from shading in the feasible region until
all constraint lines have been drawn. However, because constraints are plotted one 
at a time, using a small arrow at the end of each constraint to indicate the direction of
feasibility can be helpful.

The storage constraint is handled in the same manner:

1. Convert it into an equality:

3x1 � 3x2 � 39

2. Set x1 equal to zero and solve for x2:

3(0) � 3x2 � 39

Solving, x2 � 13. Thus, x2 � 13 when x1 � 0.

25 x10

10

x2

Assembly time
Feasible
region

FIGURE 6S–3

The feasible region, given the
first constraint and the
nonnegativity constraints

25 x10

10

10

x2

+ 10    = 100

x
1

x
2

4

• 10,10

FIGURE 6S–4

The point 10, 10 is above the
constraint line
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25 x10

10

22

11

x2

Inspection

Assembly

Feasible for inspection
but not for assembly

Feasible for
both assembly
and inspection

Feasible for assembly
but not for inspection

FIGURE 6S–5

Partially completed graph,
showing the assembly,
inspection, and nonnegativity
constraints

25 x10

10

22

11 13

13

x2
Inspection

Storage

Feasible
solution
space

Assembly

FIGURE 6S–6

Completed graph of the
microcomputer problem
showing all constraints and the
feasible solution space

3. Set x2 equal to zero and solve for x1:

3x1 � 3(0) � 39

Solving, x1 � 13. Thus, x1 � 13 when x2 � 0.

4. Add the line to the graph (see Figure 6S–6).

IDENTIFYING THE FEASIBLE SOLUTION SPACE

The feasible solution space is the set of all points that satisfies all constraints. (Recall that
the x1 and x2 axes form nonnegativity constraints.) The shaded area shown in Figure 6S–6
is the feasible solution space for our problem.

The next step is to determine which point in the feasible solution space will produce
the optimal value of the objective function. This determination is made using the objective
function.

PLOTTING THE OBJECTIVE FUNCTION LINE

Plotting an objective function line involves the same logic as plotting a constraint line:
Determine where the line intersects each axis. Recall that the objective function for the
microcomputer problem is

60x1 � 50x2

This is not an equation because it does not include an equal sign. We can get around this
by simply setting it equal to some quantity. Any quantity will do, although one that is
evenly divisible by both coefficients is desirable.

10 PART THREE SYSTEM DESIGN
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SUPPLEMENT TO CHAPTER SIX LINEAR PROGRAMMING 11

Suppose we decide to set the objective function equal to 300. That is,

60x1 � 50x2 � 300

We can now plot the line of our graph. As before, we can determine the x1 and x2 inter-
cepts of the line by setting one of the two variables equal to zero, solving for the other,
and then reversing the process. Thus, with x1 � 0, we have

60(0) � 50x2 � 300

Solving, we find x2 � 6. Similarly, with x2 � 0, we have

60x1 � 50(0) � 300

Solving, we find x1 � 5. This line is plotted in Figure 6S–7.
The profit line can be interpreted in the following way. It is an isoprofit line; every

point on the line (i.e., every combination of x1 and x2 that lies on the line) will provide 
a profit of $300. We can see from the graph many combinations that are both on the 
$300 profit line and within the feasible solution space. In fact, considering noninteger as
well as integer solutions, the possibilities are infinite.

Suppose we now consider another line, say the $600 line. To do this, we set the objec-
tive function equal to this amount. Thus,

60x1 � 50x2 � 600

Solving for the x1 and x2 intercepts yields these two points:

x1 intercept x2 intercept

x1 � 10 x1 � 0

x2 � 0 x2 � 12

This line is plotted in Figure 6S–8, along with the previous $300 line for purposes of
comparison.

Two things are evident in Figure 6S–8 regarding the profit lines. One is that the $600
line is farther from the origin than the $300 line; the other is that the two lines are paral-
lel. The lines are parallel because they both have the same slope. The slope is not affected
by the right side of the equation. Rather, it is determined solely by the coefficients 60 and
50. It would be correct to conclude that regardless of the quantity we select for the value
of the objective function, the resulting line will be parallel to these two lines. Moreover,
if the amount is greater than 600, the line will be even farther away from the origin than
the $600 line. If the value is less than 300, the line will be closer to the origin than the
$300 line. And if the value is between 300 and 600, the line will fall between the $300 and
$600 lines. This knowledge will help in determining the optimal solution.

25 x10

10

22

115

6

13

13

x2

Inspection

Storage

Profit = $300

Assembly

FIGURE 6S–7

Microcomputer problem with
$300 profit line added
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Consider a third line, one with the profit equal to $900. Figure 6S–9 shows that line
along with the previous two profit lines. As expected, it is parallel to the other two, and
even farther away from the origin. However, the line does not touch the feasible solution
space at all. Consequently, there is no feasible combination of x1 and x2 that will yield that
amount of profit. Evidently, the maximum possible profit is an amount between $600 and
$900, which we can see by referring to Figure 6S–9. We could continue to select profit
lines in this manner, and eventually, we could determine an amount that would yield the
greatest profit. However, there is a much simpler alternative. We can plot just one line, say
the $300 line. We know that all other lines will be parallel to it. Consequently, by moving
this one line parallel to itself we can represent other profit lines. We also know that as we
move away from the origin, the profits get larger. What we want to know is how far the
line can be moved out from the origin and still be touching the feasible solution space,
and the values of the decision variables at that point of greatest profit (i.e., the optimal
solution). Locate this point on the graph by placing a straight edge along the $300 line 
(or any other convenient line) and sliding it away from the origin, being careful to keep it
parallel to the line. This approach is illustrated in Figure 6S–10.

Once we have determined where the optimal solution is in the feasible solution space,
we must determine the values of the decision variables at that point. Then, we can use that
information to compute the profit for that combination.

Note that the optimal solution is at the intersection of the inspection boundary and the
storage boundary (see Figure 6S–10). In other words, the optimal combination of x1 and
x2 must satisfy both boundary (equality) conditions. We can determine those values by

25 x10

10

12

22

11105

6

13

13

x2

Inspection

Storage

Profit = $300
Profit = $600

Assembly

FIGURE 6S–8

Microcomputer problem with
profit lines of $300 and $600

25 x10

10

12

22

18

11105

6

13 15

13

x2

Inspection

Storage

$300

$600
$900

Assembly

FIGURE 6S–9

Microcomputer problem with
profit lines of $300, $600, and
$900
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SUPPLEMENT TO CHAPTER SIX LINEAR PROGRAMMING 13

solving the two equations simultaneously. The equations are

Inspection 2x1 � 1x2 � 22

Storage 3x1 � 3x2 � 39

The idea behind solving two simultaneous equations is to algebraically eliminate one of
the unknown variables (i.e., to obtain an equation with a single unknown). This can be
accomplished by multiplying the constants of one of the equations by a fixed amount and
then adding (or subtracting) the modified equation from the other. (Occasionally, it is
easier to multiply each equation by a fixed quantity.) For example, we can eliminate x2 by
multiplying the inspection equation by 3 and then subtracting the storage equation from
the modified inspection equation. Thus,

3(2x1 � 1x2 � 22) becomes 6x1 � 3x2 � 66

Subtracting the storage equation from this produces

6x1 � 3x2 � 66

� (3x1 � 3x2 � 39)

3x1 � 0x2 � 27

Solving the resulting equation yields x1 � 9. The value of x2 can be found by substituting
x1 � 9 into either of the original equations or the modified inspection equation. Suppose
we use the original inspection equation. We have

2(9) � 1x2 � 22

Solving, we find x2 � 4.
Hence, the optimal solution to the microcomputer problem is to produce nine type 1

computers and four type 2 computers per day. We can substitute these values into the
objective function to find the optimal profit:

$60(9) � $50(4) � $740

Hence, the last line—the one that would last touch the feasible solution space as we
moved away from the origin parallel to the $300 profit line—would be the line where
profit equalled $740.

In this problem, the optimal values for both decision variables are integers. This will
not always be the case; one or both of the decision variables may turn out to be non-
integer. In some situations noninteger values would be of little consequence. This would
be true if the decision variables were measured on a continuous scale, such as the amount
of water, sand, sugar, fuel oil, time, or distance needed for optimality, or if the contribu-
tion per unit (profit, cost, etc.) were small, as with the number of nails or ball bearings to

25 x10

10

22

115

6

13

13

x2

Inspection

$300 Assembly
Storage

(last line)

Optimal
solution

FIGURE 6S–10

Finding the optimal solution to
the microcomputer problem
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make. In some cases, the answer would simply be rounded down (maximization
problems) or up (minimization problems) with very little impact on the objective
function. Here, we assume that noninteger answers are acceptable as such.

Let’s review the procedure for finding the optimal solution using the objective function
approach:

1. Graph the constraints.

2. Identify the feasible solution space.

3. Set the objective function equal to some amount that is divisible by each of the objec-
tive function coefficients. This will yield integer values for the x1 and x2 intercepts and
simplify plotting the line. Often, the product of the two objective function coefficients
provides a satisfactory line. Ideally, the line will cross the feasible solution space close
to the optimal point, and it will not be necessary to slide a straight edge because the
optimal solution can be readily identified visually.

4. After identifying the optimal point, determine which two constraints intersect there.
Solve their equations simultaneously to obtain the values of the decision variables at
the optimum.

5. Substitute the values obtained in the previous step into the objective function to deter-
mine the value of the objective function at the optimum.

REDUNDANT CONSTRAINTS

In some cases, a constraint does not form a unique boundary of the feasible solution
space. Such a constraint is called a redundant constraint. Two such constraints are
illustrated in Figure 6S–11. Note that a constraint is redundant if it meets the following
test: Its removal would not alter the feasible solution space.

When a problem has a redundant constraint, at least one of the other constraints in the
problem is more restrictive than the redundant constraint.

SOLUTIONS AND CORNER POINTS

The feasible solution space in graphical linear programming is a polygon. Moreover, the
solution to any problem will be at one of the corner points (intersections of constraints) of
the polygon. It is possible to determine the coordinates of each corner point of the feasi-
ble solution space, and use those values to compute the value of the objective function at
those points. Because the solution is always at a corner point, comparing the values of the
objective function at the corner points and identifying the best one (e.g., the maximum
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FIGURE 6S–11

Examples of redundant
constraints

redundant constraint A con-
straint that does not form a
unique boundary of the feasi-
ble solution space.
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SUPPLEMENT TO CHAPTER SIX LINEAR PROGRAMMING 15

value) is another way to identify the optimal corner point. Using the graphical approach,
it is much easier to plot the objective function and use that to identify the optimal corner
point. However, for problems that have more than two decision variables, and the graph-
ical method isn’t appropriate, this alternate approach is used to find the optimal solution.

In some instances, the objective function will be parallel to one of the constraint lines
that forms a boundary of the feasible solution space. When this happens, every combina-
tion of x1 and x2 on the segment of the constraint that touches the feasible solution space
represents an optimal solution. Hence, there are multiple optimal solutions to the problem.
Even in such a case, the solution will also be a corner point—in fact, the solution will be at
two corner points: those at the ends of the segment that touches the feasible solution space.
Figure 6S–12 illustrates an objective function line that is parallel to a constraint line.

MINIMIZATION

Graphical minimization problems are quite similar to maximization problems. There are,
however, two important differences. One is that at least one of the constraints must be 
of the � or � variety. This causes the feasible solution space to be away from the origin.
The other difference is that the optimal point is the one closest to the origin. We find the
optimal corner point by sliding the objective function (which is an isocost line) toward
the origin instead of away from it.

Solve the following problem using graphical linear programming.

Minimize Z � 8x1 � 12x2

Subject to 5x1 � 2x2 � 20

4x1 � 3x2 � 24

x2 � 2

x1, x2 � 0

1. Plot the constraints (shown in Figure 6S–13).

a. Change constraints to equalities.

b. For each constraint, set x1 � 0 and solve for x2, then set x2 � 0 and solve for x1.

x10

x2

Objective function

Optimal line
segment

FIGURE 6S–12

Some LP problems have
multiple optimal solutions

Example S–3

Solution
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16 PART THREE SYSTEM DESIGN16 PART THREE SYSTEM DESIGN

c. Graph each constraint. Note that x2 � 2 is a horizontal line parallel to the x1 axis
and 2 units above it.

2. Shade the feasible solution space (see Figure 6S–13).

3. Plot the objective function.

a. Select a value for the objective function that causes it to cross the feasible solution
space. Try 8 � 12 � 96; 8x1 � 12x2 � 96 (acceptable).

b. Graph the line (see Figure 6S–14).

4. Slide the objective function toward the origin, being careful to keep it parallel to the
original line.

5. The optimum (last feasible point) is shown in Figure 6S–14. The x2 coordinate (x2 �
2) can be determined by inspection of the graph. Note that the optimum point is at the
intersection of the line x2 � 2 and the line 4x1 � 3x2 � 24. Substituting the value of x2

� 2 into the latter equation will yield the value of x1 at the intersection:

4x1 � 3(2) � 24 x1 � 4.5

Thus, the optimum is x1 � 4.5 units and x2 � 2.

6. Compute the minimum cost:

8x1 � 12x2 � 8(4.5) � 12(2) � 60
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SLACK AND SURPLUS

If a constraint forms the optimal corner point of the feasible solution space, it is called 
a binding constraint. In effect, it limits the value of the objective function; if the
constraint could be relaxed (less restrictive), an improved solution would be possible.
For constraints that are not binding, making them less restrictive will have no impact 
on the solution.

If the optimal values of the decision variables are substituted into the left side of 
a binding constraint, the resulting value will exactly equal the right-hand value of the
constraint. However, there will be a difference with a nonbinding constraint. If the left
side is greater than the right side, we say that there is surplus; if the left side is 
less than the right side, we say that there is slack. Slack can only occur in a � constraint;
it is the amount by which the left side is less than the right side when the optimal 
values of the decision variables are substituted into the left side. And surplus can only
occur in a � constraint; it is the amount by which the left side exceeds the right side 
of the constraint when the optimal values of the decision variables are substituted into 
the left side.

For example, suppose the optimal values for a problem are x1 � 10 and x2 � 20. If one
of the constraints is

3x1 � 2x2 � 100

substituting the optimal values into the left side yields

3(10) � 2(20) � 70

Because the constraint is �, the difference between the values of 100 and 70 (i.e., 30) 
is slack. Suppose the optimal values had been x1 � 20 and x2 � 20. Substituting these
values into the left side of the constraint would yield 3(20) � 2(20) � 100. Because 
the left side equals the right side, this is a binding constraint; slack is equal to zero.

Now consider this constraint:

4x1 � x2 � 50

Suppose the optimal values are x1 � 10 and x2 � 15; substituting into the left side yields

4(10) � 15 � 55

Because this is a � constraint, the difference between the left- and right-side values is
surplus. If the optimal values had been x1 � 12 and x2 � 2, substitution would result in
the left side being equal to 50. Hence, the constraint would be a binding constraint, and
there would be no surplus (i.e., surplus would be zero).

The Simplex Method
The simplex method is a general-purpose linear programming algorithm widely 
used to solve large-scale problems. Although it lacks the intuitive appeal of the graphical
approach, its ability to handle problems with more than two decision variables 
makes it extremely valuable for solving problems often encountered in operations
management.

Although manual solution of linear programming problems using simplex can yield 
a number of insights on how solutions are derived, space limitations preclude describing
it here. However, it is available on the CD that accompanies this book. The discusion here
will focus on computer solutions.

Computer Solutions
The microcomputer problem will be used to illustrate computer solutions. We repeat it
here for ease of reference.

SUPPLEMENT TO CHAPTER SIX LINEAR PROGRAMMING 17

binding constraint A con-
straint that forms the optimal
corner point of the feasible
solution space.

surplus When the values of
decision variables are substi-
tuted into a � constraint and
the resulting value exceeds the
right-side value.

slack When the values of de-
cision variables are substituted
into a � constraint and the
resulting value is less than 
the right-side value.

simplex A linear program-
ming algorithm that can solve
problems having more than
two decision variables.
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Maximize 60x1 � 50x2 where x1 � the number of type 1 computers

x2 � the number of type 2 computers

Subject to

Assembly 4x1 � 10x2 � 100 hours

Inspection 2x1 � 1x2 � 22 hours

Storage 3x1 � 3x2 � 39 cubic feet

x1, x2 � 0

SOLVING LP MODELS USING MS EXCEL

Solutions to linear programming models can be obtained from spreadsheet software
such as Microsoft’s Excel. Excel has a routine called Solver that performs the necessary
calculations.

To use Solver:
1. First, enter the problem in a worksheet, as shown in Figure 6S–15. What is not

obvious from the figure is the need to enter a formula for each cell where there is a zero
(Solver automatically inserts the zero after you input the formula). The formulas are for
the value of the objective function and the constraints, in the appropriate cells. Before you
enter the formulas, designate the cells where you want the optimal values of x1 and x2.
Here, cells D4 and E4 are used. To enter a formula, click on the cell that the formula will
pertain to, and then enter the formula, starting with an equals sign. We want the optimal
value of the objective function to appear in cell G4. For G4, enter the formula

� 60*D4 � 50*E4

The constraint formulas, in cells C7, C8, and C9, are

for C7: � 4*D4 � 10*E4
for C8: � 2*D4 � 1*E4
for C9: � 3*D4 � 3*E4

FIGURE 6S–15

MS Excel worksheet for
microcomputer problem
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2. Now, click on Tools on the top of the worksheet, and in that menu, click on Solver.
The Solver menu will appear as illustrated in Figure 6S–16. Begin by setting the Target
Cell (i.e., indicating the cell where you want the optimal value of the objective function
to appear). Note, if the activated cell is the cell designated for the value of Z when you
click on the Tools menu, Solver will automatically set that cell as the target cell.

Highlight Max if it isn’t already highlighted. The Changing Cells are the cells where
you want the optimal values of the decision variables to appear. Here, they are cells D4
and E4. We indicate this by the range D4:E4 (Solver will add the $ signs).

Finally, add the constraints by clicking on Add … When that menu appears, for each
constraint, enter the cell that contains the formula for the left side of the constraint, then se-
lect the appropriate inequality sign, and then enter either the right-side amount or the cell
that has the right-side amount. Here, the right-side amounts are used. After you have en-
tered each constraint, click on Add, and then enter the next constraint. (Note, constraints
can be entered in any order.) For the nonnegativity constraints, enter the range of cells des-
ignated for the optimal values of the decision variables, choose � sign, and enter 0 for the
right-hand side. Then, click on OK rather than Add, and you will return to the Solver
menu. Click on Options … , and in the Options menu, click on Assume Linear Model, and
then click on OK. This will return you to the Solver Parameters menu. Click on Solve.

3. The Solver Results menu will then appear, indicating that a solution has been found,
or that an error has occurred. If there has been an error, go back to the Solver Parameters
menu and check to see that your constraints refer to the correct changing cells, and that
the inequality directions are correct. Make the corrections and click on Solve.

Assuming everything is correct, in the Solver Results menu, in the Reports box, high-
light both Answer and Sensitivity, and then click on OK.

4. Solver will incorporate the optimal values of the decision variables and the objective
function in your original layout on your worksheet (see Figure 6S–17). We can see that 
the optimal values are type 1 � 9 units and type 2 � 4 units, and the total profit is 740. The
answer report will also show the optimal values of the decision variables (upper part of
Figure 6S–18), and some information on the constraints (lower part of Figure 6S–18). Of
particular interest here is the indication of which constraints have slack and how much
slack. We can see that the constraint entered in cell C7 (assembly) has a slack of 24, and

FIGURE 6S–16

MS Excel Solver parameters
for microcomputer problem
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20 PART THREE SYSTEM DESIGN

that the constraints entered in cells C8 (inspection) and C9 (storage) have slack equal to
zero, indicating that they are binding constraints.

Sensitivity Analysis
Sensitivity analysis is a means of assessing the impact of potential changes to the para-
meters (the numerical values) of an LP model. Such changes may occur due to forces
beyond a manager’s control; or a manager may be contemplating making the changes,
say, to increase profits or reduce costs.

20 PART THREE SYSTEM DESIGN

FIGURE 6S–17

MS Excel worksheet solution to
microcomputer problem

FIGURE 6S–18

MS Excel Answer Report for
microcomputer problem

sensitivity analysis Assessing
the impact of potential changes
to the numerical values of an
LP model.
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There are three types of potential changes:

1. Objective function coefficients.

2. Right-hand values of constraints.

3. Constraint coefficients.

We will consider the first two of these here. We begin with changes to objective function
coefficients.

OBJECTIVE FUNCTION COEFFICIENT CHANGES

A change in the value of an objective function coefficient can cause a change in the opti-
mal solution of a problem. In a graphical solution, this would mean a change to another
corner point of the feasible solution space. However, not every change in the value of an
objective function coefficient will lead to a changed solution; generally there is a range of
values for which the optimal values of the decision variables will not change. For exam-
ple, in the microcomputer problem, if the profit on type 1 computers increased from $60
per unit to, say, $65 per unit, the optimal solution would still be to produce nine units of
type 1 and four units of type 2 computers. Similarly, if the profit per unit on type 1 com-
puters decreased from $60 to, say, $58, producing nine of type 1 and four of type 2 would
still be optimal. These sorts of changes are not uncommon; they may be the result of such
things as price changes in raw materials, price discounts, cost reductions in production,
and so on. Obviously, when a change does occur in the value of an objective function co-
efficient, it can be helpful for a manager to know if that change will affect the optimal
values of the decision variables. The manager can quickly determine this by referring to
that coefficient’s range of optimality, which is the range in possible values of that objec-
tive function coefficient over which the optimal values of the decision variables will not
change. Before we see how to determine the range, consider the implication of the range.
The range of optimality for the type 1 coefficient in the microcomputer problem is 50 to
100. That means that as long as the coefficient’s value is in that range, the optimal values
will be 9 units of type 1 and 4 units of type 2. Conversely, if a change extends beyond 
the range of optimality, the solution will change.

Similarly suppose instead the coefficient of type 2 computers were to change. Its range
of optimality is 30 to 60. As long as the value of the change doesn’t take it outside of this
range, nine and four will still be the optimal values. Note, however, even for changes that
are within the range of optimality, the optimal value of the objective function will change.
If the type 1 coefficient increased from $60 to $61, and nine units of type 1 is still opti-
mum, profit would increase by $9: nine units times $1 per unit. Thus, for a change that is
within the range of optimality, a revised value of the objective function must be deter-
mined.

Now let’s see how we can determine the range of optimality using computer output.

Using MS Excel. There is a table for the Changing Cells (see Figure 6S–19). It shows the
value of the objective function that was used in the problem for each type of computer
(i.e., 60 and 50), and the allowable increase and allowable decrease for each coefficient.
By subtracting the allowable decrease from the original value of the coefficient, and
adding the allowable increase to the original value of the coefficient, we obtain the range
of optimality for each coefficient. Thus, we find for type 1:

60 � 10 � 50 and 60 � 40 � 100

Hence, the range for the type 1 coefficient is 50 to 100. For type 2:

50 � 20 � 30 and 50 � 10 � 60

Hence the range for the type 2 coefficient is 30 to 60.
In this example, both of the decision variables are basic (i.e., nonzero). However, in

other problems, one or more decision variables may be nonbasic (i.e., have an optimal

range of optimality Range of
values over which the solution
quantities of all the decision
variables remain the same.
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value of zero). In such instances, unless the value of that variable’s objective function
coefficient increases by more than a certain amount called its reduced cost, it won’t come
into solution (i.e., become a basic variable). Hence, the range of optimality (sometimes
referred to as the range of insignificance) for a nonbasic variable is from negative infinity
to the sum of its current value and its reduced cost.

Now let’s see how we can handle multiple changes to objective function coefficients;
that is, a change in more than one coefficient. To do this, divide each coefficient’s change
by the allowable change in the same direction. Thus, if the change is a decrease, divide
that amount by the allowable decrease. Treat all resulting fractions as positive. Sum 
the fractions. If the sum does not exceed 1.00, then multiple changes are within the range
of optimality and will not result in any change to the optimal values of the decision
variables.

CHANGES IN THE RIGHT-HAND-SIDE (RHS) 
VALUE OF A CONSTRAINT

In considering right-hand-side changes, it is important to know if a particular constraint 
is binding on a solution. A constraint is binding if substituting the values of the decision
variables of that solution into the left side of the constraint results in a value that is 
equal to the RHS value. In other words, that constraint stops the objective function from
achieving a better value (e.g., a greater profit or a lower cost). Each constraint has 
a corresponding shadow price, which is a marginal value that indicates the amount 
by which the value of the objective function would change if there were a one-unit change
in the RHS value of that constraint. If a constraint is nonbinding, its shadow price is 
zero, meaning that increasing or decreasing its RHS value by one unit will have no 
impact on the value of the objective function. Nonbinding constraints have either slack 
(if the constraint is �) or surplus (if the constraint is �). Suppose a constraint has 10 units
of slack in the optimal solution, which means 10 units that are unused. If we were to
increase or decrease the constraint’s RHS value by one unit, the only effect would be 
to increase or decrease its slack by one unit. But there is no profit associated with slack,
so the value of the objective function wouldn’t change. On the other hand, if the change
is to the RHS value of a binding constraint, then the optimal value of the objective

22 PART THREE SYSTEM DESIGN

FIGURE 6S–19

MS Excel sensitivity report for
microcomputer problem

shadow price Amount by
which the value of the objec-
tive function would change
with a one-unit change in the
RHS value of a constraint.
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function would change. Any change in a binding constraint will cause the optimal values
of the decision variables to change, and hence cause the value of the objective function to
change. For example, in the microcomputer problem, the inspection constraint is 
a binding constraint; it has a shadow price of 10. That means if there was one hour less 
of inspection time, total profit would decrease by $10, or if there were one more hour of
inspection time available, total profit would increase by $10. In general, multiplying the
amount of change in the RHS value of a constraint by the constraint’s shadow price will
indicate the change’s impact on the optimal value of the objective function. However, this
is true only over a limited range called the range of feasibility. In this range, the value of
the shadow price remains constant. Hence, as long as a change in the RHS value of a con-
straint is within its range of feasibility, the shadow price will remain the same, and one
can readily determine the impact on the objective function.

Let’s see how to determine the range of feasibility from computer output.

Using MS Excel. In the sensitivity report there is a table labelled “Constraints” (see
Figure 6S–19). The table shows the shadow price for each constraint, its RHS value, and
the allowable increase and allowable decrease. Adding the allowable increase to the RHS
value and subtracting the allowable decrease will produce the range of feasibility for that
constraint. For example, for the inspection constraint the range would be

22 � 4 � 26; 22 � 4 � 18

Hence, the range of feasibility for Inspection is 18 to 26 hours. Similarly, for the storage
constraint, the range is

39 � 6 � 33 to 39 � 4.5 � 43.5

The range for the assembly constraint is a little different; the assembly constraint is
nonbinding (note the shadow price of 0) while the other two are binding (note their
nonzero shadow prices). The assembly constraint has a slack of 24 (the difference
between its RHS value of 100 and its final value of 76). With its slack of 24, its RHS 
value could be decreased by as much as 24 (to 76) before it would become binding.
Conversely, increasing its right-hand side will only produce more slack. Thus, no amount
of increase in the RHS value will make it binding, so there is no upper limit on the allow-
able increase. Excel indicates this by the large value (1E�30) shown for the allowable in-
crease. So its range of feasibility has a lower limit of 76 and no upper limit.

If there are changes to more than one constraint’s RHS value, analyze these in the same
way as multiple changes to objective function coefficients. That is, if the change is an
increase, divide that amount by that constraint’s allowable increase; if the change is a
decrease, divide the decrease by the allowable decrease. Treat all resulting fractions as
positives. Sum the fractions. As long as the sum does not exceed 1.00, the changes are
within the range of feasibility for multiple changes, and the shadow prices won’t change.

Table 6S–1 summarizes the impacts of changes that fall within either the range of
optimality or the range of feasibility.

Now let’s consider what happens if a change goes beyond a particular range. In a
situation involving the range of optimality, a change in an objective function that is beyond
the range of optimality will result in a new solution. Hence, it will be necessary to
recompute the solution. For a situation involving the range of feasibility, there are two
cases to consider. The first case would be increasing the RHS value of a � constraint 
to beyond the upper limit of its range of feasibility. This would produce slack equal to 
the amount by which the upper limit is exceeded. Hence, if the upper limit is 200,
and the increase is 220, the result is that the constraint has a slack of 20. Similarly, for a 
� constraint, going below its lower bound creates a surplus for that constraint. The second
case for each of these would be exceeding the opposite limit (the lower bound for 
a � constraint, or the upper bound for a � constraint). In either instance, a new solution
would have to be generated.
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range of feasibility Range of
values for the RHS of a con-
straint over which the shadow
price remains the same.
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CHANGES TO OBJECTIVE FUNCTION
COEFFICIENTS THAT ARE WITHIN THE
RANGE OF OPTIMALITY

Component Result

Values of decision variables No change
Value of objective function Will change

CHANGES TO RHS VALUES OF
CONSTRAINTS THAT ARE WITHIN 
THE RANGE OF FEASIBILITY

Component Result

Value of shadow price No change
List of basic variables No change
Values of basic variables Will change
Value of objective function Will change

TABLE 6S–1

Summary of the impact of
changes within their respective
ranges

Solved Problems

Problem 1

Key Terms binding constraint, 17
constraints, 3
decision variables, 2
feasible solution space, 3
graphical linear programming, 5
objective function, 2
parameters, 3
range of feasibility, 23

range of optimality, 21
redundant constraint, 14
sensitivity analysis, 20
shadow price, 22
simplex, 17
slack, 17
surplus, 17

1For the sake of consistency, we will assign to the horizontal axis the first decision variable mentioned 
in the problem. In this case, variable A will be represented on the horizontal axis and variable B on the
vertical axis.

Solution

A small construction firm specializes in building and selling single-family homes. The 
firm offers two basic types of houses, model A and model B. Model A houses require 4,000
labour hours, 2 tons of stone, and 2,000 board feet of lumber. Model B houses require 
10,000 labour hours, 3 tons of stone, and 2,000 board feet of lumber. Due to long lead times for
ordering supplies and the scarcity of skilled and semiskilled workers in the area, the firm will be
forced to rely on its present resources for the upcoming building season. It has 400,000 hours 
of labour, 150 tons of stone, and 200,000 board feet of lumber. What mix of model A and B
houses should the firm construct if model As yield a profit of $1,000 per unit and model Bs yield
$2,000 per unit? Assume that the firm will be able to sell all the units it builds.

a. Formulate the objective function and constraints:1

Maximize Z � 1,000A � 2,000B
Subject to

Labour 4,000A � 10,000B � 400,000 labour hours
Stone 2A � 3B � 150 tons
Lumber 2,000A � 2,000B � 200,000 board feet

A, B � 0

b. Graph the constraints and objective function, and identify the optimum corner point (see
graph). Note that the lumber constraint is redundant: It does not form a boundary of the
feasible solution space.
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c. Determine the optimal quantities of models A and B, and compute the resulting profit. Be-
cause the optimum point is at the intersection of the stone and labour constraints, solve those
two equations for their common point:

Labour 4,000A� 10,000B� 400,000
� 2,000 � (Stone 2A � 3B� 150)

4,000B � 100,000
B � 25

Substitute B � 25 in one of the equations, and solve for A:

2A � 3(25) � 150 A � 37.5
Z � 1,000(37.5) � 2,000(25) � 87,500

This LP model was solved by computer:

Maximize 15x1 � 20x2 � 14x3 where x1 � quantity of product 1
x2 � quantity of product 2
x3 � quantity of product 3

Subject to
Labour 5x1 � 6x2 � 4x3 � 210 hours
Material 10x1 � 8x2 � 5x3 � 200 pounds
Machine 4x1 � 2x2 � 5x3 � 170 minutes

x1, x2, x3 � 0

The following information was obtained from the output. The ranges were also computed based
on the output, and they are shown as well.

Total profit � 548.00

Variable Value Reduced Cost Range of Optimality

Product 1 0 10.6 0.00 to 25.60
Product 2 5 0 9.40 to 22.40
Product 3 32 0 12.50 to 50.00

Constraint Slack Shadow Price Range of Feasibility

Labour 52 0.0 158.00 to unlimited
Material 0 2.4 170.00 to 270.91
Machine 0 0.4 50.00 to 200.00
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a. Which decision variables are basic (i.e., in solution)?
b. By how much would the profit per unit of product 1 have to increase in order for it to have a

nonzero value (i.e., for it to become a basic variable)?
c. If the profit per unit of product 2 increased by $2 to $22, would the optimal production quan-

tities of products 2 and 3 change? Would the optimal value of the objective function change?
d. If the available amount of labour decreased by 12 hours, would that cause a change in the

optimal values of the decision variables or the optimal value of the objective function? Would
anything change?

e. If the available amount of material increased by 10 pounds to 210 pounds, how would that
affect the optimal value of the objective function?

f. If profit per unit on product 2 increased by $1 and profit per unit on product 3 decreased by
$.50, would that fall within the range of multiple changes? Would the values of the decision
variables change? What would be the revised value of the objective function?

a. Products 2 and 3 are in solution (i.e., have nonzero values; the optimal value of product 2 is
5 units, and the optimal value of product 3 is 32 units).

b. The amount of increase would have to equal its reduced cost of $10.60.
c. No, because the change would be within its range of optimality, which has an upper limit of

$22.40. The objective function value would increase by an amount equal to the quantity 
of product 2 and its increased unit profit. Hence, it would increase by 5($2) � $10 to $558.

d. Labour has a slack of 52 hours. Consequently, the only effect would be to decrease the slack
to 40 hours.

e. The change is within the range of feasibility. The objective function value will increase by
the amount of change multiplied by material’s shadow price of $2.40. Hence, the objective
function value would increase by 10($2.40) � $24.00. (Note: If the change had been a
decrease of 10 pounds, which is also within the range of feasibility, the value of the objec-
tive function would have decreased by this amount.)

f. To determine if the changes are within the range for multiple changes, we first compute the
ratio of the amount of each change to the end of the range in the same direction. For product
2, it is $1/$2.40 � .417; for product 3, it is � $.50/� $1.50 � .333. Next, we compute the
sum of these ratios: .417 �.333 � .750. Because this does not exceed 1.00, we conclude that
these changes are within the range. This means that the optimal values of the decision vari-
ables will not change. We can compute the change to the value of the objective function 
by multiplying each product’s optimal quantity by its changed profit per unit: 5($1) �
32(� $.50) � � $11. Hence, with these changes, the value of the objective function would
decrease by $11; its new value would be $548 � $11 � $537.

Solution

1. For which decision environment is linear programming most suited?
2. What is meant by the term feasible solution space? What determines this region?
3. Explain the term redundant constraint.
4. What is an isocost line? An isoprofit line?
5. What does sliding an objective function line toward the origin represent? Away from the origin?
6. Briefly explain these terms:

a. Basic variable
b. Shadow price
c. Range of feasibility
d. Range of optimality
e. Redundant constraints

Discussion and 
Review Questions

1. Solve these problems using graphical linear programming and answer the questions that fol-
low. Use simultaneous equations to determine the optimal values of the decision variables.
a. Maximize Z � 4x1 � 3x2

Problems

chapter6-suppliment.qxd  4/11/03  3:35 PM  Page 26



Subject to
Material 6x1 � 4x2 � 48 kg
Labour 4x1 � 8x2 � 80 hr

x1, x2 � 0
b. Maximize Z � 2x1 �10x2

Subject to
R 10x1 � 4x2 � 40
S 1x1 � 6x2 � 24
T 1x1 � 2x2 � 14

x1, x2 � 0
c. Maximize Z � 6A � 3B (revenue)

Subject to
Material 20A � 6B � 600 kg
Machinery 25A � 20B� 1,000 hr
Labour 20A � 30B� 1,200 hr

A, B � 0

(1) What are the optimal values of the decision variables and Z?
(2) Do any constraints have (nonzero) slack? If yes, which one(s) and how much slack does

each have?
(3) Do any constraints have (nonzero) surplus? If yes, which one(s) and how much surplus

does each have?
(4) Are any constraints redundant? If yes, which one(s)? Explain briefly.

2. Solve these problems using graphical linear programming and then answer the questions that
follow. Use simultaneous equations to determine the optimal values of the decision variables.
a. Minimize Z � 1.80S � 2.20T

Subject to
Potassium 5S � 8T � 200 grams
Carbohydrate 15S � 6T � 240 grams
Protein 4S � 12T � 180 grams
T T � 10 grams

S, T � 0
b. Minimize Z � 2x1 � 3x2

Subject to
D 4x1 � 2x2 � 20
E 2x1 � 6x2 � 18
F 1x1 � 2x2 � 12

x1, x2 � 0

(1) What are the optimal values of the decision variables and Z?
(2) Do any constraints have (nonzero) slack? If yes, which one(s) and how much slack does

each have?
(3) Do any constraints have (nonzero) surplus? If yes, which one(s) and how much surplus

does each have?
(4) Are any constraints redundant? If yes, which one(s)? Explain briefly.

3. An appliance manufacturer produces two models of microwave ovens: H and W. Both models
require fabrication and assembly work; each H uses four hours of fabrication and two hours of
assembly, and each W uses two hours of fabrication and six hours of assembly. There are 600
fabrication hours available this week and 480 hours of assembly. Each H contributes $40 to
profits, and each W contributes $30 to profits. What quantities of H and W will maximize
profits?

4. A small candy shop is preparing for the holiday season. The owner must decide how many
bags of deluxe mix and how many bags of standard mix of Peanut/Raisin Delite to put up. The
deluxe mix has 2/3 kg raisins and 1/3 kg peanuts, and the standard mix has 1/2 kg raisins and 
1/2 kg peanuts per bag. The shop has 90 kg of raisins and 60 kg of peanuts to work with.
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Peanuts cost $.60 per kg and raisins cost $1.50 per kg. The deluxe mix will sell for $2.90
per kg, and the standard mix will sell for $2.55 per kg. The owner estimates that no more than
110 bags of one type can be sold.
a. If the goal is to maximize profits, how many bags of each type should be prepared?
b. What is the expected profit?

5. A retired couple supplement their income by making fruit pies, which they sell to a local gro-
cery store. During the month of September, they produce apple and grape pies. The apple pies
are sold for $1.50 to the grocer, and the grape pies are sold for $1.20. The couple is able to sell
all of the pies they produce owing to their high quality. They use fresh ingredients. Flour and
sugar are purchased once each month. For the month of September, they have 1,200 cups 
of sugar and 2,100 cups of flour. Each apple pie requires 11/2 cups of sugar and 3 cups of flour,
and each grape pie requires 2 cups of sugar and 3 cups of flour.
a. Determine the number of grape and the number of apple pies that will maximize revenues

if the couple working together can make an apple pie in six minutes and a grape pie in three
minutes. They plan to work no more than 60 hours.

b. Determine the amounts of sugar, flour, and time that will be unused.
6. Solve each of these problems by computer and obtain the optimal values of the decision

variables and the objective function.
a. Maximize 4x1 � 2x2 � 5x3

Subject to
1x1 � 2x2 � 1x3 � 25
1x1 � 4x2 � 2x3 � 40
3x1 � 3x2 � 1x3 � 30

x1, x2, x3 � 0
b. Maximize 10x1 � 6x2 � 3x3

Subject to
1x1 � 1x2 � 2x3 � 25
2x1 � 1x2 � 4x3 � 40
1x1 � 2x2 � 3x3 � 40

x1, x2, x3 � 0
7. For Problem 6a, determine the following:

a. The range of feasibility for each constraint.
b. The range of optimality for the coefficients of the objective function.

8. For Problem 6b:
a. Find the range of feasibility for each constraint, and interpret your answers.
b. Determine the range of optimality for each coefficient of the objective function. Interpret

your results.
9. A small firm makes three similar products, which all follow the same three-step process, con-

sisting of milling, inspection, and drilling. Product A requires 12 minutes of milling, 5 minutes
for inspection, and 10 minutes of drilling per unit; product B requires 10 minutes of milling,
4 minutes for inspection, and 8 minutes of drilling per unit; and product C requires 8 minutes 
of milling, 4 minutes for inspection, and 16 minutes of drilling. The department has 20 hours
available during the next period for milling, 15 hours for inspection, and 24 hours for drilling.
Product A contributes $2.40 per unit to profit, B contributes $2.50 per unit, and C contributes
$3.00 per unit. Determine the optimal mix of products in terms of maximizing contribution to
profits for the period. Then, find the range of optimality for the profit coefficient of each variable.

10. Formulate and then solve a linear programming model of this problem, to determine how many
containers of each product to produce tomorrow to maximize profits. The company makes four
juice products using orange, grapefruit, and pineapple juice.

Product Retail Price/Litre

Orange juice $1.00
Grapefruit juice .90
Pineapple juice .80
All-in-One 1.10
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The All-in-One juice has equal parts of orange, grapefruit, and pineapple juice. Each product
is produced in a one-litre size. On hand are 1,600 litres of orange juice, 1,200 litres of grape-
fruit juice, and 800 litres of pineapple juice. The cost per litre is $0.50 for orange juice, $0.40
for grapefruit juice, and $0.35 for pineapple juice.

In addition, the manager wants grapefruit juice to be used for no more than 30 percent of
the number of containers produced. She wants the ratio of the number of containers of orange
juice to the number of containers of pineapple juice to be at least 7 to 5.

11. A wood products firm uses leftover time at the end of each week to make goods for stock. Cur-
rently, two products on the list of items are produced for stock: a chopping board and a knife
holder. Both items require three operations: cutting, gluing, and finishing. The manager of the
firm has collected the following data on these products:

TIME PER UNIT (MINUTES)

Item Profit/Unit Cutting Gluing Finishing

Chopping board $2 1.4 5 12
Knife holder $6 0.8 13 3

The manager has also determined that, during each week, 56 minutes are available for cutting,
650 minutes are available for gluing, and 360 minutes are available for finishing.
a. Determine the optimal quantities of the decision variables.
b. Which resources are not completely used by your solution? How much of each resource is

unused?
12. The manager of the deli section of a grocery superstore has just learned that the department has

112 kg of mayonnaise, of which 70 kg is approaching its expiration date and must be used. To
use up the mayonnaise, the manager has decided to prepare two items: a ham spread and a deli
spread. Each pan of the ham spread will require 1.4 kg of mayonnaise, and each pan of the 
deli spread will require 1.0 kg. The manager has received an order for 10 pans of ham spread
and 8 pans of the deli spread. In addition, the manager has decided to have at least 10 pans of
each spread available for sale. Both spreads will cost $3 per pan to make, but ham spread sells
for $5 per pan and deli spread sells for $7 per pan.
a. Determine the solution that will minimize cost.
b. Determine the solution that will maximize profit.

13. A manager wants to know how many units of each product to produce on a daily basis in order
to achieve the highest contribution to profit. Production requirements for the products are
shown in the following table.

Material 1 Material 2 Labour 
Product (kg) (kg) (hours)

A 2 3 3.2
B 1 5 1.5
C 6 — 2.0

Material 1 costs $5 per kg, material 2 costs $4 per kg, and labour costs $10 an hour. Product A
sells for $80 a unit, product B sells for $90 a unit, and product C sells for $70 a unit. Available
resources each day are 200 kg of material 1; 300 kg of material 2; and 150 hours of labour.

The manager must satisfy certain output requirements: The output of product A should not
be more than one-third of the total number of units produced; the ratio of units of product A to
units of product B should be 3 to 2; and there is a standing order for 5 units of product A each
day. Formulate a linear programming model for this problem, and then solve.

14. A chocolate maker has contracted to operate a small candy counter in a fashionable store. To
start with, the selection of offerings will be intentionally limited. The counter will offer a reg-
ular mix of candy made up of equal parts of cashews, raisins, caramels, and chocolates, and a
deluxe mix that is one-half cashews and one-half chocolates, which will be sold in one-pound
boxes. In addition, the candy counter will offer individual one-pound boxes of cashews,
raisins, caramels, and chocolates.

A major attraction of the candy counter is that all candies are made fresh at the counter.
However, storage space for supplies and ingredients is limited. Bins are available that can hold
the amounts shown in the table:
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Capacity 
Ingredient (pounds per day)

Cashews 120
Raisins 200
Caramels 100
Chocolates 160

In order to present a good image and to encourage purchases, the counter will make at least 
20 boxes of each type of product each day. Any leftover boxes at the end of the day will be
removed and given to a nearby nursing home for goodwill.

The profit per box for the various items has been determined as follows:

Item Profit per Box

Regular $.80
Deluxe .90
Cashews .70
Raisins .60
Caramels .50
Chocolates .75

a. Formulate the LP model.
b. Solve for the optimal values of the decision variables and the maximum profit.

15. Given this linear programming model, solve the model and then answer the questions that
follow.

Maximize 12x1 � 18x2 � 15x3 where x1 � the quantity of product 1 to make etc.
Subject to

Machine 5x1 � 4x2 � 3x3 � 160 minutes
Labour 4x1 � 10x2 � 4x3 � 288 hours
Materials 2x1 � 2x2 � 4x3 � 200 pounds
Product 2 x2 � 16 units

x1, x2, x3 � 0
a. Are any constraints binding? If so, which one(s)?
b. If the profit on product 3 were changed to $22 a unit, what would the values of the decision

variables be? The objective function? Explain.
c. If the profit on product 1 were changed to $22 a unit, what would the values of the decision

variables be? The objective function? Explain.
d. If 10 hours less of labour time were available, what would the values of the decision vari-

ables be? The objective function? Explain.
e. If the manager decided that as many as 20 units of product 2 could be produced (instead of

16), how much additional profit would be generated?
f. If profit per unit on each product increased by $1, would the optimal values of the decision

variables change? Explain. What would the optimal value of the objective function be?
16. A garden store prepares various grades of pine bark for mulch: nuggets (x1), mini-nuggets (x2),

and chips (x3). The process requires pine bark, machine time, labour time, and storage space.
The following model has been developed.

Maximize 9x1 � 9x2 � 6x3 (profit)
Subject to

Bark 5x1 � 6x2 � 3x3 � 600 pounds
Machine 2x1 � 4x2 � 5x3 � 660 minutes
Labour 2x1 � 4x2 � 3x3 � 480 hours
Storage 1x1 � 1x2 � 1x3 � 150 bags

x1, x2, x3 � 0
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a. What is the marginal value of a pound of pine bark? Over what range is this price value
appropriate?

b. What is the maximum price the store would be justified in paying for additional pine bark?
c. What is the marginal value of labour? Over what range is this value in effect?
d. The manager obtained additional machine time through better scheduling. How much

additional machine time can be effectively used for this operation? Why?
e. If the manager can obtain either additional pine bark or additional storage space, which one

should she choose, and how much (assuming additional quantities cost the same as usual)?
f. If a change in the chip operation increased the profit on chips from $6 per bag to $7 per bag,

would the optimal quantities change? Would the value of the objective function change? If
so, what would the new value(s) be?

g. If profits on chips increased to $7 per bag and profits on nuggets decreased by $.60, would
the optimal quantities change? Would the value of the objective function change? If so,
what would the new value(s) be?

h. If the amount of pine bark available decreased by 15 pounds, machine time decreased by 
27 minutes, and storage capacity increased by five bags, would this fall in the range of
feasibility for multiple changes? If so, what would the value of the objective function be?
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S on, Ltd., manufactures a variety of chemical products used
by photoprocessors. Son was recently bought out by a con-

glomerate, and managers of the two organizations have been
working together to improve the efficiency of Son’s operations.

Managers have been asked to adhere to weekly operating
budgets and to develop operating plans using quantitative
methods whenever possible. The manager of one department
has been given a weekly operating budget of $11,980 for pro-
duction of three chemical products, which for convenience
shall be referred to as Q, R, and W. The budget is intended to
pay for direct labour and materials. Processing requirements
for the three products, on a per-unit basis, are shown in the
table.

The company has a contractual obligation for 85 units of
product R per week.

Material A costs $4 per kg, as does material B. Labour
costs $8 an hour.

Product Q sells for $122 a unit, product R sells for $115 
a unit, and product W sells for $76 a unit.

The manager is considering a number of different pro-
posals regarding the quantity of each product to produce. The

manager is primarily interested in maximizing contribution.
Moreover, the manager wants to know how much labour will
be needed, as well as the amount of each material to purchase.

Questions
Prepare a report that addresses the following issues:

1. The optimal quantities of products and the necessary quan-
tities of labour and materials.

2. One proposal is to make equal amounts of the products.
What amount of each will maximize contribution, and
what quantities of labour and materials will be needed? 
How much less will total contribution be if this proposal 
is adopted?

3. How would you formulate the constraint for material A if it
were determined that there is a 5-percent waste factor for
material A and equal quantities of each product are re-
quired?

Labour Material A Material B 
Product (hours) (kg) (kg)

Q 5 2 1
R 4 2 —
W 2 1/2 2

C A S E

Son, Ltd.
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