CHAPTER 3

- Population mean, raw data

$$
\begin{equation*}
\mu=\frac{\Sigma X}{N} \tag{3-1}
\end{equation*}
$$

- Sample mean, raw data

$$
\begin{equation*}
\bar{X}=\frac{\Sigma X}{n} \tag{3-2}
\end{equation*}
$$

- Weighted mean

$$
\begin{equation*}
\bar{X}_{w}=\frac{w_{1} X_{1}+w_{2} X_{2}+\cdots+w_{n} X_{n}}{w_{1}+w_{2}+\cdots+w_{n}} \tag{3-3}
\end{equation*}
$$

- Geometric mean

$$
\begin{equation*}
G M=\sqrt[n]{\left(X_{1}\right)\left(X_{2}\right)\left(X_{3}\right) \cdots\left(X_{n}\right)} \tag{3-4}
\end{equation*}
$$

- Geometric mean rate of increase

$$
\begin{equation*}
G M=\sqrt[n]{\frac{\text { Value at end of period }}{\text { Value at start of period }}}-1 \tag{3-5}
\end{equation*}
$$

- Range $=$ Highest value - Lowest value
- Mean deviation

$$
M D=\frac{\sum|X-\bar{X}|}{n}
$$

- Population variance

$$
\sigma^{2}=\frac{\Sigma(X-\mu)^{2}}{N}
$$

[3-8]

- Population standard deviation

$$
\begin{equation*}
\sigma=\sqrt{\frac{\sum(X-\mu)^{2}}{N}} \tag{3-9}
\end{equation*}
$$

- Sample variance (deviation)

$$
\begin{equation*}
s^{2}=\frac{\Sigma(X-\bar{X})^{2}}{n-1} \tag{3-10}
\end{equation*}
$$

- Sample variance (direct)

$$
s^{2}=\frac{\Sigma X^{2}-\frac{(\Sigma X)^{2}}{n}}{n-1}
$$

- Sample standard deviation (direct)

$$
s=\sqrt{\frac{\Sigma X^{2}-\frac{(\Sigma X)^{2}}{n}}{n-1}}
$$

- Coefficient of variation

$$
\begin{equation*}
C V=\frac{s}{\bar{X}}(100) \tag{3-13}
\end{equation*}
$$

- Coefficient of skewness

$$
\begin{equation*}
s k=\frac{3(\bar{X}-\text { median })}{s} \tag{3-14}
\end{equation*}
$$

- Location of percentile

$$
L_{p}=(n+1) \frac{P}{100}
$$

- Sample mean grouped data

$$
\begin{equation*}
\bar{X}=\frac{\Sigma f M}{n} \tag{3-16}
\end{equation*}
$$

- Sample standard deviation, grouped data

$$
\begin{equation*}
s=\sqrt{\frac{\Sigma f M-\frac{(\Sigma f M)^{2}}{n}}{n-1}} \tag{3-17}
\end{equation*}
$$

CHAPTER 4

- Special rule of addition

$$
\begin{equation*}
P(A \text { or } B)=P(A)+P(B) \tag{4-2}
\end{equation*}
$$

- Complement rule

$$
\begin{equation*}
P(A)=1-P(\sim A) \tag{4-3}
\end{equation*}
$$

- General rule of addition

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

- Special rule of multiplication

$$
P(A \text { and } B)=P(A) P(B)
$$

- General rule of multiplication

$$
P(A \text { and } B)=P(A) P(B \mid A)
$$

- Number of permutations

$$
\begin{equation*}
{ }_{n} P_{r}=\frac{n!}{(n-r)!} \tag{4-8}
\end{equation*}
$$

- Number of combinations

$$
\begin{equation*}
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!} \tag{4-9}
\end{equation*}
$$

CHAPTER 5

- Mean of a probability distribution

$$
\begin{equation*}
\mu=\Sigma[x P(x)] \tag{5-1}
\end{equation*}
$$

- Variance of a probability distribution

$$
\begin{equation*}
\sigma^{2}=\Sigma\left[(x-\mu)^{2} P(x)\right] \tag{5-2}
\end{equation*}
$$

- Binomial distribution

$$
\begin{equation*}
P(x)={ }_{n} C_{x} p^{x}(1-p)^{n-x} \tag{5-3}
\end{equation*}
$$

- Mean of a binomial distribution

$$
\mu=n p
$$

- Variance of a binomial distribution

$$
\sigma^{2}=n p(1-p)
$$

- Hypergeometric probability distribution

$$
P(x)=\frac{\left({ }_{s} C_{x}\right)\left({ }_{N-s} C_{n-x}\right)}{{ }_{N} C_{n}}
$$

- Poisson probability distribution

$$
\begin{equation*}
P(x)=\frac{\mu^{x} e^{-\mu}}{x!} \tag{5-7}
\end{equation*}
$$

CHAPTER 6

- Standard normal value

$$
z=\frac{X-\mu}{\sigma}
$$

CHAPTER 7

- Standard error of mean

$$
\begin{equation*}
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}} \tag{7-1}
\end{equation*}
$$

- z-value, μ and σ known

$$
\begin{equation*}
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \tag{7-2}
\end{equation*}
$$

- z-value, population shape and σ unknown

$$
\begin{equation*}
z=\frac{\bar{x}-\mu}{s / \sqrt{n}} \tag{7-3}
\end{equation*}
$$

CHAPTER 8

- Confidence interval for $\mu, n>30$

$$
\begin{equation*}
\bar{X} \pm z \frac{s}{\sqrt{n}} \tag{8-1}
\end{equation*}
$$

- Confidence interval for μ, σ unknown

$$
\begin{equation*}
\bar{X} \pm t \frac{s}{\sqrt{n}} \tag{8-2}
\end{equation*}
$$

- Confidence interval for proportion

$$
\begin{equation*}
\hat{p} \pm z \sigma_{p} \text { where } \sigma_{p}=\sqrt{\frac{p(1-p)}{n}} \tag{8-4}
\end{equation*}
$$

- Standard error of sample proportion

$$
\begin{equation*}
\mathrm{s}_{p}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \tag{8-5}
\end{equation*}
$$

- Confidence interval for population proportion

$$
\begin{equation*}
\hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \tag{8-6}
\end{equation*}
$$

- Sample size for estimating population mean

$$
\begin{equation*}
n=\left(\frac{z s}{E}\right)^{2} \tag{8-9}
\end{equation*}
$$

- Sample size for population proportion

$$
\begin{equation*}
n=\hat{p}(1-\hat{p})\left(\frac{z}{E}\right)^{2} \tag{8-10}
\end{equation*}
$$

CHAPTER 9

- z distribution as a test statistic

$$
\begin{equation*}
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \tag{9-1}
\end{equation*}
$$

- z statistic, σ unknown

$$
\begin{equation*}
z=\frac{\bar{x}-\mu}{s / \sqrt{n}} \tag{9-2}
\end{equation*}
$$

- Test of hypothesis, one proportion

$$
\begin{equation*}
z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \tag{9-4}
\end{equation*}
$$

- One sample test of mean, small sample

$$
\begin{equation*}
t=\frac{\bar{X}-\mu}{\mathrm{s} / \sqrt{n}} \tag{9-5}
\end{equation*}
$$

CHAPTER 10

- Test statistic for difference between two large sample means

$$
z=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

- Two-sample test of proportions

$$
z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{p_{c}\left(1-p_{c}\right)}{n_{1}}+\frac{p_{c}\left(1-p_{c}\right)}{n_{2}}}}
$$

- Pooled proportion

$$
p_{c}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}
$$

[10-4]

- Pooled variance

$$
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

[10-5]

- Two-sample test of means-small samples

$$
\begin{equation*}
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \tag{10-6}
\end{equation*}
$$

- Paired t test

$$
\begin{equation*}
t=\frac{\bar{d}}{s_{d} / \sqrt{n}} \tag{10-7}
\end{equation*}
$$

CHAPTER 11

- Test for equal variance

$$
\begin{equation*}
F=\frac{s_{1}^{2}}{s_{2}^{2}} \tag{11-1}
\end{equation*}
$$

- Sum of squares, total

$$
\text { SS total }=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{n}
$$

- Sum of squares, treatments

$$
\begin{equation*}
\mathrm{SST}=\Sigma\left[\frac{T_{c}^{2}}{n_{c}}\right]-\frac{(\Sigma X)^{2}}{n} \tag{11-3}
\end{equation*}
$$

- Sum of squares, error

$$
\mathrm{SSE}=\mathrm{SS} \text { total }-\mathrm{SST}
$$

- Confidence interval for means

$$
\begin{equation*}
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t \sqrt{\operatorname{MSE}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \tag{11-5}
\end{equation*}
$$

CHAPTER 12

- Coefficient of correlation

$$
\begin{equation*}
r=\frac{n(\Sigma X Y)-(\Sigma X)(\Sigma Y)}{\sqrt{\left[n\left(\Sigma X^{2}\right)-(\Sigma X)^{2}\right]\left[n\left(\Sigma Y^{2}\right)-(\Sigma Y)^{2}\right]}} \tag{12-2}
\end{equation*}
$$

- Correlation test of hypothesis

$$
\begin{equation*}
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \tag{12-3}
\end{equation*}
$$

- Slope of a regression line

$$
b=\frac{n(\Sigma X Y)-(\Sigma X)(\Sigma Y)}{n\left(\Sigma X^{2}\right)-(\Sigma X)^{2}}
$$

- Intercept of a regression line

$$
a=\frac{\Sigma Y}{n}-b\left(\frac{\Sigma X}{n}\right)
$$

[12-6]

- Standard error of estimate

$$
s_{y \cdot x}=\sqrt{\frac{\sum Y^{2}-a\left(\sum Y\right)-b(\Sigma X Y)}{n-2}}
$$

[12-8]

- Confidence interval

$$
Y^{\prime} \pm t\left(s_{y \cdot x}\right) \sqrt{\frac{1}{n}+\frac{(X-\bar{X})^{2}}{\Sigma X^{2}-\frac{(\Sigma X)^{2}}{n}}}
$$

- Prediction interval

$$
Y^{\prime} \pm t\left(S_{y \cdot x}\right) \sqrt{1+\frac{1}{n}+\frac{(X-\bar{X})^{2}}{\Sigma X^{2}-\frac{(\Sigma X)^{2}}{n}}} \quad \text { [12-10] }
$$

CHAPTER 13

- Multiple regression equation

$$
\begin{equation*}
Y^{\prime}=a+b_{1} X_{1}+b_{2} X_{2}+\cdots+b_{k} X_{k} \tag{13-3}
\end{equation*}
$$

- Multiple standard error

$$
s_{y \cdot 12 \cdots k}=\sqrt{\frac{\sum\left(Y-Y^{\prime}\right)^{2}}{n-(k+1)}}
$$

- Coefficient of multiple determination

$$
\begin{equation*}
R^{2}=\frac{\mathrm{SSR}}{\mathrm{SS} \text { total }} \tag{13-5}
\end{equation*}
$$

- Global test of hypothesis

$$
F=\frac{\mathrm{SSR} / k}{\operatorname{SSE} /(n-(k+1))}
$$

[13-6]

- Testing for a particular regression coefficient

$$
t=\frac{b_{i}-0}{s_{b_{i}}}
$$

CHAPTER 14

- Chi-square test statistic

$$
x^{2}=\Sigma\left[\frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}\right]
$$

- Expected frequency

$$
f_{e}=\frac{(\text { Row total })(\text { Column total })}{\text { Grand total }}
$$

