Chapter 2
 Answers to Worksheet

Figure 1

Figure 2

Chapter 2 Appendix Answers to Worksheet

1. 10 visits to doctors; 1 visit to Disney World
2. A to B: lose 10 PCs ; B to C: lose 20 PCs ; C to D: lose 30 PCs ; D to E: lose 40 PCs; E to F: lose 50 PCs.

Chapter 3
 Answers to Worksheet

Figure 1

(1) Equilibrium price $=\$ 15.50$; equilibium quantity $=300$
(3) Equilibrium price $=\$ 14.50$; equilibrium quantity $=250$
(4) decrease; decrease

Figure 2

(1) Equilibrium price $=\$ 122$; equilibrium quantity $=65$
(3) Equilibrium price $=\$ 100$; equilibrium quantity $=80$
(4) decrease; increase
3. (a) price ceiling
(b) shortage
(c) 14
4. (a) price floor
(b) surplus
(c) 15 (or a bit more)
5. (a) price floor
(b) surplus
(d) 44
6. (a) price ceiling
(b) shortage
(c) 40

Chapter 5

Answers to Worksheet

1. consumption $=2000$, saving $=-2000$, autonomous consumption $=2000$, and induced consumption $=0$.
2. consumption $=2500$, saving $=0$, autonomous consumption $=2000$, and induced consumption $=500$.
3. consumption $=3200$; saving $=-3200$; autonomous consumption $=3200$; induced consumption $=0$.
4. consumption $=3600$, saving $=1600$, autonomous consumption $=3200$, and induced consumption $=400$.
5.

$$
\mathrm{APC}=\frac{\text { consumption }}{\text { Disposable Income }}=\frac{\$ 40,000}{\$ 50,000}=\frac{4}{5}=.8
$$

$$
\text { APS }=\frac{\text { saving }}{\text { Disposable Income }}=\frac{\$ 10,000^{*}}{\$ 50,000}=\frac{1}{5}=.2
$$

*Savings = Disposable Income - consumption

$$
=\$ 50,000-\$ 40,000
$$

$$
=\$ 10,000
$$

6.

$$
\mathrm{APC}=\frac{\text { consumption }}{\text { Disposable Income }}=\frac{\$ 16,000^{*}}{\$ 20,000}=\frac{16}{20}=\frac{8}{20}=.8
$$

* Consumption = Disposable Income - savings
$=\$ 20,000-\$ 4,000$
$=\$ 16,000$

APS $=\frac{\text { saving }}{\text { Disposable Income }}=\frac{\$ 4,000}{\$ 20,000}=\frac{4}{20}=\frac{1}{5}=.2$
7.

$$
\begin{aligned}
& \mathrm{MPC}=\frac{\text { change in consumption }}{\text { change in Disposable Income }}=\frac{\$ 15,000}{\$ 20,000}=\frac{15}{20}=\frac{3}{4}=.75 \\
& \mathrm{MPS}=\frac{\text { change in saving }}{\text { change in Disposable Income }}=\frac{\$ 5,000 *}{\$ 20,000}=\frac{5}{20}=\frac{1}{4}=.25
\end{aligned}
$$

*Disposable

Income	-	C	C
$\$ 50,000$	-	$\$ 40,000$	$=$
70,000	-	55,000	$=$
$\$ 10,000$			
15,000			

$($ change in saving $=\$ 5,000)$
8. $\quad \mathrm{MPC}=\frac{\text { change in consumption }}{\text { change in Disposable Income }}=\frac{\$ 20,000^{*}}{\$ 25,000}=\frac{20}{25}=\frac{4}{5}=.8$
*Disposable

Income	-		Saving	Consumption
$\$ 75,000$	-	$\$ 5,000$		$\$ 70,000$
100,000	-	10,000	$=$	90,000

(change in consumption $=\$ 20,000)$

$$
\text { MPS }=\frac{\text { change in saving }}{\text { change in Disposable Income }}=\frac{\$ 5,000}{\$ 25,000}=\frac{5}{25}=\frac{1}{5}=.2
$$

9. Figure 3:
(1) Consumption $=3200$; saving $=-1200$.
(2) Consumption $=4000 ;$ saving $=0$.
(3) Consumption $=4800 ;$ saving $=1200$.
10. Figure 4:
(1) Consumption $=4000$; saving $=-1000$.
(2) Consumption $=4500 ;$ saving $=1500$.
(3) Consumption $=5000 ;$ saving $=4000$.
11.

Disposable Income	Saving	(Total) Consumption	Autonomous Consumption	Induced Consumption
2000	-1000	3000	2000	1000
4000	0	4000	2000	2000
6000	+1000	5000	2000	3000

12. Table 4

Disposable Income	Saving	(Total) Consumption	Autonomous Consumption	Induced Consumption
3000	-2000	5000	4000	1000
6000	0	6000	4000	2000
9000	2000	7000	4000	3000

13. $\quad \mathrm{APC}=\frac{\text { consumption }}{\text { Disposable Income }}=\frac{4000}{4000}=1.0$

$$
\text { APS }=\frac{\text { saving }}{\text { Disposable Income }}=\frac{0}{4000}=0
$$

14. $\quad \mathrm{MPC}=\frac{\text { change in consumption }}{\text { change in Disposable Income }}=\frac{100}{2000}=\frac{1}{2}=.5$

$$
\text { MPS }=\frac{\text { change in saving }}{\text { change in Disposable Income }}=\frac{1000}{2000}=\frac{1}{2}=.5
$$

15. $\quad \mathrm{APC}=\frac{\text { consumption }}{\text { Disposable Income }}=\frac{7000}{9000}=\frac{7}{9}=.78$

$$
\text { APS }=\frac{\text { saving }}{\text { Disposable Income }}=\frac{2000}{9000}=\frac{2}{9}=.22
$$

16. $\quad \mathrm{MPC}=\frac{\text { change in consumption }}{\text { change in Disposable Income }}=\frac{1000}{3000}=\frac{1}{3}=.33$

MPS $=\frac{\text { change in saving }}{\text { change in Disposable Income }}=\frac{2000}{3000}=\frac{2}{3}=.67$

Chapter 6

Answers to Worksheet

1. 1200
2. 1200
3. 2000
4. 2000
5. (a) $\$ 10$ billion $+\$ 20$ billion $+\$ 40$ billion $=\$ 70$ billion
(b) $\$ 20$ billion $\times .5=\$ 10$ billion (or $\$ 10,000,000,001$)
(c) $\$ 20$ billion $\times .05=\$ 1$ billion, or $\$ 20$ billion $\times .1=\$ 2$ billion
6. (a) $\$ 400$ million $+\$ 200$ million $+\$ 500$ million $=\$ 1,100,000,000$.
(b) $\$ 400$ million $\times .5=\$ 200$ million (or $\$ 200,000,001$)
(c) $\$ 400$ million $\times .05=\$ 20$ million, or $\$ 400$ million $\times .1=\$ 40$ million
7. $-\$ 5$ million
8. $\$ 11$ million
9. gross investment (1200) - depreciation (400) $=$ net investment (800)
10. net investment $(1500)+$ depreciation $(500)=$ gross investment (2000)
11. (a) $\$ 16.7$ billion;
(b) $\$ 1.1$ billion.

Chapter 7

Answers to Worksheet

1. 1500
2. 1500
3. 1000
4. 1000
5. $\quad \mathrm{ATR}=\frac{\text { Taxes paid }}{\text { Taxable income }}=\frac{\$ 6,000}{\$ 30,000}=\frac{6}{30}=\frac{1}{5}=.2$ or 20%
6. $\quad \mathrm{ATR}=\frac{\text { Taxes Paid }}{\text { Taxable income }}=\frac{\$ 15,000}{\$ 90,000}=\frac{15}{90}=\frac{1}{6}=.17$ or 17%
7. $\mathrm{MTR}=\frac{\text { change in taxes paid }}{\text { change in taxable income }}=\frac{\$ 440}{\$ 2,000}=\frac{\$ 44}{\$ 200}=\frac{22}{100}=.22$ or 22%
8. $\quad \mathrm{MTR}=\frac{\$ 18,000}{\$ 45,000}=\frac{18}{45}=\frac{2}{9}=.22$ or 22%
9. $\$ 20,000 \times .28=\$ 5,600$
10. $\$ 5,000 \times .15=\$ 750$
11. $\$ 40,000 \times .062=\$ 2,480$
12. $\$ 10,000 \times .062=\$ 620$
13. (a) $\$ 20,000 \times .062=\$ 1,240$
(b) $\$ 20,000 \times .0145=\$ 290$
(c) $\$ 1,240+\$ 290=\$ 1,530$
(d) $\$ 1,530+\$ 1,530=\$ 3,060$
14. (a) $\$ 50,000 \times .062=\$ 3,100$
(b) $\$ 50,000 \times .0145=\$ 725$
(c) $\$ 3,100+\$ 725=\$ 3,825$
(d) $\$ 3,825+\$ 3,825=\$ 7,650$
15. (a) $\$ 1.8$ billion
(b) $\$ 5.6$ billion
(c) $\$ 89.5$
(d) Spending on New Deal programs drove up federal government purchases.
(e) Defense spending on World War II drove up federal government purchases.

Chapter 8
 Answers to Worksheet

1. 1976
2. 1984
3.
4. 2000

Chapter 9
 Answers to Worksheet

Figure 1

2. $\operatorname{GDP}(8000)-\operatorname{Depreciation}(500)=\operatorname{NNP}(7500)$

NNP (7500) - Indirect Business Taxes (400) = National Income (7100)
3. $\operatorname{GDP}(9000)-$ Depreciation $(700)=\operatorname{NNP}(8300)$

NNP (8300) - Indirect Business Taxes (400) = National Income (7900)
4. National Income (5000) + Indirect Business Taxes (300) = NNP (5300)

NNP (5300) + Depreciation (600) = GDP (5900)
5. National Income (6400) + Indirect Business Taxes (200) $=$ NNP (6600).

NNP (6600) + Depreciation (500) = GDP (7100).
6. Wages, salaries, and fringe benefits (5000) + profits (400) + interest (300) + rent (100) $=$ National Income (5800).
7. Wages, salaries, and fringe benefits (5700) + profits (500) + interest (250) + rent $(150)=$ National Income (6600).
8. Wages, salaries, and fringe benefits $(6100)+$ interest $(400)+$ profits $(500)+$ rent (150) $=$ National Income (7150).
National Income (7150) + Indirect business taxes (250) = NNP (7400).
NNP (7400) + Depreciation (550) = GDP (7950).
9. Wages, salaries, and fringe benefits (7200) + interest (550) + profits (300) + rent (50) = National Income (8100).
National Income (8100) + Indirect business taxes (400) $=$ NNP (8500).
NNP (8500) + Depreciation (600) = GDP (9100).
10. Consumption (5800) + Investment (1000) + Government spending (1200) + Net Exports $(-100)=$ GDP (7900).
11. Consumption (6000) + Investment (1400) + Government spending (1300) + Net Exports $(-150)=$ GDP (8550).
12.

$$
\begin{aligned}
&{\text { Real } \mathrm{GDP}_{2008}=}^{=} \mathrm{GDP}_{2008} \times \frac{\mathrm{GDP} \text { deflator } \mathrm{r}_{2001}}{\mathrm{GDP} \text { deflator }{ }_{2008}} \\
&= \frac{66.67}{1} \times \frac{12,000}{180}=6667 \\
& \% \text { change }= \\
& \frac{\text { change }}{\text { original number }}=\frac{667}{6,000}=11.1
\end{aligned}
$$

13.

$$
\text { Real } \mathrm{GDP}_{07}=\mathrm{GDP}_{07} \times \frac{\mathrm{GDP} \text { deflator }{ }_{96}}{\mathrm{GDP} \text { deflator }_{07}}
$$

$$
\begin{aligned}
& =\frac{-9,000}{1} \times \frac{100}{150}=6,000 \\
\% \text { change } & =\frac{\text { change }}{\text { original number }}=\frac{1,000}{5,000}=\frac{1}{5}=20 \%
\end{aligned}
$$

14. GDP (8000) - economic bads (600) - regrettable necessities (350) + sum of household, unreported, and illegal production (1200) $=8250$
15.

$$
\begin{aligned}
\text { Per capita GDP } & =\frac{\text { GDP }}{\text { Population }}=\frac{\$ 560,000,000,000}{8,000,000,000} \\
& =\$ 70,000
\end{aligned}
$$

16.

$$
\begin{aligned}
\text { Per capita GDP } & =\frac{\text { GDP }}{\text { Population }}=\frac{4,500}{.150}=\frac{\$ 450,000}{15} \\
& =\$ 30,000
\end{aligned}
$$

17.

$$
\begin{aligned}
\text { Real } \mathrm{GDP}_{40} & =\mathrm{GDP}_{40} \times \frac{\mathrm{GDP} \text { deflator }{ }_{30}}{\mathrm{GDP} \text { deflator }{ }_{40}} \\
& 60 \\
& =\frac{12,000}{1} \times \frac{100}{200}=6,000
\end{aligned}
$$

Real per capita GDP $_{40}=\frac{\text { Real GDP }_{40}}{\text { Population }_{40}}$

$$
=\frac{6,000}{.021}=\$ 28,571
$$

Real per capita $\mathrm{GDP}_{30}=\frac{\mathrm{GDP}}{\text { Population }}=\frac{500}{.020}=\frac{\$ 50,000}{2}=\$ 25,000$

$$
\% \text { change }=\frac{\$ 3,571}{\$ 25,000}=14.3 \%
$$

18.

$$
\begin{aligned}
\text { Real GDP } 2020
\end{aligned}=\mathrm{GDP}_{2020} \times \frac{\mathrm{GDP} \mathrm{deflator}_{05}}{\mathrm{GDP} \text { deflator }} 20
$$

Real Per Capita $\mathrm{GDP}_{05}=\frac{\text { GDP }}{\text { Population }}=\frac{1,000}{.03}=\$ 33,333$

$$
\% \text { change }=\frac{\text { change }}{\text { original number }}=\frac{\$ 7,061}{\$ 33,333}=21.2 \%
$$

19.

(a) $\$ 942.6$ billion and $\$ 673.4$ billion
(b) 28.6 percent
20. 1992

Chapter 10
 Answers to Worksheet

Label the graph in Figure 1 with respect to the three phases of the business cycle and the cycle turning points.

2. Figure 2

*We don't know when the recovery ends and the prosperity begins because we don't know the level of the previous peak.
3. (a) 900 (or 950)
(b) $1600(1550-1650)$
(c) 0
4. \quad Labor force $=$ employed $(113$ million $)+$ unemployed $(12$ million $)=125$ million

$$
\begin{aligned}
\text { Unemployment rate } & =\frac{\text { unemployed }}{\text { labor force }} \\
& =\frac{12 \text { million }}{125 \text { million }} \\
& =9.6 \%
\end{aligned}
$$

5. Labor force $=\operatorname{employed}(140$ million $)+\operatorname{unemployed}(10$ million $)=150$ million

$$
\begin{aligned}
\text { Unemployment rate } & =\frac{\text { unemployed }}{\text { labor force }} \\
& =\frac{10 \text { million }}{150 \text { million }}=\frac{1}{15}=6.7 \%
\end{aligned}
$$

6. 3%
7. 9%
8. $234.1-100=134.1 \%$
9. $302.7-100=202.7 \%$
10. $\%$ change $=\frac{\text { change }}{\text { original number }}=\frac{26.5}{135.9}=19.5 \%$
11. $\%$ change $=\frac{\text { change }}{\text { original numer }}=\frac{40}{160}=\frac{4}{16}=\frac{1}{4}=25 \%$
12. Nominal rate $=$ real rate + expected rate of inflation $=7 \%+4 \%$
$=11 \%$
13. Real rate $=$ nominal rate - expected rate of inflation $=15 \%-9 \%$ $=6 \%$
14.

A. July 1994

Item	Quantity	Price	Quantity \times Price
Car lease	0.4	$\$ 300.00$	$\$ 120$
Visit to doctor	1.0	50.00	50
Pound of Steak	8.0	2.50	20
Pair of jeans	0.7	30.00	21
Mortgage payment	1.0	850.00	850
Video rental	28.0	2.00	56
(a) Total			1117

B. July 2004

Item	Quantity	Price	Quantity \times Price
Car lease	0.4	$\$ 400.00$	$\$ 160$
Visit to doctor	1.0	70.00	70
Pound of Steak	8.0	3.00	24
Pair of jeans	0.7	40.00	28
Mortgage payment	1.0	1000.00	1000
Video rental	28.0	2.00	56
(b) Total			1338
(c) 119.8			
(d) 19.8%			

15.

A. December 1999

Item	Quantity	Price	Quantity \times Price
Car lease	0.5	$\$ 250$	$\$ 125$
Visit to doctor	1.2	60	72
Motel rental	3.6	40	144
Health club fee	1.0	25	25
Pair of shoes	0.4	60	24
Quart of milk	40.0	0.80	32
Mortgage payment	1.0	750	750
(a) Total			1172

B. December 2009

Item	Quantity	Price	Quantity \times Price
Car lease	0.5	$\$ 380$	$\$ 190$
Visit to doctor	1.2	85	102
Motel rental	3.6	55	198
Health club fee	1.0	45	45
Pair of shoes	0.4	70	28
Quart of milk	40.0	1.00	40
Mortgage payment	1.0	1000	1000
(b) Total			1603
(c) 136.8			
(d) 36.8%			
16. (a) 1905			
(b) 1910			
17. (a) 2014			
(b) 2020			

18. unemployment rate $(7.3)+$ inflation rate $(5.9)=13.2$.
19. unemployment rate $(7.9)+$ inflation rate $(4.1)=12.0$.
20. (a) 1932; (b) 1946
21. 4 years $(1946,1974,1979,1980)$
22. 9 years (1926, 1927, 1928, 1930, 1931, 1932, 1938, 1949, 1954)

Chapter 12

Answers to Worksheet

1. inflationary
2. $\$ 500$ billion
3. raise taxes and cut government spending
4.

$$
\begin{aligned}
\text { Multiplier } & =\frac{\text { Equilibrium GDP - Full Employment GDP }}{\text { Inflationary gap }} \\
& =\frac{1000}{500} \\
& =2
\end{aligned}
$$

5. deflationary
6. $\$ 1$ trillion
7. lower taxes and raise government spending
8.

$$
\begin{aligned}
\text { Multiplier } & =\frac{\text { Full Employment GDP }- \text { Equilibrium GDP }}{\text { deflationary gap }} \\
& =\frac{2000}{1000} \\
& =2
\end{aligned}
$$

9. \quad Multiplier $=\frac{1}{1-\mathrm{MPC}}=\frac{1}{1-.6}=\frac{1}{.4}=2.5$
10. Multilplier $=\frac{1}{1-\mathrm{MPC}}=\frac{1}{1-.2}=\frac{1}{.8}=1.25$
11. Change in GDP $=$ change in spending \times multiplier
$=40 \times 7$
$=280$
12. Change in GDP $=$ change in spending \times multiplier
$=-20$
$=-80$
13. New GDP $=$ initial GDP + change in spending \times multiplier

$$
\begin{aligned}
& =6000+(20 \times) \\
& =6000+180 \\
& =6180
\end{aligned}
$$

14. New GDP $=$ initial GDP + change in spending \times multiplier
$=8900+(-30 \times 6)$
$=8900+(-180)$
$=8900-180$
$=8720$
15. Multiplier $=\frac{1}{1-\mathrm{MPC}}=\frac{1}{1-.5}=\frac{1}{.5}=2$

New GDP $=$ initial GDP + change in spending \times multiplier
$=9000+(30 \times 2)$
$=9000+60$
$=9060$
16. Multiplier $=\frac{1}{1-\mathrm{MPC}}=\frac{1}{1-.8}=\frac{1}{.2}=5$

New GDP $=$ initial GDP + change in spending \times multiplier
$=7500+(-20 \times 5)$
$=7500+(-100)$
$=7500-100$
$=7400$
17.

$$
\begin{aligned}
\text { Multiplier } & =\frac{\text { Equilibrium GDP }- \text { Full }- \text { Employment GDP }}{\text { Inflationary gap }} \\
& =\frac{200}{50} \\
& =4
\end{aligned}
$$

18.

$$
\begin{aligned}
\text { Multiplier } & =\frac{\text { Full }- \text { Employment GDP }- \text { Equilibrium GDP }}{\text { deflationary gap }} \\
& =\frac{300}{60} \\
& =5
\end{aligned}
$$

19.

$$
\begin{aligned}
\text { Multiplier } & =\frac{2000}{\text { deflationary gap }} \\
5 & =\frac{2000}{\text { deflationary gap }} \\
5 \times \text { deflationary gap } & =2000 \\
\text { deflationary gap } & =400
\end{aligned}
$$

20.

$$
\begin{aligned}
\text { Multiplier } & =\frac{2000}{\text { inflationary gap }} \\
4 & =\frac{2000}{\text { inflationary gap }} \\
4 \times \text { inflationary gap } & =2000 \\
\text { inflationary gap } & =500
\end{aligned}
$$

21. (a) $\$ 1,000 \times .8=\$ 800$
(b) $\$ 800 \times .8=\$ 640$
22.

(a) Multiplier $\frac{1}{1-\mathrm{MPC}}=\frac{1}{1-.5}=\frac{1}{.5}=2$
(b) $\$ 10$ billion $\times 2=\$ 20$ billion

Chapter 12 Appendix

Answers to Worksheet

1. surplus of $\$ 5$ billion
2. deficit of $\$ 25$ billion
3. $\$ 40$ billion $\times 1.5=\$ 60$ billion
4. $\$ 40$ billion $\times 3.5=\$ 140$ billion
5. (a) $\$ 100$ billion
(b) deficit: $(100-2.5 \times 40)=(100-100)=$ full employment balanced budget
6. (a) $\$ 180$ billion
(b) $(180-6 \times 40)=(180-240)=\$ 60$ billion surplus

Chapter 13

Answers to Worksheet

1. M2 (4000) + money market mutual funds held by institutions (300) + largedenomination time deposits (400) $=$ M3 (4700).
2. M3 (6000) - money market mutual funds held by institutions (700) - largedenomination time deposits (800) = M2 (4500).
3. M1 (3000) + money market mutual funds held by individuals (400) + smalldenomination time deposits (300) + savings deposits (1000) = M2 (4700).
4. M2 97000) - savings deposits (1100) - small-denomination time deposits (800) - money market mutual funds held by individuals $(500)=$ M1 (4600).
5. Outstanding loans $=0$
reserve ration $=100 \%$
6. $\frac{1800}{2000}=\frac{18}{20}=\frac{9}{10}=90 \%$
$\frac{200}{500}=\frac{2}{5}=40 \%$

Chapter 14

Answers to Worksheet

1. 0
2. 0
3. reserve multiplier $=\frac{1}{\text { reserve ratio }}=\frac{1}{.20}=5$
4. $\$ 100,000,000 \times 5=\$ 500,000,000$
5. $\frac{\$ 80}{\$ 800}=\frac{1}{10}=10 \%$
6. (a) $\$ 47,800,000 \times .03=\$ 1,434,000$
$252,200,000 \times .1=\underline{25,220,000}$ \$26,654,000
(b) $\$ 35,000,000$
$-26,654,000$
\$8,346,000
7. (a) $\$ 47,800,000 \times .03=\$ 1,434,000$
$802,200,000 \times .1=\underline{80,220,000}$
\$81,654,000
(b) $\$ 100,000,000$

$$
\frac{-81,654,000}{18,346,000}
$$

Chapter 15

Answers to Worksheet

1. $\mathrm{MV}=\mathrm{PQ}$
$800 \times 9=P Q$
$7200=P Q$
2. $\quad \mathrm{MV}=\mathrm{PQ}$
$\mathrm{MV}=7 \times 1200$
$M V=8400$
3. $\quad \mathrm{MV}=\mathrm{PQ}$
$900 \times 5=9 \mathrm{Q}$
$4500=9 \mathrm{Q}$
$500=\mathrm{Q}$
4. $\mathrm{MV}=\mathrm{PQ}$
$M \times 8=6 \times 1200$
$8 \mathrm{M}=7200$
$\mathrm{M}=900$
5. $\quad \mathrm{V}$ and Q would stay the same; P would rise by 8%.
6. $\%$ change $=\frac{\text { change }}{\text { original number }}=\frac{100}{500}=\frac{1}{5}=20 \%$

V and Q would remain the same.
P would rise 20% from 4 to 4.8 .

Chapter 16
 Answers to Worksheet

1. (a)

Table 1

Number of	Total Output	Marginal Output
0	0	
1	2	$\underline{2}$
2	5	$\underline{3}$
3	9	$\underline{4}$
4	13	$\underline{4}$
5	16	$\underline{3}$
6	18	$\underline{2}$
7	19	$\underline{1}$
8	19	$\underline{-1}$
9	18	$\underline{-2}$

(b) Diminishing returns set in with the $5^{\text {th }}$ worker.
(c) Negative returns get set in with the $9^{\text {th }}$ worker.
2. (a)

Table 2

Number of Workers	Total Output	Marginal Output
0	0	
1	3	$\underline{3}$
2	7	$\underline{4}$
3	12	$\underline{5}$
4	17	$\underline{5}$
5	21	$\underline{4}$
6	24	$\underline{3}$
7	25	$\underline{1}$
8	26	$\underline{1}$
9	26	$\underline{-1}$
10	25	$\underline{-2}$
11	23	$\underline{-4}$
12	19	$\underline{-8}$

(b) Diminishing returns set in with the 5 th worker.
(c) Negative returns set in with the 10th worker.

Chapter 17
 Answers to Worksheet

1. B
2. A
3. C
4. D
5. B
6. B
7. A
8. D
9. A
10. C
11. A
12. D
13. B
14. C
15. B
16. B
17. D
18. A
19. C
20. B

Equilibrium price: $\$ 12.60$ (Anywhere between $\$ 12.53$ and $\$ 12.65$)
Equilibrium quantity: 7.25 (Anywhere between 7.1 and 7.4)
22.

Equilibrium price: $\$ 16.40$ (Anywhere between $\$ 16.35$ and 16.47)
Equilibrium quantity: 13.75 (Anywhere between 13.6 and 13.9)
23. $\quad \mathrm{P}=\$ 12.60(\$ 12.55-\$ 12.65)$
$\mathrm{Q}=27.2(27-27.3)$
24.

Equilibrium $\quad \frac{D_{1} S_{1}}{\$ 5} \quad \frac{D_{2} S_{2}}{\$ 5}$ price
Equilibrium quantity: $5.5 \quad 7.3$

Equilibrium $\quad \frac{\mathrm{D}_{1} \mathrm{~S}_{1}}{\$ 120} \quad \frac{\mathrm{D}_{2} \mathrm{~S}_{2}}{\$ 105}$ price:
Equilibrium quantity: $14 \quad 14$

Chapter 18

Answers to Worksheet

1. $P_{1}=20 ; P_{2}=21 ; \mathrm{Q}_{1}=10 ; \mathrm{Q}_{2}=9$
(a) $\mathrm{E}=\frac{\mathrm{Q}_{2}-\mathrm{Q}_{1}}{\mathrm{Q}_{2}+\mathrm{Q}_{1}} \cdot \frac{\mathrm{P}_{2}+\mathrm{P}_{1}}{\mathrm{P}_{2}-\mathrm{P}_{1}}=\frac{9-10}{9+10} \quad \frac{21+20}{21-20}$
$=\frac{-1}{19} \cdot \frac{41}{1}=\frac{-41}{19}=2.16$ or 2.2
(b) Demand is slightly elastic.
2. $\mathrm{P}_{1}=40 ; \mathrm{P}_{2}=39 ; \mathrm{Q}_{1}=7 ; \mathrm{Q}_{2}=8$
(a) $\mathrm{E}=\frac{\mathrm{Q}_{2}-\mathrm{Q}_{1}}{\mathrm{Q}_{2}+\mathrm{Q}_{1}} \cdot \frac{\mathrm{P}_{2}+\mathrm{P}_{1}}{\mathrm{P}_{2}-\mathrm{P}_{1}}=\frac{8-7}{8+7} \cdot \frac{39+40}{39-40}$
$=\frac{1}{15} \cdot \frac{79}{-1}=\frac{-79}{15}=5.27$ or 5.3
(b) Demand is very elastic.
3. $\mathrm{P}_{1}=20 ; \mathrm{P}_{2}=19 ; \mathrm{Q}_{1}=100 ; \mathrm{Q}_{2}=105$
$\mathrm{E}=\frac{\mathrm{Q}_{2}-\mathrm{Q}_{1}}{\mathrm{Q}_{2}+\mathrm{Q}_{1}} \cdot \frac{\mathrm{P}_{2}+\mathrm{P}_{1}}{\mathrm{P}_{2}-\mathrm{P}_{1}}=\frac{105-100}{105+100} \bullet \frac{19+20}{19-20}$
$=\frac{5}{205} \cdot \frac{39}{-1}=-\frac{195}{205}=.095($ rounded $=1.0$, or unit elastic $)$
(b) Demand is slightly inelastic.
4. $\mathrm{P}_{1}=5 ; \mathrm{P}_{2}=5 ; \mathrm{Q}_{1}=4 ; \mathrm{Q}_{2}=8$

5. $\mathrm{P}_{1}=4 ; \mathrm{P}_{2}=8 ; \mathrm{Q}_{1}=10 ; \mathrm{Q}_{2}=10$

$$
\begin{aligned}
\mathrm{E} & =\frac{\mathrm{Q}_{2}-\mathrm{Q}_{1}}{\mathrm{Q}_{2}+\mathrm{Q}_{1}} \cdot \frac{\mathrm{P}_{2}+\mathrm{P}_{1}}{P_{2}-P_{1}}=\frac{10-10}{10+10} \cdot \frac{8+4}{8-4} \\
& =\frac{0}{10} \cdot \frac{12}{4}=\frac{0}{80}=0
\end{aligned}
$$

6. (a) $\$ 2$
(b) $\$ 0.25$
(c) $\$ 1.75$
7. (a) $\$ 12$
(b) $\$ 10$
(c) $\$ 2$
8.
$\mathrm{E}=\frac{\% \text { change in } \mathrm{Q}}{\% \text { change in } \mathrm{P}}$
$3=\frac{\% \text { change in quantity }}{100 \%}$
30% = quantity will fall by 30%
9.
$\mathrm{E}=\frac{\% \text { change in } \mathrm{Q}}{\% \text { change in } \mathrm{P}}$ \% change in quantity
$0.5=10 \%$
5% = quantity will rise by 5%
10.
$E=\frac{\% \text { change in } Q}{\% \text { change in } P}$
$1=\frac{\% \text { change in quantity }}{1}$
1% = quantity will fall by 1%

Chapter 19 Worksheet Solutions

Table 1

	Quantity Demanded	Marginal Utility	Total Utility
$\$ 12$	1	$\$ 12$	$\$ 12$
10	2	10	22
7	3	7	29
5	4	5	34
3	5	3	37
2	6	2	39

1. (a) $\$ 37$
(b) $\$ 3$
(c) Consumer surplus $=$ What you are willing to pay $(\$ 39)-$ what you have to pay
$(\$ 2 \times 6=\$ 12)=\$ 27$.
(d) $\$ 29$
(e) $\$ 7$
(f) Consumer surplus $=\$ 34-(\$ 5 \times 4=\$ 20)=\$ 14$

Table 2

	Quantity Demanded	Marginal Utility	Total Utility
$\$ 7.50$	1	$\$ 7.50$	$\$ 7.50$
6.50	2	6.50	14.00
5.00	3	5.00	19.00
4.00	4	4.00	23.00
2.50	5	2.50	25.50
1.00	6	1.00	26.50
0.25	7	.25	26.75

2. (a) $\$ 23$
(b) $\$ 4$
(c) Consumer surplus $=$ What you are willing to pay $(\$ 19)-$ what you have to pay
$(\$ 5 \times 3=\$ 15)=\$ 4$.
(d) $\$ 26.50$
(e) $\$ 1$
(f) Consumer surplus $=\$ 25 .=(\$ 2.50 \times 5=\$ 12.50)=\$ 13$.

Chapter 20
 Answers to Worksheet

1.

(a) Table 1

Output	Variable Cost	Total Cost	Marginal Cost
1	$\$ 100$	$\$ 200$	$\$ 100$
2	180	280	80
3	240	340	60
4	320	420	80

(b) $\$ 100$
2. (a)

Table 2

Output	Variable Cost	Total Cost	Marginal Cost
1	$\$ 150$	$\$ 350$	$\$ 150$
2	220	420	70
3	300	500	80
4	410	610	110

(b) $\$ 200$
3. Short run: If firm operates, it loses $\$ 50$ million. Prospective sales (\$50 million) - fixed costs ($\$ 60$ million) - variable costs ($\$ 40$ million).
If firm shuts down, it loses its fixed cost of $\$ 60$ million. The firm will operate.
Long run: The firm will go out of business since it is losing money.
4. Short run: If firm operates, it will lose $\$ 6$ million. Prospective sales ($\$ 10$ million) - fixed costs ($\$ 5$ million) - variable costs ($\$ 11$ million).
If firm shuts down, it loses its fixed costs of $\$ 5$ million. Firm will shut down.
Long run: The firm will go out of business since it is losing money.
5. Short run: If firm operates, it makes a profit of $\$ 1$ million. Prospective sales ($\$ 15$ million) - fixed costs ($\$ 6$ million) - variable costs ($\$ 8$ million).
If firm shuts down it will lose its fixed costs of $\$ 6$ million. The firm will operate.

Long run: Firm will stay in business since it is making a profit.
6. Table 3

Output 1	Variable Cost 100	Total Cost 300	Average Fixed Cost 200	Average Variable Cost 100	Average Total Cost 300	Margina Cost 100
2	180	380	100	90	190	80
3	240	440	66.67	80	146.67	60
4	316	516	50	79	129	76
5	410	610	40	82	122	94
6	520	720	33.33	86.67	120	110
7	665	865	28.71	95	123.57	145

7. Table 4

			Average Fixed	Average Variable	Average Total	Marginal
Output	Cost Cost Cost Cost	Cost	Cost Cotal			
2	200	500	300	200	500	200
2	300	600	150	150	300	100
3	380	680	100	126.67	226.67	80
4	450	750	75	112.50	187.50	70
5	530	830	60	106	166	80
6	630	930	50	105	155	100
7	770	1070	42.86	110	152.86	140
8	990	1290	37.50	123.75	161.25	220

9. Minimum points:

AVC: $\$ 78.90$ (must be less than $\$ 79$)
ATC: $\$ 119.50$ (must be less than $\$ 120$)
10.

11. Minimum points:

AVC: $\$ 104.90$ (must be less than $\$ 105$)
ATC: $\$ 152.60$ (must be less than $\$ 152.86$)
12. Table 5
(a)

			Average Average	Average Variable	Total	Marginal
Output	Cost	Total	Fixed Cost	Cost Cost	Cost	Cost
1	500	1500	1000	500	1500	500
2	800	1800	500	400	900	300
3	1000	2000	333.33	333.33	666.67	200
4	1300	2300	250	325	575	300
5	1800	2800	200	360	560	500
6	2600	3600	166.67	433.33	600	800
7	3900	4900	142.86	557.14	700	1300

(c) $\mathrm{MC}=\mathrm{MR}$ at an output of 5.35 . At output of 5 total profit $=\$ 200($ Total Revenue of $\$ 3,000$ - Total Cost of $\$ 2800$). At output of 6 total profit $=0$
(Total Revenue of $\$ 3,600$ - Total Cost of $\$ 3600$). When we maximize our total profit at output of 5.35 , we must show a total profit of slightly more than \$200.

Total profit $=($ Price - ATC $) \times$ Output
$=\$ 600-\$ 560^{*} \times 5.35$
$=\$ 40 \times 5.35$
$=\$ 214$
(d) Minimum points
$\mathrm{AVC}=\$ 324.50$
ATC $=\$ 559^{*}$
*Minimum point of ATC is slightly lower than ATC at which firm maximizes its profit.
12. (b)

13. (a) Table 6

	Variable	Total	Average Fixed Cost	Average Variable	Average Total	Marginal
Output	Cost	Cost	Cost Cost	Cost		
1	50	150	100	50	150	50
2	80	180	50	40	90	30
3	100	200	33.33	33.33	66.67	20
4	120	220	25	30	55	20
5	145	245	20	29	49	25
6	190	290	16.67	31.67	48.33	45
7	250	350	14.29	35.71	50	60
8	340	440	12.50	42.50	55	90

(c) $\mathrm{MC}=\mathrm{MR}$ at an output of 6.33 . At output of 6 total profit $=\$ 10$ (Total Revenue of $\$ 300$ - Total Cost of $\$ 290$). At output of 7 total profit $=0$ (Total Revenue of $\$ 350$ - Total Cost of $\$ 350$). When we maximize our total profit at output of 6.33 , we must show a total profit of slightly more than $\$ 10$.
Total profit $=($ Price - ATC $) \times$ Output
$=(\$ 50-\$ 48.30)^{*} \times 6.33$
$=\$ 1.70 \times 6.33$
$=\$ 10.76$
(d) Minimum points:
$\mathrm{AVC}=\$ 28.70$
ATC $=\$ 48.20^{*}$
*Minimum point of ATC is slightly lower than ATC at which firm maximizes its profit.

14. (a)

Table 7

Number of Workers	Total Output	Marginal Output
0	0	
1	2	$\underline{2}$
2	5	$\underline{3}$
3	9	$\underline{4}$
4	13	$\underline{4}$
5	16	$\underline{3}$
6	18	$\underline{2}$
7	19	$\underline{-}$
8	19	$\underline{-1}$
9	18	$\underline{-2}$

(d) Diminishing returns set in with the $5^{\text {th }}$ worker.
(e) Negative returns get set in with the $9^{\text {th }}$ worker.
15. (a)

Table 8

Number of Workers	Total Output	Marginal Output
0	0	
1	3	$\underline{3}$
2	7	$\underline{4}$
3	12	$\underline{5}$
4	17	$\underline{5}$
5	21	$\underline{4}$
6	24	$\underline{3}$
7	25	$\underline{1}$
8	26	$\underline{-}$
9	26	$\underline{-1}$
10	25	$\underline{-4}$
11	23	$\underline{-4}$
12	19	11

(b) Diminishing returns set in with the 5th worker.
(c) Negative returns set in with the 10th worker.

Chapter 21

Answers to Worksheet

1. (a) operate
(b) operate
(c) shut down
2. (a) stay in business
(b) go out of business
(c) go out of business
3. (a) operate; stay in business
(b) operate; go out of business
(c) shut down; go out of business
4. (a) operate
(b) operate
(c) shut down
5. (a) stay in business
(b) go out of business
(c) go out of business
6. (a) operate; stay in business
(b) operate; go out of business
(c) shut down; go out of business
7. $\$ 9$
8. $\$ 11$
9. \& 10.

10. Table 1

If price What would the firm do in the Output in the were: (a) short run? (b) long run? short run

$\$ 16$	operate	stay in business	74
12	operate	stay in business	62.5
10	operate	go out of business 55	
8	shut down	go out of business 0	

12. $\$ 4.50$
13. $\quad \$ 5.50$
14. \& 15.

Table 2
If price What would the firm do in the Output in the were: (a) short run?(b) long run? short run
$\$ 7 \quad$ operate \quad stay in business $\quad 32.5$
$6 \quad$ operate \quad stay in business $\quad 30.7$
5 operate go out of business 28.5

4 shut down go out of business 0
17. (a)

Table 3

	Variable	Total	Average Fixed Cost	Average Variable	Average Total	Marginal Cost Cost
1	Cost	Cost	Cost	Cost Cost		
2	10	30	20	10	30	10
3	15	35	10	7.50	17.50	5
4	18	38	6.67	6	12.67	3
5	22	42	5	5.50	10.50	4
6	28	48	4	5.60	9.60	6
7	39	59	3.33	6.50	9.83	11

(c)
(1) $\$ 5.40$
(2) $\$ 9.45$
(3) 5.7
(4) 6.7
(d) Total profit:

Output of 6: Total Revenue (90) - Total Cost (59) = 31
Output of 7: Total Revenue (105) - Total Cost (76) $=29$
Total profit must be slightly higher than $\$ 31$:
Total profit $=($ Price - ATC $) \times$ output
$=(\$ 15-\$ 10.25) \times 6.7$
$=\$ 4.75 \times 6.7$
$=\$ 31.83$

18. Table 5

			Average	Average	Average	
Output	Cost	Total	Fixed Cost	Cost Cariable	Total Cost	Marginal Cost
1	200	500	300	200	500	200
2	350	650	150	175	325	150
3	450	750	100	150	250	100
4	580	880	75	145	220	130
5	760	1060	60	152	212	180
6	1000	1300	50	166.67	216.67	240
7	1400	1700	42.86	200	242.86	400

(c)
(1) $\$ 144.25$
(2) $\$ 210.80$
(3) 5.53
(4) 5.73
(d) Total profit:

Output of 5: Total Revenue (1100) - Total Cost (1060) $=40$
Output of 6: Total Revenue (1320) - Total Cost (1300) $=20$
Total profit must be slightly greater than $\$ 40$
Total profit $=($ Price - ATC $) \times$ output
$=(\$ 220-212.50) \times 5.73$
$=\$ 7.50 \times 5.73$
$=\$ 42.98$
19. (a) Table 7

Output	Price	Total Revenue	Marginal Revenue
1	$\$ 4$	4	4
2	4	8	4
3	4	12	4
4	4	16	4
5	4	20	4
6	4	24	4
7	4	28	4

(b)

Chapter 22

Answers to Worksheet

Figure 1:

1. $\quad 14.1$
2. Total profit $=($ price - ATC $) \times$ output $=(\$ 100-88.50) \times 14=\$ 19.50 \times 14.1=$ \$174.95*
3. 13
4. $\quad \$ 80$

Figure 2:

1. 9
2. Total profit $=($ price -ATC$) \times$ output $=(\$ 50-\$ 85) \times 9.5=-\$ 35 \times 9.5=-$ $\$ 332.50^{*}$
3. 13
4. $\$ 80$

Figure 3:

1. 6.4
2. \quad Total profit $=($ price - ATC $) \times$ output $=(\$ 23-\$ 22.30) \times 6.3=\$.70 \times 6.3=$ $\$ 4.41^{*}$
3. 5.1
4. $\quad \$ 21.90$

Figure 4:

1. 64
2. Total profit $=($ price -ATC$) \times$ output $=(\$ 9-\$ 11.80) \times 64=-\$ 2.80 \times 64=-$ $\$ 179.20^{*}$
3. 74
4. $\$ 11.75$

* Your answer may be slightly different.

Figure 5
A, The firm

Figure 6

A, The firm

Chapter 23

Answers to Worksheet

1. (1) Total loss $=($ price - ATC $) \times$ output $=(\$ 10-\$ 11.40) \times 48=-\$ 1.40 \times 48=$ -\$67.20.
(2) $\$ 10.65$
2. (1) Total profit $=($ price - ATC $) \times$ output $=(\$ 75.50-\$ 54.25) \times 12.7=\$ 21.25$ $\times 12.7=\$ 269.88$
(2) $\$ 53$
3. (1) Total loss $=($ price - ATC $) \times$ output $=(\$ 14.30-\$ 14.95) \times 44.5=-\$.65 \times$ $44.5=-\$ 28.93$
(2) $\$ 14$
4. (1) Total profit $=($ price - ATC $) \times$ output $=(\$ 18.10-\$ 14.25) \times 74=\$ 3.85 \times$ $74=\$ 284.90$
(2) 14
5. (a) Table 1

		Total Output	Price	Marginal Revenue	Revenue	Cost
1	$\$ 33$	$\$ 33$	$\$ 33$	$\$ 30$	$\$ 30$	Marginal Cost
2	31	62	29	45	22.50	$\$ 15$
3	29	87	25	55	18.33	10
4	27	108	21	61	15.25	6
5	25	125	17	66	13.20	5
6	23	138	13	72	12	6
7	21	147	9	81	11.57	9
8	19	152	5	96	12	15

5. (c) $\mathrm{MC}=\mathrm{MR}$ at output of 7 . Total revenue $(\$ 147)-$ total $\operatorname{cost}(\$ 81)=\$ 66$.
(d) $\$ 11.50$
6. (a) Table 2

Output	Price	Total Revenue $\$ 20$	Marginal Revenue $\$ 20$	Total Cost $\$$	ATC $\$ 30$	Marginal Cost
2	19	38	18	50	25	$\$ 20$
3	18	54	16	62	20.67	12
4	17	68	14	72	18	10
5	16	80	12	84	16.80	12
6	15	90	10	103	17.17	19
7	14	98	8	133	19	30
8	13	104	6	178	22.25	45

6. (b)

7. (c) $\mathrm{MC}=\mathrm{MR}$ at an output of 5 . Total revenue $(\$ 80)-$ total $\operatorname{cost}(\$ 84)=-\$ 4$ (loss of \$4).
(d) $\$ 16.75$
8. (a) Table 3

Output	Price					
$\$ 16$	Total Revenue $\$ 16$	Marginal Revenue	Total Cost	ATC	Marginal Cost	
$\mathbf{1}$	15	30	14	30	15	$\$ 10$
3	14	42	12	38	12.67	8
4	13	52	10	48	12	10
5	12	60	8	62	12.40	14
6	11	66	6	84	14	22
7	10	70	4	117	16.71	33
8	9	72	2	168	21	51

7. (b) Figure 7

8. (c) $\mathrm{MC}=\mathrm{MR}$ at output of 4 . Total revenue $(\$ 52)-$ total $\operatorname{cost}(\$ 48)=\$ 4$.
(d) $\$ 11.90$

Chapter 24

Answers to Worksheet

1. (b) Profit $=($ price - ATC $) \times$ output $=(\$ 14-\$ 9.25) \times 5=\$ 4.75 \times 5=\$ 23.75$
(c) short run
(d) $\$ 8.80$

2. (b) Loss $=($ price - ATC $) \times$ output $=(\$ 20.10-\$ 20.90) \times 50=-\$.80 \times 50=-$ $\$ 40^{*}$
(c) short run
(d) $\$ 21.80$

* Your answer may differ slightly.

3. (b) Profit $=($ price - ATC $) \times$ output $=(\$ 14.50-\$ 14.50) \times 28=0 \times 28=0$
(c) $\$ 14.30$

Chapter 25 Worksheet Solutions

1. (a) $20+20+15+10=65$
(b) $20^{2}+20^{2}+15^{2}+10^{2}+10^{2}+5^{2}+5^{2}+5^{2}+5^{2}+5^{2}$
$400+400+225+100+100+25+25+25+25+25$
1350
2. (a) $40+20+5+5=70$
(b) $40^{2}+20^{2}+5^{2}+5^{2}+5^{2}+5^{2}+5^{2}+5^{2}+5^{2}+5^{2}$
$1600+400+25+25+25+25+25+25+25+25$
2200

Chapter 25 Appendix
 Answers to Worksheet

1. (c) Total profit at output of $3=$ total revenue $(\$ 84)-$ total $\operatorname{cost}(\$ 79)=\$ 5$.
(d) $\$ 26.25$
2. (c) Total profit at output of $4=$ total revenue $(\$ 376)-$ total $\operatorname{cost}(\$ 335)=\$ 41$.
(d) $\$ 82.50$
3. (a) Table 1

		Total Oevenue	Marginal Revenue	Total Cost	ATC Price	Reven $\$ 30$
$\mathbf{\$ 3 0}$	$\$ 30$	$\$ 30$	$\$ 30$	$\$ 30$		
2	29	58	28	54	27	$\$ 24$
3	28	84	26	79	26.33	25
4	26	104	20	107	26.75	28
5	24	120	16	140	28	33
6	22	132	12	180	30	40
7	20	140	8	232	33.33	52
8	18	144	4	304	38	72

1. (b) Figure 1

2. (a) Table 2

		Total				
Output	Price	Revenue	Marginal Revenue	Total Cost	ATC	Marginal
Cost						
1	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	$\$ 100$	
2	98	196	96	178	89	78
3	96	288	92	249	83	81
4	94	376	88	335	83.75	86
5	90	450	74	430	86	95
6	86	516	66	540	90	110
7	82	574	58	670	95.71	130
8	78	624	50	840	105	170

2. (b) Figure 2

Chapter 27

Answers to Worksheet

1. (a) Table 1

Units of Land	Output	Marginal Physical Product
1	1	1
2	3	2
3	7	4
4	11	4
5	14	3
6	16	2
7	17	1
8	18	1
9	17	-1
10	15	-2
	(b) $5^{\text {th }}$	
	(c) 9 th	

2. (a) Table 2

Marginal

Physical
Units of Output Product

Labor
1
2
2
$2 \quad 5 \quad 3$
$310 \quad 5$
$4 \quad 16 \quad 6$
$5 \quad 22 \quad 6$
$6 \quad 27 \quad 5$
$\begin{array}{lll}7 & 31 & 4\end{array}$
$8 \quad 34 \quad 3$
$\begin{array}{ll}9 & 36\end{array}$
$10 \quad 37$
$11 \quad 36$
33
-3
(b) 6 th
(c) 11th
3. (a) Table 3

| | Marginal
 Physical | Total
 Revenue | Marginal
 Revenue |
| :--- | :--- | :--- | :--- | :--- |
| Units of \quad Output | | | |
| Product | Price | Product | Product |

1	5	5	6	30	30
2	11	6	6	66	36
3	16	5	6	96	30
4	20	4	6	120	24
5	23	3	6	138	18
6	25	2	6	150	12
7	26	1	6	156	6
8	26	0	6	156	0
9	25	-1	6	150	-6
10	23	-2	6	138	-12

(b) 3 rd
(c) 9 th
(d) (1) 0
(2) 4
(3) 5
(4) 7
(5) 7
4. (a) Table 4

	Output	Marginal Physical Product	Price	Total Revenue Product Land	Marginal Revenue
1	3	3	20	60	60
Product					

(b) 6 th
(c) 11th
(d) (1) 0
(2) 5
(3) 7
(4) 8
(5) 9
5. (a) Table 5

Units of					
Land					
1	Output	Marginal Physical Product	Price	Total Revenue Product	Marginal Revenue Product
2	4	4	50	200	200
3	9	5	48	432	232
4	15	6	45	675	243
$\mathbf{5}$	22	7	40	880	205
6	29	7	34	986	106
7	35	6	31	1085	99
8	40	5	29	1160	75
9	43	3	26	1118	58
10	45	2	24	1080	-38
11	46	1	23	1058	-22
12	46	0	23	1058	0

(b) 6 th
(c) 12 th
(d) (1) 0
(2) 4
(3) 5
(4) 6
(5) 8
(a) Table 6

Units of					
Labor					
1	Output	Marginal Physical Product	Price	Total Revenue Product	Marginal Revenue Product
2	3	3	20	60	60
3	8	5	19	152	92
4	13	5	18	234	82
5	19	6	17	323	89
6	25	6	16	400	77
7	30	5	15	450	50
8	33	3	14	462	12
9	35	2	13	455	-7
10	36	1	12	432	-23
11	36	0	12	432	0
12	35	-1	-		

(b) 6th
(c) 11 th
(d) (1) 0
(2) 5
(3) 5
(4) 6
(5) 7

Chapter 29
 Answers to Worksheet

1. Figure 1

2. Real wages (99) = Money Wages $\quad \frac{\mathrm{CPI}(92)}{\mathrm{CPI}(99)}$ (99) \times

$$
\begin{gathered}
=\frac{96}{\frac{\$ 12,000}{1}} \times \frac{100}{125} \\
= \\
\text { Percentage change } \frac{\text { change }}{\frac{\$ 960}{\text { original number }}=}= \\
=\frac{460}{500}=\frac{46}{50}=92 \%
\end{gathered}
$$

3. Real wages $(08)=$ Money $\operatorname{Wages}(08) \times \frac{\mathrm{CPI}(03)}{\mathrm{CPI}(08)}$

500

$$
=\frac{\$ 70,000}{1} \times \frac{\frac{100}{140}}{1}
$$

$$
=\$ 50,000
$$

Percentage change $=\frac{\text { change }}{\text { originalnumber }}=\frac{\$ 25,000}{\$ 25,000}=100 \%$
4. \quad Real wages $(11)=$ Money Wages $(11) \times \frac{\mathrm{CPI}(07)}{\mathrm{CPI}(11)}$

$$
\begin{gathered}
=\frac{\$ 6,000}{1} \times \frac{100}{2 \rho 0} \\
=\$ 3000 \\
\text { Percentage change } \frac{\text { change }}{\text { original number }}=\frac{\$ 1,000}{\$ 2,000}=\frac{1}{2}=\quad=50 \%
\end{gathered}
$$

Chapter 30

Answers to Worksheet

1. Value of asset $=\frac{\text { Annual income from asset }}{\text { interest rate }}$

$$
\begin{aligned}
& =\frac{\$ 800}{.16} \\
& =\$ 5,000
\end{aligned}
$$

2. Value of asset $=\frac{\$ 120,000}{.06}$

$$
=\$ 2,000,000
$$

3. Value of asset $\frac{\$ 2,400}{.08}=$

$$
=\$ 30,000
$$

4. \quad Present value $=\$ 1,000 \times \frac{1}{(1+r)^{n}}$

$$
\begin{aligned}
& =\$ 1,000 \times \frac{1}{(1.09)^{2}} \\
& =\$ 1,000 \times \frac{1}{1.1881} \\
& =\$ 841.68
\end{aligned}
$$

5. Present value $=\$ 10,000 \times \frac{1}{(1.07)^{2}}$

$$
\begin{aligned}
& =\$ 10,000 \times .712986 \\
& =\$ 7,129.86
\end{aligned}
$$

6. $\quad \$ 1.00 \times \frac{1}{(1.10)^{6}}$
$=\$ 1.00 \times \frac{1}{1.771561}$
$=\$ 1.00 \times .5645$
$=\$.56$
7. Sales $(\$ 1,000,000)-$ Costs $(\$ 300,000+\$ 30,000+\$ 10,000+\$ 20,000+$ $\$ 50,000+\$ 500,000=\$ 910,000)=$ Dollar Value of Net Productivity $(\$ 90,000)$.

Net productivity of capital $=\quad \underline{\text { Dollar Value of Net Productivity }}$ Capital cost

$$
=\frac{\$ 90,000}{\$ 500,000}=\frac{9}{50}=18 \%
$$

8. Sales $(\$ 600,000)-$ Costs $(\$ 150,000+\$ 75,000+\$ 75,000+\$ 5,000+$ $\$ 250,000=\$ 555,000)=$ Dollar Value of Net Productivity $(\$ 45,000)$

Dollar Value of Net Productivity
Net productivity of capital $=\quad$ Capital Cost

$$
=\frac{\$ 45,000}{\$ 250,000}=\frac{45}{250}=\frac{9}{50}=18 \%
$$

Chapter 32

Answers to Worksheet

1. 3 jeans $=2$ wines
2. one jeans = 2 wines
3. more than 2 bottles of wine
4. more than 1 pair of jeans
5. jeans
6. wine
7. jeans
8. wine
9. 1 wheat $=3$ coffees
10. 4 wheats $=1$ coffee
11. more than 1 bushel of wheat
12. more than 1 bushel of coffee
13. coffee
14. wheat
15. coffee
16. wheat

Chapter 33

Answers to Worksheet

1. $\frac{1,400,000 \text { yen }}{129 \text { yen }}=\$ 10,852.71$
2.

$$
\frac{37,000 \text { lire }}{1,804 \text { lire }}=\$ 20.51
$$

3. $\frac{\$ 9.00 \text { Canadian }}{\$ 1.43}=\$ 6.29$
4. $\frac{12 \text { pounds }}{.61 \text { pounds }}=\$ 19.67$
5. $1,400,000$ yen $=\$ 225.23$
6. 129 yen $=\$ 225.23$
