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R E V I E W  A N D  S U M M A R Y
F O R  C H A P T E R  5

This chapter was devoted chiefly to the determination of the cen-
ter of gravity of a rigid body, that is, to the determination of the
point G where a single force W, called the weight of the body, can
be applied to represent the effect of the earth’s attraction on the
body.

In the first part of the chapter, we considered two-dimensional
bodies, such as flat plates and wires contained in the xy plane. By
adding force components in the vertical z direction and moments
about the horizontal y and x axes [Sec. 5.2], we derived the relations

W � � dW x�W � � x dW y� W � � y dW (5.2)

which define the weight of the body and the coordinates x� and y�
of its center of gravity.

In the case of a homogeneous flat plate of uniform thickness
[Sec. 5.3], the center of gravity G of the plate coincides with the
centroid C of the area A of the plate, the coordinates of which are
defined by the relations

x�A � � x dA y�A � � y dA (5.3)

Similarly, the determination of the center of gravity of a homoge-
neous wire of uniform cross section contained in a plane reduces
to the determination of the centroid C of the line L representing
the wire; we have

x�L � � x dL y�L � � y dL (5.4)

The integrals in Eqs. (5.3) are referred to as the first moments
of the area A with respect to the y and x axes and are denoted by
Qy and Qx, respectively [Sec. 5.4]. We have

Qy � x�A Qx � y�A (5.6)

The first moments of a line can be defined in a similar way.

The determination of the centroid C of an area or line is sim-
plified when the area or line possesses certain properties of sym-
metry. If the area or line is symmetric with respect to an axis, its
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centroid C lies on that axis; if it is symmetric with respect to two
axes, C is located at the intersection of the two axes; if it is sym-
metric with respect to a center O, C coincides with O.

The areas and the centroids of various common shapes are tab-
ulated in Fig. 5.8. When a flat plate can be divided into several of
these shapes, the coordinates X� and Y� of its center of gravity G can
be determined from the coordinates x�1, x�2, . . . and y�1, y�2, . . . of
the centers of gravity G1, G2, . . . of the various parts [Sec. 5.5].
Equating moments about the y and x axes, respectively (Fig. 5.24),
we have

X��W � �x�W Y��W � �y�W (5.7)

Fig. 5.24

275Review and Summary for Chapter 5

If the plate is homogeneous and of uniform thickness, its center of
gravity coincides with the centroid C of the area of the plate, and
Eqs. (5.7) reduce to

Qy � X��A � �x�A Qx � Y��A � �y�A (5.8)

These equations yield the first moments of the composite area, or
they can be solved for the coordinates X� and Y� of its centroid [Sam-
ple Prob. 5.1]. The determination of the center of gravity of a com-
posite wire is carried out in a similar fashion [Sample Prob. 5.2].

When an area is bounded by analytical curves, the coordinates
of its centroid can be determined by integration [Sec. 5.6]. This
can be done by evaluating either the double integrals in Eqs. (5.3)
or a single integral which uses one of the thin rectangular or pie-
shaped elements of area shown in Fig. 5.12. Denoting by x�el and
y�el the coordinates of the centroid of the element dA, we have

Qy � x�A � � x�el dA Qx � y�A � � y�el dA (5.9)

It is advantageous to use the same element of area to compute both
of the first moments Qy and Qx; the same element can also be used
to determine the area A [Sample Prob. 5.4].
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The theorems of Pappus-Guldinus relate the determination of
the area of a surface of revolution or the volume of a body of rev-
olution to the determination of the centroid of the generating curve
or area [Sec. 5.7]. The area A of the surface generated by rotating
a curve of length L about a fixed axis (Fig. 5.25a) is

A � 2�y�L (5.10)

where y� represents the distance from the centroid C of the curve
to the fixed axis. Similarly, the volume V of the body generated by
rotating an area A about a fixed axis (Fig. 5.25b) is

V � 2�yy�A (5.11)

where y� represents the distance from the centroid C of the area to
the fixed axis.

The concept of centroid of an area can also be used to solve
problems other than those dealing with the weight of flat plates. For
example, to determine the reactions at the supports of a beam [Sec.
5.8], we can replace a distributed load w by a concentrated load W
equal in magnitude to the area A under the load curve and passing
through the centroid C of that area (Fig. 5.26). The same approach
can be used to determine the resultant of the hydrostatic forces ex-
erted on a rectangular plate submerged in a liquid [Sec. 5.9].

Fig. 5.26

The last part of the chapter was devoted to the determination
of the center of gravity G of a three-dimensional body. The coor-
dinates x�, y�, z� of G were defined by the relations

x� W � � x dW y� W � � y dW z� W � � z dW (5.16)

In the case of a homogeneous body, the center of gravity G coin-
cides with the centroid C of the volume V of the body; the coordi-
nates of C are defined by the relations

x� V � � x dV y� V � � y dV z� V � � z dV (5.18)

If the volume possesses a plane of symmetry, its centroid C will lie
in that plane; if it possesses two planes of symmetry, C will be lo-
cated on the line of intersection of the two planes; if it possesses
three planes of symmetry which intersect at only one point, C will
coincide with that point [Sec. 5.10].
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Fig. 5.27

Fig. 5.28

The volumes and centroids of various common three-
dimensional shapes are tabulated in Fig. 5.21. When a body can be
divided into several of these shapes, the coordinates X�, Y�, Z� of its cen-
ter of gravity G can be determined from the corresponding coordi-
nates of the centers of gravity of its various parts [Sec. 5.11]. We have

X��W � �x� W Y��W � �y� W Z� �W � �z� W (5.19)

If the body is made of a homogeneous material, its center of grav-
ity coincides with the centroid C of its volume, and we write [Sam-
ple Probs. 5.11 and 5.12]

X��V � �x� V Y��V � �y� V Z� �V � �z� V (5.20)

When a volume is bounded by analytical surfaces, the coordi-
nates of its centroid can be determined by integration [Sec. 5.12].
To avoid the computation of the triple integrals in Eqs. (5.18), we

can use elements of volume in the shape of thin filaments, as shown
in Fig. 5.27. Denoting by x�el, y�el, and z�el the coordinates of the cen-
troid of the element dV, we rewrite Eqs. (5.18) as

x� V � � x�el dV y� V � � y�el dV z� V � � z�el dV (5.22)

which involve only double integrals. If the volume possesses two
planes of symmetry, its centroid C is located on their line of in-
tersection. Choosing the x axis to lie along that line and dividing
the volume into thin slabs parallel to the yz plane, we can deter-
mine C from the relation

x�V � � x�el dV (5.23)

with a single integration [Sample Prob. 5.13]. For a body of revo-
lution, these slabs are circular and their volume is given in Fig. 5.28.
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