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Forces in straight two-force members

R E V I E W  A N D  S U M M A R Y
F O R  C H A P T E R  7

In this chapter you learned to determine the internal forces which
hold together the various parts of a given member in a structure.

Considering first a straight two-force member AB [Sec. 7.2],
we recall that such a member is subjected at A and B to equal and
opposite forces F and �F directed along AB (Fig. 7.19a). Cutting
member AB at C and drawing the free-body diagram of portion
AC, we conclude that the internal forces which existed at C in
member AB are equivalent to an axial force �F equal and oppo-
site to F (Fig. 7.19b). We note that in the case of a two-force mem-
ber which is not straight, the internal forces reduce to a force-
couple system and not to a single force.

Fig. 7.19 Fig. 7.20

Considering next a multiforce member AD (Fig. 7.20a), cutting
it at J, and drawing the free-body diagram of portion JD, we con-
clude that the internal forces at J are equivalent to a force-couple
system consisting of the axial force F, the shearing force V, and a
couple M (Fig. 7.20b). The magnitude of the shearing force mea-
sures the shear at point J, and the moment of the couple is referred
to as the bending moment at J. Since an equal and opposite force-
couple system would have been obtained by considering the free-
body diagram of portion AJ, it is necessary to specify which portion
of member AD was used when recording the answers [Sample
Prob. 7.1].

Most of the chapter was devoted to the analysis of the internal
forces in two important types of engineering structures: beams and
cables. Beams are usually long, straight prismatic members designed
to support loads applied at various points along the member. In 
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general the loads are perpendicular to the axis of the beam and pro-
duce only shear and bending in the beam. The loads may be either
concentrated at specific points, or distributed along the entire length
or a portion of the beam. The beam itself may be supported in var-
ious ways; since only statically determinate beams are considered in
this text, we limited our analysis to that of simply supported beams,
overhanging beams, and cantilever beams [Sec. 7.3].

To obtain the shear V and bending moment M at a given point
C of a beam, we first determine the reactions at the supports by con-
sidering the entire beam as a free body. We then cut the beam at C
and use the free-body diagram of one of the two portions obtained
in this fashion to determine V and M. In order to avoid any confu-
sion regarding the sense of the shearing force V and couple M (which
act in opposite directions on the two portions of the beam), the sign
convention illustrated in Fig. 7.21 was adopted [Sec. 7.4]. Once the
values of the shear and bending moment have been determined at
a few selected points of the beam, it is usually possible to draw a
shear diagram and a bending-moment diagram representing, re-
spectively, the shear and bending moment at any point of the beam
[Sec. 7.5]. When a beam is subjected to concentrated loads only, the
shear is of constant value between loads and the bending moment
varies linearly between loads [Sample Prob. 7.2]. On the other hand,
when a beam is subjected to distributed loads, the shear and bend-
ing moment vary quite differently [Sample Prob. 7.3].

The construction of the shear and bending-moment diagrams
is facilitated if the following relations are taken into account.
Denoting by w the distributed load per unit length (assumed pos-
itive if directed downward), we have [Sec. 7.5]:

� �w (7.1)

� V (7.3)

or, in integrated form,

VD � VC � �(area under load curve between C and D) (7.2�)
MD � MC � area under shear curve between C and D (7.4�)

Equation (7.2�) makes it possible to draw the shear diagram of a
beam from the curve representing the distributed load on that beam
and the value of V at one end of the beam. Similarly, Eq. (7.4�) makes
it possible to draw the bending-moment diagram from the shear di-
agram and the value of M at one end of the beam. However, con-
centrated loads introduce discontinuities in the shear diagram and
concentrated couples introduce discontinuities in the bending-
moment diagram, none of which are accounted for in these equations
[Sample Probs. 7.4 and 7.7]. Finally, we note from Eq. (7.3) that the
points of the beam where the bending moment is maximum or min-
imum are also the points where the shear is zero [Sample Prob. 7.5].
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Shear and bending moment in a beam
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404 Forces in Beams and Cables

Parabolic cable

Cables with distributed loads

Catenary

Fig. 7.25

Fig. 7.23

Fig. 7.24

The second half of the chapter was devoted to the analysis of
flexible cables. We first considered a cable of negligible weight sup-
porting concentrated loads [Sec. 7.7]. Using the entire cable AB as
a free body (Fig. 7.22), we noted that the three available equilib-
rium equations were not sufficient to determine the four unknowns
representing the reactions at the supports A and B. However, if the
coordinates of a point D of the cable are known, an additional equa-
tion can be obtained by considering the free-body diagram of the
portion AD or DB of the cable. Once the reactions at the supports
have been determined, the elevation of any point of the cable and
the tension in any portion of the cable can be found from the ap-
propriate free-body diagram [Sample Prob. 7.8]. It was noted that
the horizontal component of the force T representing the tension
is the same at any point of the cable.

We next considered cables carrying distributed loads [Sec. 7.8].
Using as a free body a portion of cable CD extending from the low-
est point C to an arbitrary point D of the cable (Fig. 7.23), we observed
that the horizontal component of the tension force T at D is constant
and equal to the tension T0 at C, while its vertical component is equal
to the weight W of the portion of cable CD. The magnitude and di-
rection of T were obtained from the force triangle:

T � �T2
0 � W�2� tan � � (7.6)

In the case of a load uniformly distributed along the horizon-
tal—as in a suspension bridge (Fig. 7.24)—the load supported by
portion CD is W � wx, where w is the constant load per unit hor-
izontal length [Sec. 7.9]. We also found that the curve formed by
the cable is a parabola of equation

y � (7.8)

and that the length of the cable can be found by using the expan-
sion in series given in Eq. (7.10) [Sample Prob. 7.9].

In the case of a load uniformly distributed along the cable it-
self [for example, a cable hanging under its own weight (Fig. 7.25)]
the load supported by portion CD is W � ws, where s is the length
measured along the cable and w is the constant load per unit length
[Sec. 7.10]. Choosing the origin O of the coordinate axes at a dis-
tance c � T0�w below C, we derived the relations

s � c sinh (7.15)

y � c cosh �
x
c

� (7.16)

y2 � s2 � c2 (7.17)
T0 � wc W � ws T � wy (7.18)

which can be used to solve problems involving cables hanging un-
der their own weight [Sample Prob. 7.10]. Equation (7.16), which
defines the shape of the cable, is the equation of a catenary.
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