REVIEW AND SUMMARY FOR CHAPTER 9

In the first half of this chapter, we discussed the determination of the resultant \mathbf{R} of forces $\Delta \mathbf{F}$ distributed over a plane area A when the magnitudes of these forces are proportional to both the areas ΔA of the elements on which they act and the distances y from these elements to a given x axis; we thus had $\Delta F=k y \Delta A$. We found that the magnitude of the resultant \mathbf{R} is proportional to the first moment $Q_{x}=\int y d A$ of the area A, while the moment of \mathbf{R} about the x axis is proportional to the second moment, or moment of inertia, $I_{x}=\int y^{2} d A$ of A with respect to the same axis [Sec. 9.2].

The rectangular moments of inertia I_{x} and I_{y} of an area [Sec. 9.3] were obtained by evaluating the integrals

$$
\begin{equation*}
I_{x}=\int y^{2} d A \quad I_{y}=\int x^{2} d A \tag{9.1}
\end{equation*}
$$

These computations can be reduced to single integrations by choosing $d A$ to be a thin strip parallel to one of the coordinate axes. We also recall that it is possible to compute I_{x} and I_{y} from the same elemental strip (Fig. 9.35) using the formula for the moment of inertia of a rectangular area [Sample Prob. 9.3].

Fig. 9.35

The polar moment of inertia of an area A with respect to the pole O [Sec. 9.4] was defined as

$$
\begin{equation*}
J_{O}=\int r^{2} d A \tag{9.3}
\end{equation*}
$$

where r is the distance from O to the element of area $d A$ (Fig. 9.36). Observing that $r^{2}=x^{2}+y^{2}$, we established the relation

$$
\begin{equation*}
J_{O}=I_{x}+I_{y} \tag{9.4}
\end{equation*}
$$

Rectangular moments of inertia

Fig. 9.36

Polar moment of inertia

Fig. 9.37

Composite areas

Product of inertia

The radius of gyration of an area A with respect to the x axis [Sec. 9.5] was defined as the distance k_{x}, where $I_{x}=k_{x}^{2} A$. With similar definitions for the radii of gyration of A with respect to the y axis and with respect to O, we had

$$
\begin{equation*}
k_{x}=\sqrt{\frac{I_{x}}{A}} \quad k_{y}=\sqrt{\frac{I_{y}}{A}} \quad k_{O}=\sqrt{\frac{J_{O}}{A}} \tag{9.5-9.7}
\end{equation*}
$$

The parallel-axis theorem was presented in Sec. 9.6. It states that the moment of inertia I of an area with respect to any given axis $A A^{\prime}$ (Fig. 9.37) is equal to the moment of inertia \bar{I} of the area with respect to the centroidal axis $B B^{\prime}$ that is parallel to $A A^{\prime}$ plus the product of the area A and the square of the distance d between the two axes:

$$
\begin{equation*}
I=\bar{I}+A d^{2} \tag{9.9}
\end{equation*}
$$

This formula can also be used to determine the moment of inertia \bar{I} of an area with respect to a centroidal axis $B B^{\prime}$ when its moment of inertia I with respect to a parallel axis $A A^{\prime}$ is known. In this case, however, the product $A d^{2}$ should be subtracted from the known moment of inertia I.

A similar relation holds between the polar moment of inertia J_{O} of an area about a point O and the polar moment of inertia J_{C} of the same area about its centroid C. Letting d be the distance between O and C, we have

$$
\begin{equation*}
J_{O}=\bar{J}_{C}+A d^{2} \tag{9.11}
\end{equation*}
$$

The parallel-axis theorem can be used very effectively to compute the moment of inertia of a composite area with respect to a given axis [Sec. 9.7]. Considering each component area separately, we first compute the moment of inertia of each area with respect to its centroidal axis, using the data provided in Figs. 9.12 and 9.13 whenever possible. The parallel-axis theorem is then applied to determine the moment of inertia of each component area with respect to the desired axis, and the various values obtained are added [Sample Probs. 9.4 and 9.5].

Sections 9.8 through 9.10 were devoted to the transformation of the moments of inertia of an area under a rotation of the coordinate axes. First, we defined the product of inertia of an area A as

$$
\begin{equation*}
I_{x y}=\int x y d A \tag{9.12}
\end{equation*}
$$

and showed that $I_{x y}=0$ if the area A is symmetrical with respect to either or both of the coordinate axes. We also derived the parallel-axis theorem for products of inertia. We had

$$
\begin{equation*}
I_{x y}=\bar{I}_{x^{\prime} y^{\prime}}+\bar{x} \bar{y} A \tag{9.13}
\end{equation*}
$$

where $\bar{I}_{x^{\prime} y^{\prime}}$ is the product of inertia of the area with respect to the centroidal axes x^{\prime} and y^{\prime} which are parallel to the x and y axes, respectively, and \bar{x} and \bar{y} are the coordinates of the centroid of the area [Sec. 9.8].

Fig. 9.38

In Sec. 9.9 we determined the moments and product of inertia $I_{x^{\prime}}, I_{y^{\prime}}$, and $I_{x^{\prime} y^{\prime}}$ of an area with respect to x^{\prime} and y^{\prime} axes obtained by rotating the original x and y coordinate axes through an angle θ counterclockwise (Fig. 9.38). We expressed $I_{x^{\prime}}, I_{y^{\prime}}$, and $I_{x^{\prime} y^{\prime}}$ in terms of the moments and product of inertia I_{x}, I_{y}, and $I_{x y}$ computed with respect to the original x and y axes. We had

$$
\begin{align*}
I_{x^{\prime}} & =\frac{I_{x}+I_{y}}{2}+\frac{I_{x}-I_{y}}{2} \cos 2 \theta-I_{x y} \sin 2 \theta \tag{9.18}\\
I_{y^{\prime}} & =\frac{I_{x}+I_{y}}{2}-\frac{I_{x}-I_{y}}{2} \cos 2 \theta+I_{x y} \sin 2 \theta \tag{9.19}\\
I_{x^{\prime} y^{\prime}} & =\frac{I_{x}-I_{y}}{2} \sin 2 \theta+I_{x y} \cos 2 \theta \tag{9.20}
\end{align*}
$$

The principal axes of the area about O were defined as the two axes perpendicular to each other and with respect to which the moments of inertia of the area are maximum and minimum. The corresponding values of θ, denoted by θ_{m}, were obtained from the formula

$$
\begin{equation*}
\tan 2 \theta_{m}=-\frac{2 I_{x y}}{I_{x}-I_{y}} \tag{9.25}
\end{equation*}
$$

The corresponding maximum and minimum values of I are called the principal moments of inertia of the area about O; we had

$$
\begin{equation*}
I_{\max , \min }=\frac{I_{x}+I_{y}}{2} \pm \sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}^{2}} \tag{9.27}
\end{equation*}
$$

We also noted that the corresponding value of the product of inertia is zero.

The transformation of the moments and product of inertia of an area under a rotation of axes can be represented graphically by drawing Mohr's circle [Sec. 9.10]. Given the moments and product of inertia I_{x}, I_{y}, and $I_{x y}$ of the area with respect to the x and y

Rotation of axes

Principal axes

Principal moments of inertia

Mohr's circle

Fig. 9.39

Moments of inertia of masses

Fig. 9.40
coordinate axes, we plot points $X\left(I_{x}, I_{x y}\right)$ and $Y\left(I_{y},-I_{x y}\right)$ and draw the line joining these two points (Fig. 9.39). This line is a diameter of Mohr's circle and thus defines this circle. As the coordinate axes are rotated through θ, the diameter rotates through twice that angle, and the coordinates of X^{\prime} and Y^{\prime} yield the new values $I_{x^{\prime}}$, $I_{y^{\prime}}$, and $I_{x^{\prime} y^{\prime}}$ of the moments and product of inertia of the area. Also, the angle θ_{m} and the coordinates of points A and B define the principal axes a and b and the principal moments of inertia of the area [Sample Prob. 9.8].

The second half of the chapter was devoted to the determination of moments of inertia of masses, which are encountered in dynamics in problems involving the rotation of a rigid body about an axis. The mass moment of inertia of a body with respect to an axis $A A^{\prime}$ (Fig. 9.40) was defined as

$$
\begin{equation*}
I=\int r^{2} d m \tag{9.28}
\end{equation*}
$$

where r is the distance from $A A^{\prime}$ to the element of mass [Sec. 9.11]. The radius of gyration of the body was defined as

$$
\begin{equation*}
k=\sqrt{\frac{I}{m}} \tag{9.29}
\end{equation*}
$$

The moments of inertia of a body with respect to the coordinate axes were expressed as

$$
\begin{align*}
& I_{x}=\int\left(y^{2}+z^{2}\right) d m \\
& I_{y}=\int\left(z^{2}+x^{2}\right) d m \tag{9.30}\\
& I_{z}=\int\left(x^{2}+y^{2}\right) d m
\end{align*}
$$

We saw that the parallel-axis theorem also applies to mass moments of inertia [Sec. 9.12]. Thus, the moment of inertia I of a body with respect to an arbitrary axis $A A^{\prime}$ (Fig. 9.41) can be expressed as

$$
\begin{equation*}
I=\bar{I}+m d^{2} \tag{9.33}
\end{equation*}
$$

where \bar{I} is the moment of inertia of the body with respect to the centroidal axis $B B^{\prime}$ which is parallel to the axis $A A^{\prime}, m$ is the mass of the body, and d is the distance between the two axes.

Fig. 9.41

Fig. 9.42

Fig. 9.43

The moments of inertia of thin plates can be readily obtained from the moments of inertia of their areas [Sec. 9.13]. We found that for a rectangular plate the moments of inertia with respect to the axes shown (Fig. 9.42) are

$$
\begin{gather*}
I_{A A^{\prime}}=\frac{1}{12} m a^{2} \quad I_{B B^{\prime}}=\frac{1}{12} m b^{2} \tag{9.39}\\
I_{C C^{\prime}}=I_{A A^{\prime}}+I_{B B^{\prime}}=\frac{1}{12} m\left(a^{2}+b^{2}\right) \tag{9.40}
\end{gather*}
$$

while for a circular plate (Fig. 9.43) they are

$$
\begin{gather*}
I_{A A^{\prime}}=I_{B B^{\prime}}=\frac{1}{4} m r^{2} \tag{9.41}\\
I_{C C^{\prime}}=I_{A A^{\prime}}+I_{B B^{\prime}}=\frac{1}{2} m r^{2} \tag{9.42}
\end{gather*}
$$

When a body possesses two planes of symmetry, it is usually possible to use a single integration to determine its moment of inertia with respect to a given axis by selecting the element of mass $d m$ to be a thin plate [Sample Probs. 9.10 and 9.11]. On the other hand, when a body consists of several common geometric shapes, its moment of inertia with respect to a given axis can be obtained by using the formulas given in Fig. 9.28 together with the parallelaxis theorem [Sample Probs. 9.12 and 9.13].

In the last portion of the chapter, we learned to determine the moment of inertia of a body with respect to an arbitrary axis $O L$ which is drawn through the origin O [Sec. 9.16]. Denoting by λ_{x},

Moments of inertia of thin plates

Composite bodies

Moment of inertia with respect to an arbitrary axis

Fig. 9.44
Ellipsoid of inertia

Principal axes of inertia Principal moments of inertia
λ_{y}, λ_{z} the components of the unit vector $\boldsymbol{\lambda}$ along $O L$ (Fig. 9.44) and introducing the products of inertia

$$
\begin{equation*}
I_{x y}=\int x y d m \quad I_{y z}=\int y z d m \quad I_{z x}=\int z x d m \tag{9.45}
\end{equation*}
$$

we found that the moment of inertia of the body with respect to OL could be expressed as
$I_{O L}=I_{x} \lambda_{x}^{2}+I_{y} \lambda_{y}^{2}+I_{z} \lambda_{z}^{2}-2 I_{x y} \lambda_{x} \lambda_{y}-2 I_{y z} \lambda_{y} \lambda_{z}-2 I_{z x} \lambda_{z} \lambda_{x}$

Fig. 9.45
By plotting a point Q along each axis $O L$ at a distance $O Q=$ $1 / \sqrt{I_{O L}}$ from O [Sec. 9.17], we obtained the surface of an ellipsoid, known as the ellipsoid of inertia of the body at point O. The principal axes $x^{\prime}, y^{\prime}, z^{\prime}$ of this ellipsoid (Fig. 9.45) are the principal axes of inertia of the body; that is, the products of inertia $I_{x^{\prime} y^{\prime}}, I_{y^{\prime} z^{\prime}}, I_{z^{\prime} x^{\prime}}$ of the body with respect to these axes are all zero. There are many situations when the principal axes of inertia of a body can be deduced from properties of symmetry of the body. Choosing these axes to be the coordinate axes, we can then express $I_{O L}$ as

$$
\begin{equation*}
I_{O L}=I_{x^{\prime}} \lambda_{x^{\prime}}^{2}+I_{y^{\prime}} \lambda_{y^{\prime}}^{2}+I_{z^{\prime}} \lambda_{z^{\prime}}^{2} \tag{9.50}
\end{equation*}
$$

where $I_{x^{\prime}}, I_{y^{\prime}}, I_{z^{\prime}}$ are the principal moments of inertia of the body at O.

When the principal axes of inertia cannot be obtained by observation [Sec. 9.17], it is necessary to solve the cubic equation

$$
\begin{align*}
K^{3}- & \left(I_{x}+I_{y}+I_{z}\right) K^{2}+\left(I_{x} I_{y}+I_{y} I_{z}+I_{z} I_{x}-I_{x y}^{2}-I_{y z}^{2}-I_{z x}^{2}\right) K \\
& -\left(I_{x} I_{y} I_{z}-I_{x} I_{y z}^{2}-I_{y} I_{z x}^{2}-I_{z} I_{x y}^{2}-2 I_{x y} I_{y z} I_{z x}\right)=0 \tag{9.56}
\end{align*}
$$

We found [Sec. 9.18] that the roots K_{1}, K_{2}, and K_{3} of this equation are the principal moments of inertia of the given body. The direction cosines $\left(\lambda_{x}\right)_{1},\left(\lambda_{y}\right)_{1}$, and $\left(\lambda_{z}\right)_{1}$ of the principal axis corresponding to the principal moment of inertia K_{1} are then determined by substituting K_{1} into Eqs. (9.54) and solving two of these equations and Eq. (9.57) simultaneously. The same procedure is then repeated using K_{2} and K_{3} to determine the direction cosines of the other two principal axes [Sample Prob. 9.15].

