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R E V I E W  A N D  S U M M A R Y
F O R  C H A P T E R  9

In the first half of this chapter, we discussed the determination of
the resultant R of forces �F distributed over a plane area A when
the magnitudes of these forces are proportional to both the areas
�A of the elements on which they act and the distances y from
these elements to a given x axis; we thus had �F � ky �A. We
found that the magnitude of the resultant R is proportional to the
first moment Qx � �y dA of the area A, while the moment of R
about the x axis is proportional to the second moment, or moment
of inertia, Ix � �y2 dA of A with respect to the same axis [Sec. 9.2].

The rectangular moments of inertia Ix and Iy of an area [Sec. 9.3]
were obtained by evaluating the integrals

Ix � � y2 dA Iy � � x2 dA (9.1)

These computations can be reduced to single integrations by choos-
ing dA to be a thin strip parallel to one of the coordinate axes. We
also recall that it is possible to compute Ix and Iy from the same
elemental strip (Fig. 9.35) using the formula for the moment of in-
ertia of a rectangular area [Sample Prob. 9.3].

Rectangular moments of inertia

Polar moment of inertiaThe polar moment of inertia of an area A with respect to the
pole O [Sec. 9.4] was defined as

JO � � r2 dA (9.3)

where r is the distance from O to the element of area dA (Fig. 9.36).
Observing that r2 � x2 � y2, we established the relation

JO � Ix � Iy (9.4)
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Fig. 9.37

The radius of gyration of an area A with respect to the x axis
[Sec. 9.5] was defined as the distance kx, where Ix � kx

2A. With sim-
ilar definitions for the radii of gyration of A with respect to the y
axis and with respect to O, we had

kx � �� ky � �� kO � �� (9.5–9.7)

The parallel-axis theorem was presented in Sec. 9.6. It states that
the moment of inertia I of an area with respect to any given axis AA�
(Fig. 9.37) is equal to the moment of inertia I� of the area with respect
to the centroidal axis BB� that is parallel to AA� plus the product of
the area A and the square of the distance d between the two axes:

I � I� � Ad2 (9.9)

This formula can also be used to determine the moment of inertia
I� of an area with respect to a centroidal axis BB� when its moment
of inertia I with respect to a parallel axis AA� is known. In this case,
however, the product Ad2 should be subtracted from the known
moment of inertia I.

A similar relation holds between the polar moment of inertia
JO of an area about a point O and the polar moment of inertia JC

of the same area about its centroid C. Letting d be the distance
between O and C, we have

JO 	 J�C � Ad2 (9.11)

The parallel-axis theorem can be used very effectively to com-
pute the moment of inertia of a composite area with respect to a
given axis [Sec. 9.7]. Considering each component area separately,
we first compute the moment of inertia of each area with respect
to its centroidal axis, using the data provided in Figs. 9.12 and 9.13
whenever possible. The parallel-axis theorem is then applied to
determine the moment of inertia of each component area with
respect to the desired axis, and the various values obtained are
added [Sample Probs. 9.4 and 9.5].

Sections 9.8 through 9.10 were devoted to the transformation
of the moments of inertia of an area under a rotation of the coor-
dinate axes. First, we defined the product of inertia of an area A as

Ixy � � xy dA (9.12)

and showed that Ixy � 0 if the area A is symmetrical with respect
to either or both of the coordinate axes. We also derived the 
parallel-axis theorem for products of inertia. We had

Ixy � I�x�y� � x� y�A (9.13)

where I�x�y� is the product of inertia of the area with respect to the
centroidal axes x� and y� which are parallel to the x and y axes, 
respectively, and x� and y� are the coordinates of the centroid of the
area [Sec. 9.8].
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In Sec. 9.9 we determined the moments and product of iner-
tia Ix�, Iy�, and Ix�y� of an area with respect to x� and y� axes ob-
tained by rotating the original x and y coordinate axes through an
angle � counterclockwise (Fig. 9.38). We expressed Ix�, Iy�, and Ix�y�

in terms of the moments and product of inertia Ix, Iy, and Ixy com-
puted with respect to the original x and y axes. We had

Ix� � � cos 2� � Ixy sin 2� (9.18)

Iy� � �
Ix �

2
Iy

� � �
Ix �

2
Iy

� cos 2� � Ixy sin 2� (9.19)

Ix�y� � sin 2� � Ixy cos 2� (9.20)

The principal axes of the area about O were defined as the two
axes perpendicular to each other and with respect to which the
moments of inertia of the area are maximum and minimum. 
The corresponding values of �, denoted by �m, were obtained from
the formula

tan 2�m � � (9.25)

The corresponding maximum and minimum values of I are called
the principal moments of inertia of the area about O; we had

Imax,min � 	 �
���
2

� I�2
xy� (9.27)

We also noted that the corresponding value of the product of inertia
is zero.

The transformation of the moments and product of inertia of
an area under a rotation of axes can be represented graphically by
drawing Mohr’s circle [Sec. 9.10]. Given the moments and prod-
uct of inertia Ix, Iy, and Ixy of the area with respect to the x and y
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coordinate axes, we plot points X (Ix, Ixy) and Y (Iy, �Ixy) and draw
the line joining these two points (Fig. 9.39). This line is a diame-
ter of Mohr’s circle and thus defines this circle. As the coordinate
axes are rotated through �, the diameter rotates through twice that
angle, and the coordinates of X� and Y� yield the new values Ix�,
Iy�, and Ix�y� of the moments and product of inertia of the area.
Also, the angle �m and the coordinates of points A and B define
the principal axes a and b and the principal moments of inertia of
the area [Sample Prob. 9.8].

The second half of the chapter was devoted to the determina-
tion of moments of inertia of masses, which are encountered in dy-
namics in problems involving the rotation of a rigid body about an
axis. The mass moment of inertia of a body with respect to an axis
AA� (Fig. 9.40) was defined as

I � � r2 dm (9.28)

where r is the distance from AA� to the element of mass [Sec. 9.11].
The radius of gyration of the body was defined as

k � �� (9.29)

The moments of inertia of a body with respect to the coordinate
axes were expressed as

Ix � � (y2 � z2) dm

Iy � � (z2 � x2) dm (9.30)

Iz � � (x2 � y2) dm
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We saw that the parallel-axis theorem also applies to mass mo-
ments of inertia [Sec. 9.12]. Thus, the moment of inertia I of a
body with respect to an arbitrary axis AA� (Fig. 9.41) can be
expressed as

I � I� � md2 (9.33)

where I� is the moment of inertia of the body with respect to the
centroidal axis BB� which is parallel to the axis AA�, m is the mass
of the body, and d is the distance between the two axes.

Parallel-axis theorem

Fig. 9.41 Fig. 9.42 Fig. 9.43

The moments of inertia of thin plates can be readily obtained
from the moments of inertia of their areas [Sec. 9.13]. We found
that for a rectangular plate the moments of inertia with respect to
the axes shown (Fig. 9.42) are

IAA� � �1
1
2� ma2 IBB� � �1

1
2� mb2 (9.39)

ICC� � IAA� � IBB� � �1
1
2� m(a2 � b2) (9.40)

while for a circular plate (Fig. 9.43) they are

IAA� � IBB� � �
1
4� mr2 (9.41)

ICC� � IAA� � IBB� � �
1
2� mr2 (9.42)

When a body possesses two planes of symmetry, it is usually
possible to use a single integration to determine its moment of in-
ertia with respect to a given axis by selecting the element of mass
dm to be a thin plate [Sample Probs. 9.10 and 9.11]. On the other
hand, when a body consists of several common geometric shapes,
its moment of inertia with respect to a given axis can be obtained
by using the formulas given in Fig. 9.28 together with the parallel-
axis theorem [Sample Probs. 9.12 and 9.13].

In the last portion of the chapter, we learned to determine the
moment of inertia of a body with respect to an arbitrary axis OL
which is drawn through the origin O [Sec. 9.16]. Denoting by �x,
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�y, �z the components of the unit vector � along OL (Fig. 9.44)
and introducing the products of inertia

Ixy � � xy dm Iyz � � yz dm Izx � � zx dm (9.45)

we found that the moment of inertia of the body with respect to
OL could be expressed as

IOL � Ix�x
2 � Iy�2

y � Iz�z
2 � 2Ixy�x�y � 2Iyz�y�z � 2Izx�z�x (9.46)

Fig. 9.44 Fig. 9.45

By plotting a point Q along each axis OL at a distance OQ �

1/�IOL� from O [Sec. 9.17], we obtained the surface of an ellipsoid,
known as the ellipsoid of inertia of the body at point O. The prin-
cipal axes x�, y�, z� of this ellipsoid (Fig. 9.45) are the principal axes
of inertia of the body; that is, the products of inertia Ix�y�, Iy�z�, Iz�x�

of the body with respect to these axes are all zero. There are many
situations when the principal axes of inertia of a body can be de-
duced from properties of symmetry of the body. Choosing these
axes to be the coordinate axes, we can then express IOL as

IOL � Ix��x
2

� � Iy��
2
y� � Iz��z

2
� (9.50)

where Ix�, Iy�, Iz� are the principal moments of inertia of the body
at O.

When the principal axes of inertia cannot be obtained by ob-
servation [Sec. 9.17], it is necessary to solve the cubic equation

K3 � (Ix � Iy � Iz)K2 � (IxIy � IyIz � IzIx � I2
xy � I2

yz � I2
zx)K

� (IxIyIz � IxI
2
yz � IyI2

zx � IzI
2
xy � 2IxyIyzIzx) � 0 (9.56)

We found [Sec. 9.18] that the roots K1, K2, and K3 of this equation
are the principal moments of inertia of the given body. The direc-
tion cosines (�x)1, (�y)1, and (�z)1 of the principal axis correspond-
ing to the principal moment of inertia K1 are then determined by
substituting K1 into Eqs. (9.54) and solving two of these equations
and Eq. (9.57) simultaneously. The same procedure is then re-
peated using K2 and K3 to determine the direction cosines of the
other two principal axes [Sample Prob. 9.15].
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