
592

Work of a force

Virtual displacement

Principle of virtual work

Fig. 10.17

R E V I E W  A N D  S U M M A R Y
F O R  C H A P T E R  1 0

The first part of this chapter was devoted to the principle of virtual
work and to its direct application to the solution of equilibrium
problems. We first defined the work of a force F corresponding to
the small displacement dr [Sec. 10.2] as the quantity

dU � F � dr (10.1)

obtained by forming the scalar product of the force F and the dis-
placement dr (Fig. 10.16). Denoting respectively by F and ds the
magnitudes of the force and of the displacement, and by � the
angle formed by F and dr, we wrote

dU � F ds cos � (10.1�)

The work dU is positive if � � 90°, zero if � � 90°, and negative
if � � 90°. We also found that the work of a couple of moment M
acting on a rigid body is

dU � M d� (10.2)

where d� is the small angle expressed in radians through which the
body rotates.

Considering a particle located at A and acted upon by several
forces F1, F2, . . . , Fn [Sec. 10.3], we imagined that the particle
moved to a new position A� (Fig. 10.17). Since this displacement
did not actually take place, it was referred to as a virtual displace-
ment and denoted by �r, while the corresponding work of the forces
was called virtual work and denoted by �U. We had

�U � F1 � �r � F2 � �r � ��� � Fn � �r

The principle of virtual work states that if a particle is in equilib-
rium, the total virtual work �U of the forces acting on the particle
is zero for any virtual displacement of the particle.

The principle of virtual work can be extended to the case of
rigid bodies and systems of rigid bodies. Since it involves only forces
which do work, its application provides a useful alternative to the
use of the equilibrium equations in the solution of many engi-
neering problems. It is particularly effective in the case of machines
and mechanisms consisting of connected rigid bodies, since the
work of the reactions at the supports is zero and the work of the
internal forces at the pin connections cancels out [Sec. 10.4; Sam-
ple Probs. 10.1, 10.2, and 10.3].
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In the case of real machines [Sec. 10.5], however, the work of
the friction forces should be taken into account, with the result that
the output work will be less than the input work. Defining the
mechanical efficiency of a machine as the ratio

� � (10.9)

we also noted that for an ideal machine (no friction) � � 1, while
for a real machine � � 1.

In the second part of the chapter we considered the work of
forces corresponding to finite displacements of their points of
application. The work U1y2 of the force F corresponding to a dis-
placement of the particle A from A1 to A2 (Fig. 10.18) was obtained
by integrating the right-hand member of Eq. (10.1) or (10.1�) along
the curve described by the particle [Sec. 10.6]:

U1y2 � �A2

A1

F � dr (10.11)

or

U1y2 � �s2

s1

(F cos �) ds (10.11�)

Similarly, the work of a couple of moment M corresponding to a
finite rotation from �1 to �2 of a rigid body was expressed as

U1y2 � ��2

�1

M d� (10.12)

The work of the weight W of a body as its center of gravity
moves from the elevation y1 to y2 (Fig. 10.19) can be obtained by
setting F � W and � � 180° in Eq. (10.11�):

U1y2 � ��y2

y1

W dy � Wy1 � Wy2 (10.13)

The work of W is therefore positive when the elevation y decreases.
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The work of the force F exerted by a spring on a body A as the
spring is stretched from x1 to x2 (Fig. 10.20) can be obtained by
setting F � kx, where k is the constant of the spring, and � � 180°
in Eq. (10.11�):

U1y2 � ��x2

x1

kx dx � �
1
2�kx2

1 � �
1
2�kx2

2 (10.15)

The work of F is therefore positive when the spring is returning
to its undeformed position.

When the work of a force F is independent of the path actually
followed between A1 and A2, the force is said to be a conservative
force, and its work can be expressed as

U1y2 � V1 � V2 (10.20)

where V is the potential energy associated with F, and V1 and V2
represent the values of V at A1 and A2, respectively [Sec. 10.7].
The potential energies associated, respectively, with the force of
gravity W and the elastic force F exerted by a spring were found
to be

Vg � Wy and Ve � �
1
2�kx2 (10.17, 10.18)

When the position of a mechanical system depends upon a sin-
gle independent variable �, the potential energy of the system is a
function V(�) of that variable, and it follows from Eq. (10.20) that
�U � ��V � �(dV�d�) ��. The condition �U � 0 required by the
principle of virtual work for the equilibrium of the system can thus
be replaced by the condition

� 0 (10.21)

When all the forces involved are conservative, it may be preferable
to use Eq. (10.21) rather than to apply the principle of virtual work
directly [Sec. 10.8; Sample Prob. 10.4].

This approach presents another advantage, since it is possible
to determine from the sign of the second derivative of V whether
the equilibrium of the system is stable, unstable, or neutral [Sec.
10.9]. If d2V�d�2 � 0, V is minimum and the equilibrium is stable;
if d2V�d�2 � 0, V is maximum and the equilibrium is unstable; if
d2V�d�2 � 0, it is necessary to examine derivatives of a higher
order.

dV
�
d�

594 Method of Virtual Work

Work of the force exerted by a spring

Potential energy

Alternative expression for the principle of
virtual work

Stability of equilibrium

Fig. 10.20

Spring undeformed

A0

A

B

B

x1

x2

x

F

A2

B

A1

bee0491x_ch10.qxd  4/2/03  9:54 AM  Page 594 mac76 mac76:385_reb:




