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Position coordinate of a particle in 
rectilinear motion

Velocity and acceleration in rectilinear 
motion

Determination of the velocity and 
acceleration by integration

R E V I E W  A N D  S U M M A R Y
F O R  C H A P T E R  1 1

In the first half of the chapter, we analyzed the rectilinear motion
of a particle, that is, the motion of a particle along a straight line.
To define the position P of the particle on that line, we chose a
fixed origin O and a positive direction (Fig. 11.27). The distance x
from O to P, with the appropriate sign, completely defines the
position of the particle on the line and is called the position coor-
dinate of the particle [Sec. 11.2].

The velocity v of the particle was shown to be equal to the time
derivative of the position coordinate x,

v � �
d
d
x
t
� (11.1)

and the acceleration a was obtained by differentiating v with respect
to t,

a � �
d
d
v
t
� (11.2)

or

a � �
d
d

2

t2
x

� (11.3)

We also noted that a could be expressed as

a � v �
d
d

v
x
� (11.4)

We observed that the velocity v and the acceleration a were
represented by algebraic numbers which can be positive or nega-
tive. A positive value for v indicates that the particle moves in the
positive direction, and a negative value that it moves in the nega-
tive direction. A positive value for a, however, may mean that the
particle is truly accelerated (i.e., moves faster) in the positive
direction, or that it is decelerated (i.e., moves more slowly) in the
negative direction. A negative value for a is subject to a similar
interpretation [Sample Prob. 11.1].

In most problems, the conditions of motion of a particle are
defined by the type of acceleration that the particle possesses and
by the initial conditions [Sec. 11.3]. The velocity and position of
the particle can then be obtained by integrating two of the equa-
tions (11.1) to (11.4). Which of these equations should be selected
depends upon the type of acceleration involved [Sample Probs.
11.2 and 11.3].

Fig. 11.27
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Two types of motion are frequently encountered: the uniform
rectilinear motion [Sec. 11.4], in which the velocity v of the parti-
cle is constant and

x � x0 � vt (11.5)

and the uniformly accelerated rectilinear motion [Sec. 11.5], in
which the acceleration a of the particle is constant and we have

v � v0 � at (11.6)
x � x0 � v0t � �

1
2�at2 (11.7)

v2 � v2
0 � 2a(x � x0) (11.8)

When two particles A and B move along the same straight line,
we may wish to consider the relative motion of B with respect to

Uniform rectilinear motion

Uniformly accelerated rectilinear motion

Relative motion of two particles

Blocks connected by inextensible cords

Graphical solutions

Position vector and velocity in curvilinear
motion

Fig. 11.28

A [Sec. 11.6]. Denoting by xB�A the relative position coordinate of
B with respect to A (Fig. 11.28), we had

xB � xA � xB�A (11.9)

Differentiating Eq. (11.9) twice with respect to t, we obtained 
successively

vB � vA � vB�A (11.10)
aB � aA � aB�A (11.11)

where vB�A and aB�A represent, respectively, the relative velocity
and the relative acceleration of B with respect to A.

When several blocks are connected by inextensible cords, it is
possible to write a linear relation between their position coordi-
nates. Similar relations can then be written between their veloci-
ties and between their accelerations and can be used to analyze
their motion [Sample Prob. 11.5].

It is sometimes convenient to use a graphical solution for prob-
lems involving the rectilinear motion of a particle [Secs. 11.7 and
11.8]. The graphical solution most commonly used involves the x–t,
v–t, and a–t curves [Sec. 11.7; Sample Prob. 11.6]. It was shown
that, at any given time t,

v � slope of x–t curve
a � slope of v–t curve

while, over any given time interval from t1 to t2,

v2 � v1 � area under a–t curve
x2 � x1 � area under v–t curve

In the second half of the chapter, we analyzed the curvilinear
motion of a particle, that is, the motion of a particle along a curved
path. The position P of the particle at a given time [Sec. 11.9] was
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Acceleration in curvilinear motion

Derivative of a vector function

Rectangular components of velocity and 
acceleration

Component motions

Relative motion of two particles

defined by the position vector r joining the origin O of the coor-
dinates and point P (Fig. 11.29). The velocity v of the particle was
defined by the relation

v � �
d
d
r
t
� (11.15)

and was found to be a vector tangent to the path of the particle and
of magnitude v (called the speed of the particle) equal to the time
derivative of the length s of the arc described by the particle:

v � �
d
d

s
t
� (11.16)

The acceleration a of the particle was defined by the relation

a � �
d
d
v
t
� (11.18)

and we noted that, in general, the acceleration is not tangent to the
path of the particle.

Before proceeding to the consideration of the components of ve-
locity and acceleration, we reviewed the formal definition of the de-
rivative of a vector function and established a few rules governing the
differentiation of sums and products of vector functions. We then
showed that the rate of change of a vector is the same with respect
to a fixed frame and with respect to a frame in translation [Sec. 11.10].

Denoting by x, y, and z the rectangular coordinates of a parti-
cle P, we found that the rectangular components of the velocity
and acceleration of P equal, respectively, the first and second de-
rivatives with respect to t of the corresponding coordinates:

vx � ẋ vy � ẏ vz � ż (11.29)
ax � ẍ ay � ÿ az � z̈ (11.30)

When the component ax of the acceleration depends only upon
t, x, and/or vx, and when similarly ay depends only upon t, y, and/or
vy, and az upon t, z, and/or vz, Eqs. (11.30) can be integrated in-
dependently. The analysis of the given curvilinear motion can thus
be reduced to the analysis of three independent rectilinear compo-
nent motions [Sec. 11.11]. This approach is particularly effective in
the study of the motion of projectiles [Sample Probs. 11.7 and 11.8].

For two particles A and B moving in space (Fig. 11.30), we
considered the relative motion of B with respect to A, or more pre-
cisely, with respect to a moving frame attached to A and in trans-
lation with A [Sec. 11.12]. Denoting by rB�A the relative position
vector of B with respect to A (Fig. 11.30), we had

rB � rA � rB�A (11.31)

Denoting by vB�A and aB�A, respectively, the relative velocity and
the relative acceleration of B with respect to A, we also showed that

vB � vA � vB�A (11.33)
and

aB � aA � aB�A (11.34)Fig. 11.30

Fig. 11.29
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Tangential and normal components

Motion along a space curve

Radial and transverse components

Fig. 11.31

Fig. 11.32

It is sometimes convenient to resolve the velocity and accel-
eration of a particle P into components other than the rectangular
x, y, and z components. For a particle P moving along a path con-
tained in a plane, we attached to P unit vectors et tangent to the
path and en normal to the path and directed toward the center of
curvature of the path [Sec. 11.13]. We then expressed the velocity
and acceleration of the particle in terms of tangential and normal
components. We wrote

v � vet (11.36)

and

a � �
d
d
v
t
�et � �

v
�

2

�en (11.39)

where v is the speed of the particle and � the radius of curvature
of its path [Sample Probs. 11.10 and 11.11]. We observed that while
the velocity v is directed along the tangent to the path, the accel-
eration a consists of a component at directed along the tangent to
the path and a component an directed toward the center of cur-
vature of the path (Fig. 11.31).

For a particle P moving along a space curve, we defined the
plane which most closely fits the curve in the neighborhood of P
as the osculating plane. This plane contains the unit vectors et and
en which define, respectively, the tangent and principal normal to
the curve. The unit vector eb which is perpendicular to the oscu-
lating plane defines the binormal.

When the position of a particle P moving in a plane is defined
by its polar coordinates r and �, it is convenient to use radial and
transverse components directed, respectively, along the position
vector r of the particle and in the direction obtained by rotating r
through 90° counterclockwise [Sec. 11.14]. We attached to P unit
vectors er and e� directed, respectively, in the radial and transverse
directions (Fig. 11.32). We then expressed the velocity and accel-
eration of the particle in terms of radial and transverse components

v � ṙer � r�̇e� (11.43)
a � (r̈ � r�̇2)er � (r�̈ � 2ṙ�̇)e� (11.44)

where dots are used to indicate differentiation with respect to time.
The scalar components of the velocity and acceleration in the radial
and transverse directions are therefore

vr � ṙ v� � r�̇ (11.45)
ar � r̈ � r�̇2 a� � r�̈ � 2ṙ�̇ (11.46)

It is important to note that ar is not equal to the time derivative of
vr, and that a� is not equal to the time derivative of v� [Sample
Prob. 11.12].

The chapter ended with a discussion of the use of cylindrical
coordinates to define the position and motion of a particle in space.
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