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REVIEW AND SUMMARY

FOR CHAPTER 12

This chapter was devoted to Newton’s second law and its applica-
tion to the analysis of the motion of particles.

Denoting by m the mass of a particle, by XF the sum, or
resultant, of the forces acting on the particle, and by a the accel-
eration of the particle relative to a newtonian frame of reference
[Sec. 12.2], we wrote

>F = ma (12.2)

Introducing the linear momentum of a particle, L = mv [Sec.
12.3], we saw that Newton’s second law can also be written in the
form

SF=1L (12.5)

which expresses that the resultant of the forces acting on a parti-
cle is equal to the rate of change of the linear momentum of the
particle.

Equation (12.2) holds only if a consistent system of units is
used. With SI units, the forces should be expressed in newtons, the
masses in kilograms, and the accelerations in m/s%: with U.S. cus-
tomary units, the forces should be expressed in pounds, the masses
in Ib - s¥/ft (also referred to as slugs), and the accelerations in ft/s®
[Sec. 12.4].

To solve a problem involving the motion of a particle, Eq. (12.2)
should be replaced by equations containing scalar quantities [Sec.
12.5]. Using rectangular components of F and a, we wrote

>F,. = ma, 2F, = ma, SF.=ma. (12.8)

Using tangential and normal components, we had

dv v?

2F,=m—— 2F,=m— (12.9")
dt p
We also noted [Sec. 12.6] that the equations of motion of a par-

ticle can be replaced by equations similar to the equilibrium equa-
tions used in statics if a vector —ma of magnitude ma but of sense
opposite to that of the acceleration is added to the forces applied
to the particle; the particle is then said to be in dynamic equilib-
rium. For the sake of uniformity, however, all the Sample Problems
were solved by using the equations of motion, first with rectangular
components [Sample Probs. 12.1 through 12.4], then with tangen-
tial and normal components [Sample Probs. 12.5 and 12.6].
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In the second part of the chapter, we defined the angular crien e By e e 745

momentum Hp of a particle about a point O as the moment about ~ Angular momentum
O of the linear momentum mv of that particle [Sec. 12.7]. We wrote

Hyp=r X mv (12.12) Y

and noted that Hy, is a vector perpendicular to the plane contain-
ing r and mv (Fig. 12.24) and of magnitude 0

Ho = rmo sin ¢ (12.13) P

Resolving the vectors r and mv into rectangular components,
we expressed the angular momentum Hy, in the determinant form

i j k Fig. 12.24
Ho=|x y = (12.14)

mo, mv, Mo,

In the case of a particle moving in the xy plane, we have z = v, = 0.
The angular momentum is perpendicular to the xy plane and is
completely defined by its magnitude. We wrote

Ho = H. = m(xv, — yv,) (12.16)

Computing the rate of change H,, of the angular momentum  Rate of change of angular momentum
Hy, and applying Newton’s second law, we wrote the equation

SM,, = Hy, (12.19)

which states that the sum of the moments about O of the forces act-
ing on a particle is equal to the rate of change of the angular mo-
mentum of the particle about O.

In many problems involving the plane motion of a particle, it Radial and transverse components
is found convenient to use radial and transverse components [Sec.
12.8, Sample Prob. 12.7] and to write the equations

3F, = m(F — r6°) (12.21)
SFy = m(rf + 2/0) (12.22)

When the only force acting on a particle P is a force F directed ~ Motion under a central force
toward or away from a fixed point O, the particle is said to be mov-
ing under a central force [Sec. 12.9]. Since XM, = 0 at any given
instant, it follows from Eq. (12.19) that Ho = 0 for all values of ¢
and, thus, that

H,, = constant (12.23)

We concluded that the angular momentum of a particle moving
under a central force is constant, both in magnitude and direction,
and that the particle moves in a plane perpendicular to the
vector Hop.
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Fig. 12.25

Newton’s law of universal gravitation

Orbital motion

Recalling Eq. (12.13), we wrote the relation
rmo sin ¢ = rgimv sin ¢ (12.25)

for the motion of any particle under a central force (Fig. 12.25).
Using polar coordinates and recalling Eq. (12.18), we also had

0 =h (12.27)

where h is a constant representing the angular momentum per unit
mass, Ho/m, of the particle. We observed (Fig. 12.26) that the in-
finitesimal area dA swept by the radius vector OP as it rotates
through d#6 is equal to érQ dO and, thus, that the left-hand mem-
ber of Eq. (12.27) represents twice the areal velocity dA/dt of the
particle. Therefore, the areal velocity of a particle moving under a
central force is constant.

Fig. 12.26

An important application of the motion under a central force
is provided by the orbital motion of bodies under gravitational at-
traction [Sec. 12.10]. According to Newton’s law of universal grav-
itation, two particles at a distance r from each other and of masses
M and m, respectively, attract each other with equal and opposite
forces F and —F directed along the line joining the particles
(Fig. 12.27). The common magnitude F of the two forces is

Mm
F=G—5 12.28
- (12.28)
where G is the constant of gravitation. In the case of a body of
mass m subjected to the gravitational attraction of the earth, the
product GM, where M is the mass of the earth, can be expressed as

GM = gR® (12.30)
where g = 9.81 m/s> = 32.2 ft/s> and R is the radius of the earth.

It was shown in Sec. 12.11 that a particle moving under a cen-
tral force describes a trajectory defined by the differential equation
du F

—5 tu=—5
mh?u®

T (12.37)
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where F > 0 corresponds to an attractive force and u = 1/r. In the v 747

case of a particle moving under a force of gravitational attraction
[Sec. 12.12], we substituted for F the expression given in Eq.
(12.28). Measuring 6 from the axis OA joining the focus O to the
point A of the trajectory closest to O (Fig. 12.28), we found that
the solution to Eq. (12.37) was

1 GM
— =u =

r h?

+ C cos 6 (12.39)

This is the equation of a conic of eccentricity & = Ch®>/GM. The
conic is an ellipse if € <1, a parabola if € = 1, and a hyperbola if

e > 1. The constants C and h can be determined from the initial Fig. 12.28
conditions; if the particle is projected from point A (6 = 0, r = ry)
with an initial velocity v, perpendicular to OA, we have h = rov,
[Sample Prob. 12.9].
It was also shown that the values of the initial velocity corre- Escape velocity

sponding, respectively, to a parabolic and a circular trajectory were

[ 2
Vese = GM (12.43)
To

GM

o

(12.44)

Ucire =

and that the first of these values, called the escape velocity, is the
smallest value of v, for which the particle will not return to its start-
ing point.

The periodic time 7 of a planet or satellite was defined as the Periodic time
time required by that body to describe its orbit. It was shown that

2arab
T fr—

A (12.45)

where h = ryv, and where a and b represent the semimajor and
semiminor axes of the orbit. It was further shown that these semi-
axes are respectively equal to the arithmetic and geometric means
of the maximum and minimum values of the radius vector r.

The last section of the chapter [Sec. 12.13] presented Kepler's — Kepler's laws
laws of planetary motion and showed that these empirical laws, ob-
tained from early astronomical observations, confirm Newton’s laws
of motion as well as his law of gravitation.
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