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Work of a force

Work of a weight

R E V I E W  A N D  S U M M A R Y
F O R  C H A P T E R  1 3

This chapter was devoted to the method of work and energy and
to the method of impulse and momentum. In the first half of the
chapter we studied the method of work and energy and its appli-
cation to the analysis of the motion of particles.

We first considered a force F acting on a particle A and defined
the work of F corresponding to the small displacement dr [Sec.
13.2] as the quantity

dU � F � dr (13.1)

or, recalling the definition of the scalar product of two vectors,

dU � F ds cos � (13.1�)

where � is the angle between F and dr (Fig. 13.29). The work of
F during a finite displacement from A1 to A2, denoted by U1y2,
was obtained by integrating Eq. (13.1) along the path described by
the particle:

U1y2 � �A2

A1

F � dr (13.2)

For a force defined by its rectangular components, we wrote

U1y2 � �A2

A1

(Fx dx � Fy dy � Fz dz) (13.2�)

The work of the weight W of a body as its center of gravity moves
from the elevation y1 to y2 (Fig. 13.30) was obtained by substitut-
ing Fx � Fz � 0 and Fy � �W into Eq. (13.2�) and integrating. We
found

U1y2 � ��y2

y1

W dy � Wy1 � Wy2 (13.4)
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Fig. 13.31

The work of a force F exerted by a spring on a body A during
a finite displacement of the body (Fig. 13.31) from A1(x � x1) to
A2(x � x2) was obtained by writing

dU � �F dx � �kx dx

U1y2 � �� x2

x1

kx dx � 	
1
2	kx2

1 � 	
1
2	kx2

2 (13.6)

The work of F is therefore positive when the spring is returning
to its undeformed position.

The work of the gravitational force F exerted by a particle of
mass M located at O on a particle of mass m as the latter moves
from A1 to A2 (Fig. 13.32) was obtained by recalling from Sec. 12.10
the expression for the magnitude of F and writing

U1y2 � �� r2

r1

dr � � (13.7)

The kinetic energy of a particle of mass m moving with a
velocity v [Sec. 13.3] was defined as the scalar quantity

T � 	
1
2	mv2 (13.9)
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From Newton’s second law we derived the principle of work
and energy, which states that the kinetic energy of a particle at A2
can be obtained by adding to its kinetic energy at A1 the work done
during the displacement from A1 to A2 by the force F exerted on
the particle:

T1 � U1y2 � T2 (13.11)

The method of work and energy simplifies the solution of many
problems dealing with forces, displacements, and velocities, since
it does not require the determination of accelerations [Sec. 13.4].
We also note that it involves only scalar quantities and that forces
which do no work need not be considered [Sample Probs. 13.1 and
13.3]. However, this method should be supplemented by the direct
application of Newton’s second law to determine a force normal to
the path of the particle [Sample Prob. 13.4].

The power developed by a machine and its mechanical effi-
ciency were discussed in Sec. 13.5. Power was defined as the time
rate at which work is done:

Power � � F � v (13.12, 13.13)

where F is the force exerted on the particle and v the velocity of
the particle [Sample Prob. 13.5]. The mechanical efficiency,
denoted by �, was expressed as

� � (13.15)

When the work of a force F is independent of the path followed
[Secs. 13.6 and 13.7], the force F is said to be a conservative force,
and its work is equal to minus the change in the potential energy
V associated with F:

U1y2 � V1 � V2 (13.19�)

The following expressions were obtained for the potential energy
associated with each of the forces considered earlier:

Force of gravity (weight): Vg � Wy (13.16)

Gravitational force: Vg � � (13.17)

Elastic force exerted by a spring: Ve � 	
1
2	kx2 (13.18)
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Substituting for U1y2 from Eq. (13.19�) into Eq. (13.11) and
rearranging the terms [Sec. 13.8], we obtained

T1 � V1 � T2 � V2 (13.24)

This is the principle of conservation of energy, which states that
when a particle moves under the action of conservative forces, the
sum of its kinetic and potential energies remains constant. The
application of this principle facilitates the solution of problems
involving only conservative forces [Sample Probs. 13.6 and 13.7].

Recalling from Sec. 12.9 that, when a particle moves under a
central force F, its angular momentum about the center of force
O remains constant, we observed [Sec. 13.9] that, if the central
force F is also conservative, the principles of conservation of an-
gular momentum and of conservation of energy can be used jointly
to analyze the motion of the particle [Sample Prob. 13.8]. Since
the gravitational force exerted by the earth on a space vehicle is
both central and conservative, this approach was used to study the
motion of such vehicles [Sample Prob. 13.9] and was found par-
ticularly effective in the case of an oblique launching. Considering
the initial position P0 and an arbitrary position P of the vehicle
(Fig. 13.33), we wrote

(HO)0 � HO: r0mv0 sin �0 � rmv sin � (13.25)

T0 � V0 � T � V: 	
1
2	mv2

0 � 	
GM

r0

m
	 � 	

1
2	mv2 � 	

GM
r

m
	 (13.26)

where m was the mass of the vehicle and M the mass of the earth.

The second half of the chapter was devoted to the method of
impulse and momentum and to its application to the solution of
various types of problems involving the motion of particles.

The linear momentum of a particle was defined [Sec. 13.10] as
the product mv of the mass m of the particle and its velocity v.
From Newton’s second law, F � ma, we derived the relation

mv1 � � t2

t1

F dt � mv2 (13.28)

where mv1 and mv2 represent the momentum of the particle at a
time t1 and a time t2, respectively, and where the integral defines
the linear impulse of the force F during the corresponding time
interval. We wrote therefore

mv1 � Imp1y2 � mv2 (13.30)

which expresses the principle of impulse and momentum for a
particle.

Principle of conservation of energy

Motion under a gravitational force

Principle of impulse and momentum for 
a particle

Fig. 13.33
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When the particle considered is subjected to several forces, the
sum of the impulses of these forces should be used; we had

mv1 � � Imp1y2 � mv2 (13.32)

Since Eqs. (13.30) and (13.32) involve vector quantities, it is
necessary to consider their x and y components separately when
applying them to the solution of a given problem [Sample Probs.
13.10 and 13.11].

The method of impulse and momentum is particularly effec-
tive in the study of the impulsive motion of a particle, when very
large forces, called impulsive forces, are applied for a very short
interval of time �t, since this method involves the impulses F �t
of the forces, rather than the forces themselves [Sec. 13.11].
Neglecting the impulse of any nonimpulsive force, we wrote

mv1 � �F �t � mv2 (13.35)

In the case of the impulsive motion of several particles, we had

�mv1 � �F �t � �mv2 (13.36)

where the second term involves only impulsive, external forces
[Sample Prob. 13.12].

In the particular case when the sum of the impulses of the ex-
ternal forces is zero, Eq. (13.36) reduces to �mv1 � �mv2; that is,
the total momentum of the particles is conserved.

In Secs. 13.12 through 13.14, we considered the central im-
pact of two colliding bodies. In the case of a direct central impact
[Sec. 13.13], the two colliding bodies A and B were moving along
the line of impact with velocities vA and vB, respectively
(Fig. 13.34). Two equations could be used to determine their

Impulsive motion

Direct central impact

Fig. 13.34

vA

vB

Line of

im
pact

B

A

846 Kinetics of Particles: Energy and Momentum
Methods

bee0491x_ch13.qxd  4/11/03  8:33 AM  Page 846 mac76 mac76:385_reb:



velocities v�A and v�B after the impact. The first expressed conser-
vation of the total momentum of the two bodies,

mAvA � mBvB � mAv�A � mBv�B (13.37)

where a positive sign indicates that the corresponding velocity is
directed to the right, while the second related the relative veloci-
ties of the two bodies before and after the impact,

v�B � v�A � e(vA � vB) (13.43)

The constant e is known as the coefficient of restitution; its value
lies between 0 and 1 and depends in a large measure on the materials
involved. When e � 0, the impact is said to be perfectly plastic;
when e � 1, it is said to be perfectly elastic [Sample Prob. 13.13].

In the case of an oblique central impact [Sec. 13.14], the
velocities of the two colliding bodies before and after the impact
were resolved into n components along the line of impact and t
components along the common tangent to the surfaces in contact
(Fig. 13.35). We observed that the t component of the velocity of

Oblique central impact

Using the three fundamental methods of 
kinetic analysis

Fig. 13.35

each body remained unchanged, while the n components satisfied
equations similar to Eqs. (13.37) and (13.43) [Sample Probs. 13.14
and 13.15]. It was shown that although this method was developed
for bodies moving freely before and after the impact, it could be
extended to the case when one or both of the colliding bodies is
constrained in its motion [Sample Prob. 13.16].

In Sec. 13.15, we discussed the relative advantages of the three
fundamental methods presented in this chapter and the preceding
one, namely, Newton’s second law, work and energy, and impulse
and momentum. We noted that the method of work and energy and
the method of impulse and momentum can be combined to solve
problems involving a short impact phase during which impulsive
forces must be taken into consideration [Sample Prob. 13.17].
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