
Rigid body in translation

Rigid body in rotation about a fixed axis
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This chapter was devoted to the study of the kinematics of rigid
bodies.

We first considered the translation of a rigid body [Sec.
15.2] and observed that in such a motion, all points of the body
have the same velocity and the same acceleration at any given
instant.

We next considered the rotation of a rigid body about a fixed
axis [Sec. 15.3]. The position of the body is defined by the angle �
that the line BP, drawn from the axis of rotation to a point P of the
body, forms with a fixed plane (Fig. 15.39). We found that the mag-
nitude of the velocity of P is

v � � r�̇ sin � (15.4)

where �̇ is the time derivative of �. We then expressed the veloc-
ity of P as

v � � � � r (15.5)

where the vector

� � �k � �̇k (15.6)

is directed along the fixed axis of rotation and represents the an-
gular velocity of the body.

Denoting by � the derivative d��dt of the angular velocity, we
expressed the acceleration of P as

a � � � r � � � (� � r) (15.8)

Differentiating (15.6), and recalling that k is constant in magnitude
and direction, we found that

� � �k � �̇k � �̈k (15.9)

The vector � represents the angular acceleration of the body and
is directed along the fixed axis of rotation.

dr
�
dt

ds
�
dt

Fig. 15.39
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Next we considered the motion of a representative slab located
in a plane perpendicular to the axis of rotation of the body
(Fig. 15.40). Since the angular velocity is perpendicular to the slab,
the velocity of a point P of the slab was expressed as

v � �k � r (15.10)

where v is contained in the plane of the slab. Substituting � � �k
and � � �k into (15.8), we found that the acceleration of P could
be resolved into tangential and normal components (Fig. 15.41)
respectively equal to

at � �k � r at � r�
an � ��2r an � r�2 (15.11�)

Recalling Eqs. (15.6) and (15.9), we obtained the following ex-
pressions for the angular velocity and the angular acceleration of
the slab [Sec. 15.4]:

� � (15.12)

� � � (15.13)

or

� � � (15.14)

We noted that these expressions are similar to those obtained in
Chap. 11 for the rectilinear motion of a particle.

Two particular cases of rotation are frequently encountered:
uniform rotation and uniformly accelerated rotation. Problems in-
volving either of these motions can be solved by using equations
similar to those used in Secs. 11.4 and 11.5 for the uniform recti-
linear motion and the uniformly accelerated rectilinear motion of
a particle, but where x, v, and a are replaced by �, �, and �, re-
spectively [Sample Prob. 15.1].

d�
�
d�

d2�
�
dt2

d�
�
dt

d�
�
dt

Rotation of a representative slab

Tangential and normal components

Fig. 15.41Fig. 15.40
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Velocities in plane motion

Instantaneous center of rotation

Fig. 15.42

The most general plane motion of a rigid slab can be considered
as the sum of a translation and a rotation [Sec. 15.5]. For example,
the slab shown in Fig. 15.42 can be assumed to translate with point
A, while simultaneously rotating about A. It follows [Sec. 15.6] that
the velocity of any point B of the slab can be expressed as

vB � vA � vB�A (15.17)

where vA is the velocity of A and vB�A the relative velocity of B
with respect to A or, more precisely, with respect to axes x�y� trans-
lating with A. Denoting by rB�A the position vector of B relative to
A, we found that

vB�A � �k � rB�A vB�A � r� (15.18)

The fundamental equation (15.17) relating the absolute velocities
of points A and B and the relative velocity of B with respect to A
was expressed in the form of a vector diagram and used to solve
problems involving the motion of various types of mechanisms
[Sample Probs. 15.2 and 15.3].

Another approach to the solution of problems involving the
velocities of the points of a rigid slab in plane motion was presented
in Sec. 15.7 and used in Sample Probs. 15.4 and 15.5. It is based
on the determination of the instantaneous center of rotation C of
the slab (Fig. 15.43).

Fig. 15.43
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The fact that any plane motion of a rigid slab can be consid-
ered as the sum of a translation of the slab with a reference point
A and a rotation about A was used in Sec. 15.8 to relate the ab-
solute accelerations of any two points A and B of the slab and the
relative acceleration of B with respect to A. We had

aB � aA � aB�A (15.21)

where aB�A consisted of a normal component (aB�A)n of magnitude
r�2 directed toward A, and a tangential component (aB�A)t of mag-
nitude r� perpendicular to the line AB (Fig. 15.44). The funda-
mental relation (15.21) was expressed in terms of vector diagrams
or vector equations and used to determine the accelerations of given
points of various mechanisms [Sample Probs. 15.6 through 15.8]. It
should be noted that the instantaneous center of rotation C con-
sidered in Sec. 15.7 cannot be used for the determination of accel-
erations, since point C, in general, does not have zero acceleration.

In the case of certain mechanisms, it is possible to express the
coordinates x and y of all significant points of the mechanism by
means of simple analytic expressions containing a single parame-
ter. The components of the absolute velocity and acceleration of a
given point are then obtained by differentiating twice with respect
to the time t the coordinates x and y of that point [Sec. 15.9].

While the rate of change of a vector is the same with respect
to a fixed frame of reference and with respect to a frame in trans-
lation, the rate of change of a vector with respect to a rotating frame
is different. Therefore, in order to study the motion of a particle
relative to a rotating frame we first had to compare the rates of
change of a general vector Q with respect to a fixed frame OXYZ
and with respect to a frame Oxyz rotating with an angular velocity
� [Sec. 15.10] (Fig. 15.45). We obtained the fundamental relation

(Q̇)OXYZ � (Q̇)Oxyz � � � Q (15.31)

and we concluded that the rate of change of the vector Q with respect
to the fixed frame OXYZ is made of two parts: The first part repre-
sents the rate of change of Q with respect to the rotating frame Oxyz;
the second part, � � Q, is induced by the rotation of the frame Oxyz.
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The next part of the chapter [Sec. 15.11] was devoted to the
two-dimensional kinematic analysis of a particle P moving with
respect to a frame � rotating with an angular velocity � about a
fixed axis (Fig. 15.46). We found that the absolute velocity of P
could be expressed as

vP � vP� � vP�� (15.33)

where vP � absolute velocity of particle P
vP� � velocity of point P� of moving frame � coinciding

with P
vP�� � velocity of P relative to moving frame �

We noted that the same expression for vP is obtained if the frame
is in translation rather than in rotation. However, when the frame
is in rotation, the expression for the acceleration of P is found to
contain an additional term ac called the complementary accelera-
tion or Coriolis acceleration. We wrote

aP � aP� � aP�� � ac (15.36)

where aP � absolute acceleration of particle P
aP� � acceleration of point P� of moving frame � coincid-

ing with P
aP�� � acceleration of P relative to moving frame �

ac � 2� � (ṙ)Oxy � 2� � vP��

� complementary, or Coriolis, acceleration

Since � and vP�� are perpendicular to each other in the case of
plane motion, the Coriolis acceleration was found to have a mag-
nitude ac � 2�vP�� and to point in the direction obtained by
rotating the vector vP�� through 90° in the sense of rotation of the
moving frame. Formulas (15.33) and (15.36) can be used to ana-
lyze the motion of mechanisms which contain parts sliding on each
other [Sample Probs. 15.9 and 15.10].

The last part of the chapter was devoted to the study of the kine-
matics of rigid bodies in three dimensions. We first considered the
motion of a rigid body with a fixed point [Sec. 15.12]. After proving
that the most general displacement of a rigid body with a fixed point
O is equivalent to a rotation of the body about an axis through O,
we were able to define the angular velocity � and the instantaneous
axis of rotation of the body at a given instant. The velocity of a point
P of the body (Fig. 15.47) could again be expressed as

v � � � � r (15.37)

Differentiating this expression, we also wrote

a � � � r � � � (� � r) (15.38)

However, since the direction of � changes from one instant to the
next, the angular acceleration � is, in general, not directed along
the instantaneous axis of rotation [Sample Prob. 15.11].

dr
�
dt

Fig. 15.47
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It was shown in Sec. 15.13 that the most general motion of a
rigid body in space is equivalent, at any given instant, to the sum
of a translation and a rotation. Considering two particles A and B
of the body, we found that

vB � vA � vB�A (15.42)

where vB�A is the velocity of B relative to a frame AX�Y�Z� attached
to A and of fixed orientation (Fig. 15.48). Denoting by rB�A the po-
sition vector of B relative to A, we wrote

vB � vA � � � rB�A (15.43)

where � is the angular velocity of the body at the instant consid-
ered [Sample Prob. 15.12]. The acceleration of B was obtained by
a similar reasoning. We first wrote

aB � aA � aB�A

and, recalling Eq. (15.38),

aB � aA � � � rB�A � � � (� � rB�A) (15.44)

In the final two sections of the chapter we considered the three-
dimensional motion of a particle P relative to a frame Oxyz rotat-
ing with an angular velocity � with respect to a fixed frame OXYZ
(Fig. 15.49). In Sec. 15.14 we expressed the absolute velocity vP of
P as

vP � vP� � vP�� (15.46)

where vP � absolute velocity of a particle P
vP� � velocity of point P� of moving frame � coinciding 

with P
vP�� � velocity of P relative to moving frame �
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The absolute acceleration aP of P was then expressed as

aP � aP� � aP�� � ac (15.48)

where aP � absolute acceleration of particle P
aP� � acceleration of point P� of moving frame � coincid-

ing with P
aP�� � acceleration of P relative to moving frame �

ac � 2� � (ṙ)Oxyz � 2� � vP��

� complementary, or Coriolis, acceleration

It was noted that the magnitude ac of the Coriolis acceleration is
not equal to 2�vP�� [Sample Prob. 15.13] except in the special
case when � and vP�� are perpendicular to each other.

We also observed [Sec. 15.15] that Eqs. (15.46) and (15.48)
remain valid when the frame Axyz moves in a known, but arbitrary,
fashion with respect to the fixed frame OXYZ (Fig. 15.50), provided
that the motion of A is included in the terms vP� and aP� represent-
ing the absolute velocity and acceleration of the coinciding point P�.

Frame of reference in general motion

Fig. 15.50

Rotating frames of reference are particularly useful in the study
of the three-dimensional motion of rigid bodies. Indeed, there are
many cases where an appropriate choice of the rotating frame will
lead to a simpler analysis of the motion of the rigid body than would
be possible with axes of fixed orientation [Sample Probs. 15.14 and
15.15].
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