bee0491x chl6.gxd 3/19/03 7:14 AM Page 1073 macll4 Mac 11$§85_reb:

REVIEW AND SUMMARY

FOR CHAPTER 16

In this chapter, we studied the kinetics of rigid bodies, that is, the
relations existing between the forces acting on a rigid body, the
shape and mass of the body, and the motion produced. Except
for the first two sections, which apply to the most general case of
the motion of a rigid body, our analysis was restricted to the plane
motion of rigid slabs and rigid bodies symmetrical with respect
to the reference plane. The study of the plane motion of non-
symmetrical rigid bodies and of the motion of rigid bodies in
three-dimensional space will be considered in Chap. 18.

We first recalled [Sec. 16.2] the two fundamental equations
derived in Chap. 14 for the motion of a system of particles and ob-
served that they apply in the most general case of the motion of a
rigid body. The first equation defines the motion of the mass cen-
ter G of the body; we have

2F = ma (16.1)

where m is the mass of the body and a the acceleration of G. The
second is related to the motion of the body relative to a centroidal
frame of reference; we wrote

M, = Hg, (16.2)

where Hg; is the rate of change of the angular momentum Hg of
the body about its mass center G. Together, Egs. (16.1) and (16.2)
express that the system of the external forces is equipollent to the
system consisting of the vector ma attached at G and the couple of
moment He, (Fig. 16.19).

Restricting our analysis at this point and for the rest of the
chapter to the plane motion of rigid slabs and rigid bodies sym-
metrical with respect to the reference plane, we showed [Sec. 16.3]
that the angular momentum of the body could be expressed as

He = o (16.4)

where I is the moment of inertia of the body about a centroidal axis
perpendicular to the reference plane and @ is the angular velocity
of the body. Differentiating both members of Eq. (16.4), we obtained

He = o = la (16.5)

which shows that in the restricted case considered here, the rate
of change of the angular momentum of the rigid body can be
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Plane Motion of Rigid Bodies: Forces and
Accelerations
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Equations for the plane motion of a rigid
body

d’Alembert’s principle
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Free-body-diagram equation

Connected rigid bodies

Constrained plane motion

represented by a vector of the same direction as e (that is, perpen-
dicular to the plane of reference) and of magnitude Ia.

It follows from the above [Sec. 16.4] that the plane motion of
a rigid slab or of a rigid body symmetrical with respect to the ref-
erence plane is defined by the three scalar equations

= 1,

y EMG = TO(

2F. = ma, 2F,

y (16.6)

It further follows that the external forces acting on the rigid body
are actually equivalent to the effective forces of the various par-
ticles forming the body. This statement, known as d’Alembert’s prin-
ciple, can be expressed in the form of the vector diagram shown in
Fig. 16.20, where the effective forces have been represented by a
vector ma attached at G and a couple Ia. In the particular case of
a slab in translation, the effective forces shown in part b of this fig-
ure reduce to the single vector ma, while in the particular case of
a slab in centroidal rotation, they reduce to the single couple Ia;
in any other case of plane motion, both the vector ma and the
couple I should be included.

Any problem involving the plane motion of a rigid slab may be
solved by drawing a free-body-diagram equation similar to that of
Fig. 16.20 [Sec. 16.6]. Three equations of motion can then be ob-
tained by equating the x components, y components, and moments
about an arbitrary point A, of the forces and vectors involved [Sam-
ple Probs. 16.1, 16.2, 16.4, and 16.5]. An alternative solution can be
obtained by adding to the external forces an inertia vector —ma of
sense opposite to that of a, attached at G, and an inertia couple —Ia
of sense opposite to that of a. The system obtained in this way is
equivalent to zero, and the slab is said to be in dynamic equilibrium.

The method described above can also be used to solve prob-
lems involving the plane motion of several connected rigid bod-
ies [Sec. 16.7]. A free-body-diagram equation is drawn for each
part of the system and the equations of motion obtained are
solved simultaneously. In some cases, however, a single diagram
can be drawn for the entire system, including all the external
forces as well as the vectors ma and the couples Ia associated
with the various parts of the system [Sample Prob. 16.3].

In the second part of the chapter, we were concerned with rigid
bodies moving under given constraints [Sec. 16.8]. While the kinetic
analysis of the constrained plane motion of a rigid slab is the same
as above, it must be supplemented by a kinematic analysis which has
for its object to express the components a, and @, of the accelera-
tion of the mass center G of the slab in terms of its angular accel-
eration a. Problems solved in this way included the noncentroidal
rotation of rods and plates [Sample Probs. 16.6 and 16.7], the rolling
motion of spheres and wheels [Sample Probs. 16.8 and 16.9], and

the plane motion of various types of linkages [Sample Prob. 16.10].
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