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This chapter was devoted to the kinetic analysis of the motion of
rigid bodies in three dimensions.

We first noted [Sec. 18.1] that the two fundamental equations
derived in Chap. 14 for the motion of a system of particles

�F � ma� (18.1)
�MG � ḢG (18.2)

provide the foundation of our analysis, just as they did in Chap. 16
in the case of the plane motion of rigid bodies. The computation
of the angular momentum HG of the body and of its derivative ḢG,
however, are now considerably more involved.

In Sec. 18.2, we saw that the rectangular components of the
angular momentum HG of a rigid body can be expressed as follows
in terms of the components of its angular velocity � and of its cen-
troidal moments and products of inertia:

Hx � �I�x�x � I�xy�y � I�xz�z

Hy � �I�yx�x � I�y�y � I�yz�z (18.7)
Hz � �I�zx�x � I�zy�y � I�z�z

If principal axes of inertia Gx�y�z� are used, these relations reduce to

Hx� � I�x��x� Hy� � I�y��y� Hz� � I�z��z� (18.10)

We observed that, in general, the angular momentum HG and the
angular velocity � do not have the same direction (Fig. 18.25).
They will, however, have the same direction if � is directed along
one of the principal axes of inertia of the body.
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Recalling that the system of the momenta of the particles form-
ing a rigid body can be reduced to the vector mv� attached at G and
the couple HG (Fig. 18.26), we noted that, once the linear mo-
mentum mv� and the angular momentum HG of a rigid body have
been determined, the angular momentum HO of the body about
any given point O can be obtained by writing

HO � r� � mv� � HG (18.11)

In the particular case of a rigid body constrained to rotate about
a fixed point O, the components of the angular momentum HO of
the body about O can be obtained directly from the components
of its angular velocity and from its moments and products of iner-
tia with respect to axes through O. We wrote

Hx � �Ix�x � Ixy�y � Ixz�z

Hy � �Iyx�x � Iy�y � Iyz�z (18.13)
Hz � �Izx�x � Izy�y � Iz�z

The principle of impulse and momentum for a rigid body in
three-dimensional motion [Sec. 18.3] is expressed by the same fun-
damental formula that was used in Chap. 17 for a rigid body in
plane motion,

Syst Momenta1 � Syst Ext Imp1y2 � Syst Momenta2 (17.4)

but the systems of the initial and final momenta should now be
represented as shown in Fig. 18.26, and HG should be computed
from the relations (18.7) or (18.10) [Sample Probs. 18.1 and 18.2].

The kinetic energy of a rigid body in three-dimensional mo-
tion can be divided into two parts [Sec. 18.4], one associated with
the motion of its mass center G and the other with its motion about
G. Using principal centroidal axes x�, y�, z�, we wrote

T � �
1
2�mv�

2 � �
1
2�(I�x��

2
x� � I�y��

2
y� � I�z��

2
z�) (18.17)

where      v� � velocity of mass center
� � angular velocity
m � mass of rigid body

I�x�, I�y�, I�z� � principal centroidal moments of inertia
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We also noted that, in the case of a rigid body constrained to ro-
tate about a fixed point O, the kinetic energy of the body can be
expressed as

T � �
1
2�(Ix��

2
x� � Iy��

2
y� � Iz��

2
z�) (18.20)

where the x�, y�, and z� axes are the principal axes of inertia of the
body at O. The results obtained in Sec. 18.4 make it possible to ex-
tend to the three-dimensional motion of a rigid body the applica-
tion of the principle of work and energy and of the principle of
conservation of energy.

The second part of the chapter was devoted to the application
of the fundamental equations

�F � ma� (18.1)
�MG � ḢG (18.2)

to the motion of a rigid body in three dimensions. We first recalled
[Sec. 18.5] that HG represents the angular momentum of the body
relative to a centroidal frame GX�Y�Z� of fixed orientation (Fig. 18.27)

Using a rotating frame to write the 
equations of motion of a rigid body in 
space

and that ḢG in Eq. (18.2) represents the rate of change of HG with
respect to that frame. We noted that, as the body rotates, its moments
and products of inertia with respect to the frame GX�Y�Z� change
continually. Therefore, it is more convenient to use a rotating frame
Gxyz when resolving � into components and computing the moments
and products of inertia that will be used to determine HG from Eqs.
(18.7) or (18.10). However, since ḢG in Eq. (18.2) represents the rate
of change of HG with respect to the frame GX�Y�Z� of fixed orienta-
tion, we must use the method of Sec. 15.10 to determine its value.
Recalling Eq. (15.31), we wrote

ḢG � (ḢG)Gxyz � � � HG (18.22)

where HG � angular momentum of body with respect to frame
GX�Y�Z� of fixed orientation

(ḢG)Gxyz � rate of change of HG with respect to rotating frame
Gxyz, to be computed from relations (18.7)

� � angular velocity of the rotating frame Gxyz
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Substituting for ḢG from (18.22) into (18.2), we obtained

�MG � (ḢG)Gxyz � � � HG (18.23)

If the rotating frame is actually attached to the body, its angular
velocity � is identically equal to the angular velocity � of the body.
There are many applications, however, where it is advantageous to
use a frame of reference which is not attached to the body but ro-
tates in an independent manner [Sample Prob. 18.5].

Setting � � � in Eq. (18.23), using principal axes and writing
this equation in scalar form, we obtained Euler’s equations of mo-
tion [Sec. 18.6]. A discussion of the solution of these equations and
of the scalar equations corresponding to Eq. (18.1) led us to extend
d’Alembert’s principle to the three-dimensional motion of a rigid
body and to conclude that the system of the external forces acting
on the rigid body is not only equipollent, but actually equivalent
to the effective forces of the body represented by the vector ma�
and the couple ḢG (Fig. 18.28). Problems involving the three-
dimensional motion of a rigid body can be solved by considering the
free-body-diagram equation represented in Fig. 18.28 and writing
appropriate scalar equations relating the components or moments of
the external and effective forces [Sample Probs. 18.3 and 18.5].

Fig. 18.28

Euler’s equations of motion. d’Alembert’s
principle

In the case of a rigid body constrained to rotate about a fixed
point O, an alternative method of solution, involving the moments
of the forces and the rate of change of the angular momentum
about point O, can be used. We wrote [Sec. 18.7]:

�MO � (ḢO)Oxyz � � � HO (18.28)

where �MO � sum of moments about O of forces applied to rigid
body

HO � angular momentum of body with respect to fixed
frame OXYZ

(ḢO)Oxyz � rate of change of HO with respect to rotating frame
Oxyz, to be computed from relations (18.13)

� � angular velocity of rotating frame Oxyz

This approach can be used to solve certain problems involving the
rotation of a rigid body about a fixed axis [Sec. 18.8], for example,
an unbalanced rotating shaft [Sample Prob. 18.4].
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In the last part of the chapter, we considered the motion of
gyroscopes and other axisymmetrical bodies. Introducing the Euler-
ian angles �, �, and � to define the position of a gyroscope
(Fig. 18.29), we observed that their derivatives  �̇,  �̇, and  �̇ repre-
sent, respectively, the rates of precession, nutation, and spin of the
gyroscope [Sec. 18.9]. Expressing the angular velocity � in terms
of these derivatives, we wrote

� � ��̇ sin � i � �̇j � ( �̇ � �̇ cos �)k (18.35)

Fig. 18.29 Fig. 18.30

Fig. 18.31

where the unit vectors are associated with a frame Oxyz attached
to the inner gimbal of the gyroscope (Fig. 18.30) and rotate, there-
fore, with the angular velocity

� � ��̇ sin � i � �̇j � �̇ cos � k (18.38)

Denoting by I the moment of inertia of the gyroscope with respect
to its spin axis z and by I� its moment of inertia with respect to a
transverse axis through O, we wrote

HO � �I��̇ sin � i � I��̇j � I( �̇ � �̇ cos �)k (18.36)

Substituting for HO and � into Eq. (18.28) led us to the differen-
tial equations defining the motion of the gyroscope.

In the particular case of the steady precession of a gyroscope
[Sec. 18.10], the angle �, the rate of precession �, and the rate of
spin  �̇ remain constant. We saw that such a motion is possible only
if the moments of the external forces about O satisfy the relation

�MO � (I�z � I��̇ cos �) �̇ sin �j (18.44)

that is, if the external forces reduce to a couple of moment equal
to the right-hand member of Eq. (18.44) and applied about an axis
perpendicular to the precession axis and to the spin axis (Fig. 18.31).
The chapter ended with a discussion of the motion of an axisym-
metrical body spinning and precessing under no force [Sec. 18.11;
Sample Prob. 18.6].
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