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R E V I E W  A N D  S U M M A R Y
F O R  C H A P T E R  1 9

This chapter was devoted to the study of mechanical vibrations,
that is, to the analysis of the motion of particles and rigid bodies
oscillating about a position of equilibrium. In the first part of the
chapter [Secs. 19.2 through 19.7], we considered vibrations with-
out damping, while the second part was devoted to damped vibra-
tions [Secs. 19.8 through 19.10].

In Sec. 19.2, we considered the free vibrations of a particle,
that is, the motion of a particle P subjected to a restoring force pro-
portional to the displacement of the particle—such as the force
exerted by a spring. If the displacement x of the particle P is mea-
sured from its equilibrium position O (Fig. 19.17), the resultant F
of the forces acting on P (including its weight) has a magnitude kx
and is directed toward O. Applying Newton’s second law F � ma
and recalling that a � ẍ, we wrote the differential equation

mẍ � kx � 0 (19.2)

or, setting �2
n � k�m,

ẍ � �2
nx � 0 (19.6)

Free vibrations of a particle
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The motion defined by this equation is called a simple harmonic
motion.

The solution of Eq. (19.6), which represents the displacement
of the particle P, was expressed as

x � xm sin (�nt � �) (19.10)

where xm � amplitude of the vibration
�n � �k�m� � natural circular frequency
� � phase angle

The period of the vibration (i.e., the time required for a full cycle)
and its natural frequency (i.e., the number of cycles per second)
were expressed as

Period � �n � �
2
�

�

n
� (19.13)

Natural frequency � fn � � (19.14)

The velocity and acceleration of the particle were obtained by
differentiating Eq. (19.10), and their maximum values were found
to be

vm � xm�n am � xm�2
n (19.15)

Since all the above parameters depend directly upon the natural cir-
cular frequency �n and thus upon the ratio k�m, it is essential in any
given problem to calculate the value of the constant k; this can be
done by determining the relation between the restoring force and
the corresponding displacement of the particle [Sample Prob. 19.1].

It was also shown that the oscillatory motion of the particle P
can be represented by the projection on the x axis of the motion
of a point Q describing an auxiliary circle of radius xm with the con-
stant angular velocity �n (Fig. 19.18). The instantaneous values of
the velocity and acceleration of P can then be obtained by pro-
jecting on the x axis the vectors vm and am representing, respec-
tively, the velocity and acceleration of Q.
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While the motion of a simple pendulum is not truly a simple
harmonic motion, the formulas given above can be used with �2

n �
g�l to calculate the period and natural frequency of the small
oscillations of a simple pendulum [Sec. 19.3]. Large-amplitude
oscillations of a simple pendulum were discussed in Sec. 19.4.

The free vibrations of a rigid body can be analyzed by choos-
ing an appropriate variable, such as a distance x or an angle �, to
define the position of the body, drawing a free-body-diagram equa-
tion to express the equivalence of the external and effective forces,
and writing an equation relating the selected variable and its sec-
ond derivative [Sec. 19.5]. If the equation obtained is of the form

ẍ � �2
nx � 0 or �̈ � �2

n� � 0 (19.21)

the vibration considered is a simple harmonic motion and its pe-
riod and natural frequency can be obtained by identifying �n and
substituting its value into Eqs. (19.13) and (19.14) [Sample Probs.
19.2 and 19.3].

The principle of conservation of energy can be used as an
alternative method for the determination of the period and natu-
ral frequency of the simple harmonic motion of a particle or rigid
body [Sec. 19.6]. Choosing again an appropriate variable, such as
�, to define the position of the system, we express that the total
energy of the system is conserved, T1 � V1 � T2 � V2, between
the position of maximum displacement (�1 � �m) and the position
of maximum velocity (�̇2 � �̇m). If the motion considered is sim-
ple harmonic, the two members of the equation obtained consist
of homogeneous quadratic expressions in �m and �̇m, respectively.†
Substituting �̇m � �m�n in this equation, we can factor out �2

m and
solve for the circular frequency �n [Sample Prob. 19.4].

In Sec. 19.7, we considered the forced vibrations of a mechan-
ical system. These vibrations occur when the system is subjected to
a periodic force (Fig. 19.19) or when it is elastically connected to a
support which has an alternating motion (Fig. 19.20). Denoting by
�f the forced circular frequency, we found that in the first case, the
motion of the system was defined by the differential equation

mẍ � kx � Pm sin �f t (19.30)

and that in the second case it was defined by the differential
equation

mẍ � kx � k�m sin �f t (19.31)

The general solution of these equations is obtained by adding a
particular solution of the form

xpart � xm sin �f t (19.32)

Simple pendulum

Free vibrations of a rigid body

†If the motion considered can only be approximated by a simple harmonic mo-
tion, such as for the small oscillations of a body under gravity, the potential energy
must be approximated by a quadratic expression in �m.

Using the principle of conservation of 
energy

Forced vibrations
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to the general solution of the corresponding homogeneous equa-
tion. The particular solution (19.32) represents a steady-state
vibration of the system, while the solution of the homogeneous
equation represents a transient free vibration which can generally
be neglected.

Dividing the amplitude xm of the steady-state vibration by Pm�k
in the case of a periodic force, or by �m in the case of an oscillat-
ing support, we defined the magnification factor of the vibration
and found that

Magnification factor � � � (19.36)

According to Eq. (19.36), the amplitude xm of the forced vibration
becomes infinite when �f � �n, that is, when the forced frequency
is equal to the natural frequency of the system. The impressed force
or impressed support movement is then said to be in resonance
with the system [Sample Prob. 19.5]. Actually the amplitude of the
vibration remains finite, due to damping forces.

In the last part of the chapter, we considered the damped
vibrations of a mechanical system. First, we analyzed the damped
free vibrations of a system with viscous damping [Sec. 19.8]. We
found that the motion of such a system was defined by the differ-
ential equation

mẍ � cẋ � kx � 0 (19.38)

1
��
1 � (�f��n)2

xm�
�m

xm�
Pm�k

Damped free vibrations
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where c is a constant called the coefficient of viscous damping.
Defining the critical damping coefficient cc as

cc � 2m�� � 2m�n (19.41)

where �n is the natural circular frequency of the system in the ab-
sence of damping, we distinguished three different cases of damp-
ing, namely, (1) heavy damping, when c 
 cc; (2) critical damping,
when c � cc; and (3) light damping, when c 	 cc. In the first two
cases, the system when disturbed tends to regain its equilibrium
position without any oscillation. In the third case, the motion is
vibratory with diminishing amplitude.

In Sec. 19.9, we considered the damped forced vibrations of a
mechanical system. These vibrations occur when a system with vis-
cous damping is subjected to a periodic force P of magnitude P �
Pm sin �f t or when it is elastically connected to a support with an
alternating motion � � �m sin �f t. In the first case, the motion of
the system was defined by the differential equation

mẍ � cẋ � kx � Pm sin �f t (19.47)

and in the second case by a similar equation obtained by replacing
Pm by k�m in (19.47).

The steady-state vibration of the system is represented by a
particular solution of Eq. (19.47) of the form

xpart � xm sin (�f t � 
) (19.48)

Dividing the amplitude xm of the steady-state vibration by Pm�k in
the case of a periodic force, or by �m in the case of an oscillating
support, we obtained the following expression for the magnifica-
tion factor:

� � (19.53)

where �n � �k�m� � natural circular frequency 
of undamped system

cc � 2m�n � critical damping coefficient
c�cc � damping factor

We also found that the phase difference 
 between the impressed
force or support movement and the resulting steady-state vibration
of the damped system was defined by the relation

tan 
 � (19.54)

The chapter ended with a discussion of electrical analogues [Sec.
19.10], in which it was shown that the vibrations of mechnical sys-
tems and the oscillations of electrical circuits are defined by the same
differential equations. Electrical analogues of mechanical systems can
therefore be used to study or predict the behavior of these systems.

2(c�cc)(�f��n)
��
1 � (�f��n)2

1
����
�[1 � (��f��n)2]�2 � [2�(c�cc)(��f��n)�]2�
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