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Equilibrium of
Rigid Bodies
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On many nstruction projects, large cranes such as those shown are used. The sum of the moments of the loads
and the counterweights about the base of a crane must be adjusted so that the couple of the reaction at the base
does not cause failure of the tower.
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4.1. INTRODUCTION

We saw in the preceding chapter that the external forces acting on a
rigid body can be reduced to a force-couple system at some arbitrary
point O. When the force and the couple are both equal to zero, the
external forces form a system equivalent to zero, and the rigid body
is said to be in equilibrium.

The necessary and sufficient conditions for the equilibrium of a
rigid body, therefore, can be obtained by setting R and M equal to
zero in the relations (3.52) of Sec. 3.17:

2F =0 SMp=2rXF)=0 (4.1)

Resolving each force and each moment into its rectangular
components, we can express the necessary and sufficient conditions
for the equilibrium of a rigid body with the following six scalar
equations:

2F. =0 2F, =0

4
SM,=0 =M, =0

SF. =0
SM. =0

The equations obtained can be used to determine unknown forces ap-
plied to the rigid body or unknown reactions exerted on it by its sup-
ports. We note that Eqgs. (4.2) express the fact that the components
of the external forces in the x, y, and z directions are balanced; Egs.
(4.3) express the fact that the moments of the external forces about
the x, y, and z axes are balanced. Therefore, for a rigid body in equi-
librium, the system of the external forces will impart no translational
or rotational motion to the body considered.

In order to write the equations of equilibrium for a rigid body,
it is essential to first identify all of the forces acting on that body and
then to draw the corresponding free-body diagram. In this chapter
we first consider the equilibrium of two-dimensional structures sub-
jected to forces contained in their planes and learn how to draw their
free-body diagrams. In addition to the forces applied to a structure,
the reactions exerted on the structure by its supports will be con-
sidered. A specific reaction will be associated with each type of sup-
port. You will learn how to determine whether the structure is prop-
erly supported, so that you can know in advance whether the
equations of equilibrium can be solved for the unknown forces and
reactions.

Later in the chapter, the equilibrium of three-dimensional struc-
tures will be considered, and the same kind of analysis will be given
to these structures and their supports.

o
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4.2. FREE-BODY DIAGRAM

In solving a problem concerning the equilibrium of a rigid body, it is
essential to consider all of the forces acting on the body; it is equally
important to exclude any force which is not directly applied to the
body. Omitting a force or adding an extraneous one would destroy the
conditions of equilibrium. Therefore, the first step in the solution of
the problem should be to draw a free-body diagram of the rigid body
under consideration. Free-body diagrams have already been used on
many occasions in Chap. 2. However, in view of their importance to
the solution of equilibrium problems, we summarize here the various
steps which must be followed in drawing a free-body diagram.

1.

A clear decision should be made regarding the choice of the
free body to be used. This body is then detached from the
ground and is separated from all other bodies. The contour
of the body thus isolated is sketched.

All external forces should be indicated on the free-body dia-
gram. These forces represent the actions exerted on the free
body by the ground and by the bodies which have been de-
tached; they should be applied at the various points where
the free body was supported by the ground or was connected
to the other bodies. The weight of the free body should also
be included among the external forces, since it represents the
attraction exerted by the earth on the various particles form-
ing the free body. As will be seen in Chap. 5, the weight should
be applied at the center of gravity of the body. When the free
body is made of several parts, the forces the various parts
exert on each other should not be included among the
external forces. These forces are internal forces as far as the
free body is concerned.

The magnitudes and directions of the known external forces
should be clearly marked on the free-body diagram. When
indicating the directions of these forces, it must be remem-
bered that the forces shown on the free-body diagram must
be those which are exerted on, and not by, the free body.
Known external forces generally include the weight of the

free body and forces applied for a given purpose.

Unknown external forces usually consist of the reactions,
through which the ground and other bodies oppose a possi-
ble motion of the free body. The reactions constrain the free
body to remain in the same position, and, for that reason, are
sometimes called constraining forces. Reactions are exerted
at the points where the free body is supported by or con-
nected to other bodies and should be clearly indicated. Re-
actions are discussed in detail in Secs. 4.3 and 4.8.

The free-body diagram should also include dimensions, since
these may be needed in the computation of moments of
forces. Any other detail, however, should be omitted.

o
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Photo 4.1 A free-body diagram of the tractor
shown would include all of the external forces
acting on the tractor: the weight of the tractor, the
weight of the load in ther bucket, and the forces
exerted by the ground on the tires.

B[] [N

Photo 4.2 In chap. 6, we will discuss how to
determine the internal forces in structures made
of several connected pieces, such as the forces
in the members that support the bucket of the
tractor of Photo 4.1.
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Photo 4.3 As the link of the awning window
opening mechanism is extended, the force it
exerts on the slider results in a normal force
being applied to the rod, which causes the
window to open.

om0

Photo 4.4 The abutment-mounted rocker
bearing shown is used to support the roadway
of a bridge.

Photo 4.5 Shown is the rocker expansion
bearing of a plate girder bridge. The convex
surface of the rocker allows the support of the
girder to move horizontally.

EQUILIBRIUM IN TWO DIMENSIONS

4.3. REACTIONS AT SUPPORTS AND CONNECTIONS
FOR A TWO-DIMENSIONAL STRUCTURE

In the first part of this chapter, the equilibrium of a two-dimensional
structure is considered; that is, it is assumed that the structure being
analyzed and the forces applied to it are contained in the same plane.
Clearly, the reactions needed to maintain the structure in the same
position will also be contained in this plane.

The reactions exerted on a two-dimensional structure can be
divided into three groups corresponding to three types of supports,
or connections:

1.

Reactions Equivalent to a Force with Known Line of Action.
Supports and connections causing reactions of this type in-
clude rollers, rockers, frictionless surfaces, short links and ca-
bles, collars on frictionless rods, and frictionless pins in slots.
Each of these supports and connections can prevent motion
in one direction only. They are shown in Fig. 4.1, together
with the reactions they produce. Each of these reactions in-
volves one unknown, namely, the magnitude of the reaction;
this magnitude should be denoted by an appropriate letter.
The line of action of the reaction is known and should be in-
dicated clearly in the free-body diagram. The sense of the re-
action must be as shown in Fig. 4.1 for the cases of a fric-
tionless surface (toward the free body) or a cable (away from
the free body). The reaction can be directed either way in
the case of double-track rollers, links, collars on rods, and pins
in slots. Single-track rollers and rockers are generally assumed
to be reversible, and thus the corresponding reactions can
also be directed either way.

Reactions Equivalent to a Force of Unknown Direction and
Magnitude. Supports and connections causing reactions of
this type include frictionless pins in fitted holes, hinges, and
rough surfaces. They can prevent translation of the free body
in all directions, but they cannot prevent the body from ro-
tating about the connection. Reactions of this group involve
two unknowns and are usually represented by their x and y
components. In the case of a rough surface, the component
normal to the surface must be directed away from the
surface.

Reactions Equivalent to a Force and a Couple. These reac-
tions are caused by fixed supports, which oppose any motion
of the free body and thus constrain it completely. Fixed sup-
ports actually produce forces over the entire surface of con-
tact; these forces, however, form a system which can be re-
duced to a force and a couple. Reactions of this group involve
three unknowns, consisting usually of the two components of
the force and the moment of the couple.

o
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Fig. 4.1

Reactions at supports and connections.

When the sense of an unknown force or couple is not readily ap-
parent, no attempt should be made to determine it. Instead, the sense
of the force or couple should be arbitrarily assumed; the sign of the
answer obtained will indicate whether the assumption is correct or

not.

o
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for a Two-Dimensional Structure
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4.4. EQUILIBRIUM OF A RIGID BODY IN TWO DIMENSIONS

The conditions stated in Sec. 4.1 for the equilibrium of a rigid body
become considerably simpler for the case of a two-dimensional struc-
ture. Choosing the x and y axes to be in the plane of the structure,
we have

F.=0 M,=M,=0 M. =My

for each of the forces applied to the structure. Thus, the six equations
of equilibrium derived in Sec. 4.1 reduce to

SF,=0 3F,=0 3IM,=0 (4.4)

and to three trivial identities, 0 = 0. Since ZMy = 0 must be satis-
fied regardless of the choice of the origin O, we can write the equa-
tions of equilibrium for a two-dimensional structure in the more
general form

2F. =0 2F, =0 2M, =0 (4.5)

where A is any point in the plane of the structure. The three equa-
tions obtained can be solved for no more than three unknowns.

We saw in the preceding section that unknown forces include re-
actions and that the number of unknowns corresponding to a given
reaction depends upon the type of support or connection causing that
reaction. Referring to Sec. 4.3, we observe that the equilibrium equa-
tions (4.5) can be used to determine the reactions associated with two
rollers and one cable, one fixed support, or one roller and one pin in
a fitted hole, etc.

Consider Fig. 4.2a, in which the truss shown is subjected to the
given forces P, Q, and S. The truss is held in place by a pin at A and
a roller at B. The pin prevents point A from moving by exerting on
the truss a force which can be resolved into the components A, and
A,; the roller keeps the truss from rotating about A by exerting the
vertical force B. The free-body diagram of the truss is shown in Fig.
4.2b; it includes the reactions A,, A,, and B as well as the applied
forces P, Q, S and the weight W of the truss. Expressing that the
sum of the moments about A of all of the forces shown in Fig. 4.2b
is zero, we write the equation XM, = 0, which can be used to de-
termine the magnitude B since it does not contain A, or A,. Next,
expressing that the sum of the x components and the sum of the y
components of the forces are zero, we write the equations 2F, = 0
and 2F, = 0, from which we can obtain the components A, and A,,
respectively.

An additional equation could be obtained by expressing that the
sum of the moments of the external forces about a point other than
A is zero. We could write, for instance, ZMpz = 0. Such a statement,
however, does not contain any new information, since it has already
been established that the system of the forces shown in Fig. 4.2b is
equivalent to zero. The additional equation is not independent and
cannot be used to determine a fourth unknown. It will be useful,

o
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however, for checking the solution obtained from the original three 4.4. Equilibrium of a Rigid Ef;‘?ﬁ\yein"sm 163
equations of equilibrium.
While the three equations of equilibrium cannot be augmented
by additional equations, any of them can be replaced by another
equation. Therefore, an alternative system of equations of equilib-
rium is

2F. =0 2M,=0 2Mp =0 (4.6)

where the second point about which the moments are summed (in
this case, point B) cannot lie on the line parallel to the y axis that
passes through point A (Fig. 4.2b). These equations are sufficient
conditions for the equilibrium of the truss. The first two equations
indicate that the external forces must reduce to a single vertical force
at A. Since the third equation requires that the moment of this force be
zero about a point B which is not on its line of action, the force must
be zero, and the rigid body is in equilibrium.
A third possible set of equations of equilibrium is

where the points A, B, and C do not lie in a straight line (Fig. 4.2b).
The first equation requires that the external forces reduce to a single
force at A; the second equation requires that this force pass through
B; and the third equation requires that it pass through C. Since the
points A, B, C do not lie in a straight line, the force must be zero,

and the rigid body is in equilibrium. p 0 S
The equation XM, = 0, which expresses that the sum of the / / /
moments of the forces about pin A is zero, possesses a more defi- C D

nite physical meaning than either of the other two equations (4.7).
These two equations express a similar idea of balance, but with re-
spect to points about which the rigid body is not actually hinged.
They are, however, as useful as the first equation, and our choice of A B
equilibrium equations should not be unduly influenced by the phys-
ical meaning of these equations. Indeed, it will be desirable in prac-
tice to choose equations of equilibrium containing only one un- v 0 S
known, since this eliminates the necessity of solving simultaneous 1op Y 1 Q. | s
equations. Equations containing only one unknown can be obtained C —— >
by summing moments about the point of intersection of the lines of
action of two unknown forces or, if these forces are parallel, by sum- w
ming components in a direction perpendicular to their common di-
rection. For example, in Fig. 4.3, in which the truss shown is held
by rollers at A and B and a short link at D, the reactions at A and
B can be eliminated by summing x components. The reactions at A
and D will be eliminated by summing moments about C, and the )
reactions at B and D by summing moments about D. The equations Fig. 4.3
obtained are

EFXZO EMC:O EMDZO

Each of these equations contains only one unknown.

o
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Fig. 4.5 Partial constraints.
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4.5. STATICALLY INDETERMINATE REACTIONS. PARTIAL
CONSTRAINTS

In the two examples considered in the preceding section (Figs. 4.2
and 4.3), the types of supports used were such that the rigid body
could not possibly move under the given loads or under any other
loading conditions. In such cases, the rigid body is said to be com-
pletely constrained. We also recall that the reactions corresponding
to these supports involved three unknowns and could be determined
by solving the three equations of equilibrium. When such a situation
exists, the reactions are said to be statically determinate.

Consider Fig. 4.4a, in which the truss shown is held by pins at A
and B. These supports provide more constraints than are necessary
to keep the truss from moving under the given loads or under any
other loading conditions. We also note from the free-body diagram of
Fig. 4.4b that the corresponding reactions involve four unknowns.
Since, as was pointed out in Sec. 4.4, only three independent equi-
librium equations are available, there are more unknowns than equa-
tions; thus, all of the unknowns cannot be determined. While the
equations XM, = 0 and 2Mp = 0 yield the vertical components B,
and A, respectively, the equation ZF, = 0 gives only the sum A, + B,
of the horizontal components of the reactions at A and B. The com-
ponents A, and B, are said to be statically indeterminate. They could
be determined by considering the deformations produced in the truss
by the given loading, but this method is beyond the scope of statics
and belongs to the study of mechanics of materials.

The supports used to hold the truss shown in Fig. 4.5a consist of
rollers at A and B. Clearly, the constraints provided by these supports
are not sufficient to keep the truss from moving. While any vertical
motion is prevented, the truss is free to move horizontally. The truss
is said to be partially constrained.t Turning our attention to Fig. 4.5b,
we note that the reactions at A and B involve only two unknowns.
Since three equations of equilibrium must still be satisfied, there are
fewer unknowns than equations, and, in general, one of the equilib-
rium equations will not be satisfied. While the equations XM, = 0
and XMz = 0 can be satisfied by a proper choice of reactions at A
and B, the equation 2F, = 0 will not be satisfied unless the sum of
the horizontal components of the applied forces happens to be zero.
We thus observe that the equlibrium of the truss of Fig. 4.5 cannot
be maintained under general loading conditions.

It appears from the above that if a rigid body is to be completely
constrained and if the reactions at its supports are to be statically de-
terminate, there must be as many unknowns as there are equations of
equilibrium. When this condition is not satisfied, we can be certain
either that the rigid body is not completely constrained or that the
reactions at its supports are not statically determinate; it is also pos-
sible that the rigid body is not completely constrained and that the
reactions are statically indeterminate.

We should note, however, that, while necessary, the above condi-
tion is not sufficient. In other words, the fact that the number of un-

tPartially constrained bodies are often referred to as unstable. However, to avoid confusion
between this type of instability, due to insufficient constraints, and the type of instability

considered in Chap. 10, which relates to the behavior of a rigid body when its equilibrium
is disturbed, we will restrict the use of the words stable and unstable to the latter case.

o
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knowns is equal to the number of equations is no guarantee that the
body is completely constrained or that the reactions at its supports are
statically determinate. Consider Fig. 4.6a, in which the truss shown is
held by rollers at A, B, and E. While there are three unknown reac-
tions, A, B, and E (Fig. 4.6b), the equation 2F, = 0 will not be satis-
fied unless the sum of the horizontal components of the applied forces
happens to be zero. Although there are a sufficient number of con-
straints, these constraints are not properly arranged, and the truss is
free to move horizontally. We say that the truss is improperly con-
strained. Since only two equilibrium equations are left for determin-
ing three unknowns, the reactions will be statically indeterminate.
Thus, improper constraints also produce static indeterminacy.

Another example of improper constraints—and of static indeter-
minacy—is provided by the truss shown in Fig. 4.7. This truss is held
by a pin at A and by rollers at B and C, which altogether involve four
unknowns. Since only three independent equilibrium equations are
available, the reactions at the supports are statically indeterminate.
On the other hand, we note that the equation XM, = 0 cannot be
satisfied under general loading conditions, since the lines of action of
the reactions B and C pass through A. We conclude that the truss can
rotate about A and that it is improperly constrained. f

The examples of Figs. 4.6 and 4.7 lead us to conclude that a rigid
body is improperly constrained whenever the supports, even though
they may provide a sufficient number of reactions, are arranged in
such a way that the reactions must be either concurrent or parallel.’

In summary, to be sure that a two-dimensional rigid body is com-
pletely constrained and that the reactions at its supports are statically
determinate, we should verify that the reactions involve three—and only
three—unknowns and that the supports are arranged in such a way that
they do not require the reactions to be either concurrent or parallel.

Supports involving statically indeterminate reactions should be
used with care in the design of structures and only with a full knowl-
edge of the problems they may cause. On the other hand, the analy-
sis of structures possessing statically indeterminate reactions often can
be partially carried out by the methods of statics. In the case of the
truss of Fig. 4.4, for example, the vertical components of the reac-
tions at A and B were obtained from the equilibrium equations.

For obvious reasons, supports producing partial or improper con-
straints should be avoided in the design of stationary structures. How-
ever, a partially or improperly constrained structure will not neces-
sarily collapse; under particular loading conditions, equilibrium can
be maintained. For example, the trusses of Figs. 4.5 and 4.6 will be
in equilibrium if the applied forces P, Q, and S are vertical. Besides,
structures which are designed to move should be only partially con-
strained. A railroad car, for instance, would be of little use if it were
completely constrained by having its brakes applied permanently.

fRotation of the truss about A requires some “play” in the supports at B and C. In prac-
tice such play will always exist. In addition, we note that if the play is kept small, the dis-
placements of the rollers B and C and, thus, the distances from A to the lines of action of
the reactions B and C will also be small. The equation M, = 0 then requires that B and
C be very large, a situation which can result in the failure of the supports at B and C.

{Because this situation arises from an inadequate arrangement or geometry of the sup-
ports, it is often referred to as geometric instability.

o
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SAMPLE PROBLEM 4.1

A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate. It is
é held in place by a pin at A and a rocker at B. The center of gravity of the
2400 kg

crane is located at G. Determine the components of the reactions at A and B.

4m———

SOLUTION
Free-Body Diagram. A free-body diagram of the crane is drawn. By
! multiplying the masses of the crane and of the crate by ¢ = 9.81 m/s?, we

obtain the corresponding weights, that is, 9810 N or 9.81 kN, and 23 500 N
or 23.5 kN. The reaction at pin A is a force of unknown direction; it is rep-
resented by its components A, and A,. The reaction at the rocker B is per-
981 kN pendicular to the rocker surface; thus, it is horizontal. We assume that A,,

7B
B L A,, and B act in the directions shown.

2m 4 m——-

Determination of B. 'We express that the sum of the moments of all
external forces about point A is zero. The equation obtained will contain nei-
ther A, nor A,, since the moments of A, and A, about A are zero. Multiply-
ing the magnitude of each force by its perpendicular distance from A, we write

+NEM, = 0: +B(1.5 m) — (9.81 kN)(2 m) — (23.5 kN)(6 m) = 0
B = +107.1 kN B=1071kN —»> <«

Since the result is positive, the reaction is directed as assumed.

Determination of A.. The magnitude of A, is determined by express-
ing that the sum of the horizontal components of all external forces is zero.
H3F, =0 A, +B=0

A, + 1071 kN =0
A, = —107.1 kN A, = 1071 kN « <«

Since the result is negative, the sense of A, is opposite to that assumed
originally.

Determination of A, The sum of the vertical components must also
equal zero.

+13F, =0: A, — 981 kN —235kN =0
A, = +33.3 kN A, =333kNT <

Adding vectorially the components A, and A,, we find that the reaction
at Ais 112.2 kN =~.17.3°,
5

Check. The values obtained for the reactions can be checked by re-
calling that the sum of the moments of all of the external forces about any
point must be zero. For example, considering point B, we write

9B 9.81 kN

107.1 kN L
2m>-=~——dm +NEMp = —(9.81 kN)(2 m) — (23.5 kN)(6 m) + (107.1 kN)(1.5 m) = 0

166
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P 6 kips l()' kips SAMPLE PROBLEM 4.2
Y

Y \

Three loads are applied to a beam as shown. The beam is supported by a
l | roller at A and by a pin at B. Neglecting the weight of the beam, determine
yap g g g

AG—
9B ‘ the reactions at A and B when P = 15 kips.
! - 6 ft ! - >
3ft 21t 2 ft

SOLUTION
15 kips 6 kips 6 kips Free-Body Diagram. A free-body diagram of the beam is drawn. The
v reaction at A is vertical and is denoted by A. The reaction at B is represented
l | by components B, and B,. Each component is assumed to act in the direc-

tion shown.

A1rA B*;VB\.

T 6 ft !

Equilibrium Equations. We write the following three equilibrium

1
st 2t 2t equations and solve for the reactions indicated:
55F, =0 B, =0 B,=0 <
+’SEMA = 0:

—(15 kips)(3 ft) + B,(9 ft) — (6 kips)(11 ft) — (6 kips)(13 ft) = 0
B, = +21.0 kips B, =21.0 kips T <

+’SEMB = 0!
—A(9 ft) + (15 kips)(6 ft) — (6 kips)(2 ft) — (6 kips)(4 ft) = 0
A = +6.00 kips A =06.00 kips 1T <

Check. The results are checked by adding the vertical components of
all of the external forces:

+12F, = +6.00 kips — 15 kips + 21.0 kips — 6 kips — 6 kips = 0

Remark. 1In this problem the reactions at both A and B are vertical;
however, these reactions are vertical for different reasons. At A, the beam is
supported by a roller; hence the reaction cannot have a horizontal compo-
nent. At B, the horizontal component of the reaction is zero because it must
satisfy the equilibrium equation XF, = 0 and because none of the other forces
acting on the beam has a horizontal component.

We could have noticed at first glance that the reaction at B was vertical
and dispensed with the horizontal component B,. This, however, is a bad
practice. In following it, we would run the risk of forgetting the component
B, when the loading conditions require such a component (i.e., when a hor-
izontal load is included). Also, the component B, was found to be zero by
using and solving an equilibrium equation, 2F, = 0. By setting B, equal to
zero immediately, we might not realize that we actually made use of this equa-
tion and thus might lose track of the number of equations available for solv-
ing the problem.

167
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4980 Ib

SAMPLE PROBLEM 4.3

A loading car is at rest on a track forming an angle of 25° with the vertical.
The gross weight of the car and its load is 5500 Ib, and it is applied at a point
30 in. from the track, halfway between the two axles. The car is held by a ca-
ble attached 24 in. from the track. Determine the tension in the cable and
the reaction at each pair of wheels.

SOLUTION

Free-Body Diagram. A free-body diagram of the car is drawn. The
reaction at each wheel is perpendicular to the track, and the tension force T
is parallel to the track. For convenience, we choose the x axis parallel to the
track and the y axis perpendicular to the track. The 5500-1b weight is then
resolved into x and y components.

W, = +(5500 Ib) cos 25° = +4980 Ib
W, = —(5500 1Ib) sin 25° = —2320 1b

Equilibrium Equations. We take moments about A to eliminate T
and R; from the computation.

+YEM, = 0: —(2320 Ib)(25 in.) — (4980 1b)(6 in.) + Ro(50 in.) = 0
R, = +1758 1b R, =17581b /" <

Now, taking moments about B to eliminate T and R from the computation,
we write

HYSMp = 0: (2320 1b)(25 in.) — (4980 1b)(6 in.) — Ry(50 in.) = 0
R, = +562 1b R, = +5621b/ <

The value of T is found by writing

NHEF, =0 +49801b —T=0
T = +4980 Ib T=49801b~N <«

The computed values of the reactions are shown in the adjacent sketch.

Check. The computations are verified by writing
/’+2Fy = +5621b + 1758 Ib — 2320 1b = 0

The solution could also have been checked by computing moments about
any point other than A or B.

o
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A

B /575

PV T

20 kN 20 kN 20 kN 20 kN
\ | | |
"1.8m 1.8m 1.8m 1.8m

A

£

B
) kN 2(

20 kN 2 KN 20 kN
\ \ | \
"1.8m 1.8m 1.8m 1.8m|"

E —

E 150 kN

o C
W
k = 250 Ib/in.

W =4001b

Undeformed
position

SAMPLE PROBLEM 4.4

The frame shown supports part of the roof of a small building. Knowing that
the tension in the cable is 150 kN, determine the reaction at the fixed end E.

SOLUTION

Free-Body Diagram. A free-body diagram of the frame and of the
cable BDF is drawn. The reaction at the fixed end E is represented by the
force components E, and E, and the couple M. The other forces acting on
the free body are the four 20-kN loads and the 150-kN force exerted at end
F of the cable.

Equilibrium Equations. Noting that DF =V (4.5 m? + 6m)>=7.5m,
we write
4.5

53F, = 0; E.+ 22150 kN) = 0

E.= —90.0 kN E,=90.0kN « <
+1SF, = 0: E, = 4020 kN) = 2=(150 kN) = 0

E, = +200 kN E,=200kNT <
+NEME =0: (20 kN)(7.2 m) + (20 kN)(5.4 m) + (20 kN)(3.6 m)

+ (20 kKN)(1.8 m) — -

5(150 kN)(4.5 m) + M =0

Mp = +180.0 kN -m M; = 1800 kN -m "\ <

SAMPLE PROBLEM 4.5

A 400-1b weight is attached at A to the lever shown. The constant of the
spring BC is k = 250 Ib/in., and the spring is unstretched when 6 = 0.
Determine the position of equilibrium.

SOLUTION

Free-Body Diagram. We draw a free-body diagram of the lever and
cylinder. Denoting by s the deflection of the spring from its undeformed
position, and noting that s = rf, we have F = ks = kr6.

Equilibrium Equation.
O, we write

Summing the moments of W and F about

sin 0 = EB

+\ZMy = 0:
2Mo Wi

Wl sin 0 — r(kro) = 0
Substituting the given data, we obtain

1 g — (250 Ib/in.)(3 in.)*
(400 Ib)(8 in.)

0 sin 6 =0.70360

Solving numerically, we find 0=0 0=2803 <

169
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SOLVING PROBLEMS

ON YOUR OWN

You saw that the external forces acting on a rigid body in equilibrium form a sys-
tem equivalent to zero. To solve an equilibrium problem your first task is to draw
a neat, reasonably large free-body diagram on which you will show all external forces
and relevant dimensions. Both known and unknown forces must be included.

For a two-dimensional rigid body, the reactions at the supports can involve one,
two, or three unknowns depending on the type of support (Fig. 4.1). For the suc-
cessful solution of a problem, a correct free-body diagram is essential. Never pro-
ceed with the solution of a problem until you are sure that your free-body diagram
includes all loads, all reactions, and the weight of the body (if appropriate).

As you construct your free-body diagrams, it will be necessary to assign directions
to the unknown reactions. We suggest you always assume these forces act in a pos-
itive direction, so that positive answers always imply forces acting in a positive di-
rection, while negative answers always imply forces acting in a negative direction.
Similarly, we recommend you always assume the unknown force in a rod or cable
is tensile, so that a positive result always means a tensile reaction. While a negative
or comprehensive reaction is possible for a rod, a negative answer for a cable is im-
possible and, therefore, implies that there is an error in your solution.

1. You can write three equilibrium equations and solve them for three un-
knowns. The three equations might be

SF,=0 3F,=0 3My=0

However, there are usually several sets of equations that you can write, such as

EFXZO EMA:O EMB:O

where point B is chosen in such a way that the line AB is not parallel to the y axis,
or

EMA:O EMBZO EMCZO

where the points A, B, and C do not lie in a straight line.

2. To simplify your solution, it may be helpful to use one of the following so-
lution techniques if applicable.

a. By summing moments about the point of intersection of the lines of ac-
tion of two unknown forces, you will obtain an equation in a single unknown.
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b. By summing components in a direction perpendicular to two unknown
parallel forces, you will obtain an equation in a single unknown.

In some of the following problems you will be asked to determine the allowable range
of values of the applied load for a given set of constraints, such as the maximum re-
action at a support or the maximum force in one or more cables or rods. For prob-
lems of this type, you first assume a maximum loading situation (for example, the max-
imum allowed force in a rod), and then apply the equations of equilibrium to determine
the corresponding unknown reactions and applied load. If the reactions satisfy the con-
straints, then the applied load is either the maximum or minimum value of the allow-
able range. However, if the solution violates a constraint (for example, the force in a
cable is compressive), the initial assumption is wrong and another loading condition
must be assumed (for the previous example, you would assume the force in the cable
is zero, the minimum allowed reaction). The solution process is then repeated for an-
other possible maximum loading to complete the determination of the allowable range

of values of the applied load.

As in Chap. 2, we strongly recommend you always write the equations of equilib-
rium in the same form that we have used in the preceding sample problems. That
is, both the known and unknown quantities are placed on the left side of the equa-
tion, and their sum is set equal to zero.

171
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Problems

4.1 The boom on a 4300-kg truck is used to unload a pallet of shingles
of mass 1600 kg. Determine the reaction at each of the two (a) rear wheels
B, (b) front wheels C.

& . 43m L—o.s m
, Fig. P4.1 0.4m

A® B ¢ 4.2 Two children are standing on a diving board of mass 65 kg. Know-
_ ing that the masses of the children at C and D are 28 kg and 40 kg, respec-
- ' tively, determine (a) the reaction at A, (b) the reaction at B.
' 4.3 Two crates, each weighing 250 Ib, are placed as shown in the bed
Fig. P4.2 of a 3000-1b pickup truck. Determine the reactions at each of the two (a)

rear wheels A, (b) front wheels B.

4.4 Solve Prob. 4.3 assuming that crate D is removed and that the
position of crate C is unchanged.

4.5 A T-shaped bracket supports the four loads shown. Determine the
reactions at A and B if (¢) @ = 100 mm, (b) ¢ = 70 mm.

B
€
| | @
5.9 ft 3.9 ft 2.5 ft o 5 D
Fig. P4.3 * *
40 N 50 N 30 N 10 N
| P
60 mm 60 mm 80 mm
Fig. P4.5
4.6 TFor the bracket and loading of Prob. 4.5, determine the smallest

172 distance « if the bracket is not to move.

o
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4.7 A hand truck is used to move two barrels, each weighing 80 Ib. Problems 473
Neglecting the weight of the hand truck, determine (a) the vertical force P
which should be applied to the handle to maintain equilibrium when o = 35°,
(b) the corresponding reaction at each of the two wheels.

32 in.

4.8 Solve Prob. 4.7 when a = 40°. AE ; B|—J

E [ G A\ F
4.9 Four boxes are placed on a uniform 14-kg wooden plank which IA\ IA\
rests on two sawhorses. Knowing that the masses of boxes B and D are 4.5 fr—
kg and 45 kg, respectively, determine the range of values of the mass of box *J
1 m*»<—1 m

A so that the plank remains in equilibrium when box C is removed.

4.10 A control rod is attached to a crank at A and cords are attached Fig. P4.9
at B and C. For the given force in the rod, determine the range of values of
the tension in the cord at C knowing that the cords must remain taut and

that the maximum allowed tension in a cord is 180 N. 400 N Ty Te

Neglecting the weight of the beam, determine the range of values of the dis-

4.11 The maximum allowable value of each of the reactions is 360 N. T
tance d for which the beam is safe. .40 mm,{

100 N 200 N 300 N

S ‘

o [
R =

o~}
—
Q

B
-] 0

[<— 900 mm ——{=—— 900 mm

Fig. P4.11 ~— 60 mm 120 mm
Fig. P4.1

4.12  Solve Prob. 4.11 assuming that the 100-N load is replaced by a '9 0
160-N load.

150 Ib 150 Ib
4.13  For the beam of Sample Prob. 4.2, determine the range of values

3 —
of P for which the beam will be safe knowing that the maximum allowable ¢ v " l g
value of each of the reactions is 45 kips and that the reaction at A must be  Ac¢ 5 g B
™

directed upward.

4.14  For the beam and loading shown, determine the range of values din. | | 6in.
of the distance a for which the reaction at B does not exceed 50 1b down- 2in.
ward or 100 Ib upward. Fig. P4.14

o
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174 Equilibrium of Rigid Bodies

[<— 40 mm —»‘

|

50 mm

=
=
=
=
=
=
=
=

Fig. P4.15

75 mm

40 mm

Fig. P4.19 and P4.20

P J<— 400 mm 4>|

A
Fig. P4.21 and P4.22

D

4.15 A follower ABCD is held against a circular cam by a stretched
spring, which exerts a force of 21 N for the position shown. Knowing that
the tension in rod BE is 14 N, determine (a) the force exerted on the roller
at A, (b) the reaction at bearing C.

4.16 A 6-m-long pole AB is placed in a hole and is guyed by three ca-
bles. Knowing that the tensions in cables BD and BE are 442 N and 322 N,
respectively, determine (a) the tension in cable CD, (b) the reaction at A.

W3 E
3.15m
i C 6 m
2.10 m
'
D
A
—|{ 2.8m |=
Fig. P4.16

4.17 Determine the reactions at A and C when (¢) @ = 0, (b) a = 30°.

40 in.**l

Fig. P4.17

4.18 Determine the reactions at A and B when (a) h = 0, (b) h = 8 in.
|<—10 in.—»lelo in.*>|

&40 1b
12 in.

-— 0A @
h[

B

4.19 The lever BCD is hinged at C and is attached to a control rod at
B. If P = 200 N, determine (a) the tension in rod AB, (b) the reaction at C.

©)

Fig. P4.18

4.20 The lever BCD is hinged at C and is attached to a control rod at
B. Determine the maximum force P which can be safely applied at D if the
maximum allowable value of the reaction at C is 500 N.

4.21 The required tension in cable AB is 800 N. Determine (a) the
vertical force P which must be applied to the pedal, (b) the corresponding
reaction at C.

4.22 Determine the maximum tension which can be developed in cable
AB if the maximum allowable value of the reaction at C is 1000 N.

o
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4.23 and 4.24 A steel rod is bent to form a mounting bracket. For

each of the mounting brackets and loadings shown, determine the reactions
at A and B.

20 Ib 20 1b

| 12 in.

12 in.

@

6 in.
80 1b-in. j

Y

B O T B

6 in.

80 1b-in.
10 Ibl 43 00§

2 in. 2 in.

A © %\
I A

|
i
9in. T | 9in. 1
)

20 1b 20 1b

| 12 in. i 12 in.

4.25 A sign is hung by two chains from mast AB. The mast is hinged
at A and is supported by cable BD. Knowing that the tensions in chains DE
and FH are 50 1b and 30 Ib, respectively, and that d = 1.3 ft, determine (a)
the tension in cable BC, (b) the reaction at A.

4.26 A sign is hung by two chains from mast AB. The mast is hinged
at A and is supported by cable BD. Knowing that the tensions in chains DE
and FH are 30 1b and 20 b, respectively, and that d = 1.54 ft, determine (a)
the tension in cable BC, (b) the reaction at A.

4.27 For the frame and loading shown, determine the reactions at A
and E when (@) a = 30°, (b) a = 45°.

84 ft

Problems

175

2.2 ft

Boat Rentals

Hourly rates .......c......

12 h

| 5.
Fig. P4.25 and P4.26

0 ft |

<~—— 200 mm
L \

©
A B

60 mm
e —0 N

T

100 mm

N

L— 160 mm

Fig. P4.27
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60 mm

4

80 mm

|

Equilibrium of Rigid Bodies

-—d——|

40 N

7 i

\

A
180 mm —— 180 mm

Fig. P4.29 and P4.30

Fig. P4.32 and P4.33

Page 176 mac76 mac76:385$b:

4.28 A lever AB is hinged at C and is attached to a control cable at A.
If the lever is subjected to a 300-N vertical force at B, determine (a) the ten-
sion in the cable, (b) the reaction at C.

/\ B
300 mm

300 N

Fig. P4.28

4.29 Neglecting friction and the radius of the pulley, determine the
tension in cable BCD and the reaction at support A when d = 80 mm.

4.30 Neglecting friction and the radius of the pulley, determine the
tension in cable BCD and the reaction at support A when d = 144 mm.

4.31 Neglecting friction, determine the tension in cable ABD and the
reaction at support C.

25 in.
30 1b

c

A L E
|

10in.  10in.
Fig. P4.31

4.32 Rod ABC is bent in the shape of a circular arc of radius R. Know-
ing that 6 = 35°, determine the reaction (a) at B, (b) at C.

4.33 Rod ABC is bent in the shape of a circular arc of radius R. Know-
ing that 6 = 50°, determine the reaction (a) at B, (b) at C.
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4.34  Neglecting friction and the radius of the pulley, determine (a) the Problems 4177
tension in cable ADB, (b) the reaction at C.

D
]
15 in.
— 5 J
A
*30 b B ¢

I ! I 20 in.

8 in. 8 in.

Fig. P4.34

4.35 Neglecting friction, determine the tension in cable ABD and the
reaction at C when 6 = 60°.

4.36 Neglecting friction, determine the tension in cable ABD and the
reaction at C when 6 = 30°.

4.37 Determine the tension in each cable and the reaction at D.

Fig. P4.35 and P4.36

@
5

-

A B C D ‘
[

Q
l 120 1b

LIO in. 10 in. — 10 in.—»l

Fig. P4.37

—©
2l

-

4.38 Rod ABCD is bent in the shape of a circular arc of radius 80 mm
and rests against frictionless surfaces at A and D. Knowing that the collar at
B can move freely on the rod and that 6 = 45°, determine (@) the tension in
cord OB, (b) the reactions at A and D.

4.39 Rod ABCD is bent in the shape of a circular arc of radius 80 mm
and rests against frictionless surfaces at A and D. Knowing that the collar at A
B can move freely on the rod, determine (a) the value of 6 for which the ten- 45;/
sion in cord OB is as small as possible, (b) the corresponding value of the
tension, (¢) the reactions at A and D. Fig. P4.38 and P4.39

o
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15 in. | 10 in.—

)

o]
=%

Fig. P4.43

e
@ >
—

g
;

4.40 Bar AC supports two 100-1b loads as shown. Rollers A and C rest
against frictionless surfaces and a cable BD is attached at B. Determine (a)
the tension in cable BD, (b) the reaction at A, (¢) the reaction at C.

4 in.

12 in. i

100 Ib

100 1b

~—6 in.—r‘ ‘

20 in. |

10 in.

Fig. P4.40

4.41 A parabolic slot has been cut in plate AD, and the plate has been
placed so that the slot fits two fixed, frictionless pins B and C. The equation
of the slot is y = x*/100, where x and y are expressed in mm. Knowing that
the input force P = 4 N, determine (@) the force each pin exerts on the plate,

(b) the output force Q.

D
120 mm y l
C
A 46 mm
P |
g D) x
B 20 mm
140 mm 60 mm—| 40 mm |[<—

Fig. P4.41 and P4.42

4.42 A parabolic slot has been cut in plate AD, and the plate has been
placed so that the slot fits two fixed, frictionless pins B and C. The equation
of the slot is y = x*/100, where x and y are expressed in mm. Knowing that
the maximum allowable force exerted on the roller at D is 8.5 N, determine
(a) the corresponding magnitude of the input force P, (b) the force each pin
exerts on the plate.

4.43 A movable bracket is held at rest by a cable attached at E and by
frictionless rollers. Knowing that the width of post FG is slightly less than
the distance between the rollers, determine the force exerted on the post by
each roller when o = 20°.

4.44 Solve Prob. 4.43 when a = 30°.

o
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4.45 A 20-1b weight can be supported in the three different ways shown.
Knowing that the pulleys have a 4-in. radius, determine the reaction at A in
each case.

i 1.5 ft i 1.5 ft i |<7 1.5 ft—»‘
B B B
A A A
20 Ib 20 1b 20 1b

(a) (b) (c)
Fig. P4.45

4.46 A belt passes over two 50-mm-diameter pulleys which are mounted
on a bracket as shown. Knowing that M = 0 and T; = T, = 24 N, determine
the reaction at C.

4.47  Abelt passes over two 50-mm-diameter pulleys which are mounted
on a bracket as shown. Knowing that M = 0.40 N - m and that T; and T, are
equal to 32 N and 16 N, respectively, determine the reaction at C.

4.48 A 350-Ib utility pole is used to support at C the end of an electric
wire. The tension in the wire is 120 b, and the wire forms an angle of 15°
with the horizontal at C. Determine the largest and smallest allowable ten-
sions in the guy cable BD if the magnitude of the couple at A may not ex-
ceed 200 1b - ft.

Cp |
\“ 150
B uﬁ——
14 ft
10 ft
y D A
I« 4.5 ft +|
Fig. P4.48

4.49 In alaboratory experiment, students hang the masses shown from
a beam of negligible mass. (¢) Determine the reaction at the fixed support
A knowing that end D of the beam does not touch support E. (b) Determine
the reaction at the fixed support A knowing that the adjustable support E
exerts an upward force of 6 N on the beam.

4.50 1In alaboratory experiment, students hang the masses shown from
a beam of negligible mass. Determine the range of values of the force ex-
erted on the beam by the adjustable support E for which the magnitude of
the couple at A does not exceed 2.5 N - m.

o

Problems 179

f
’\\ 45 mm

80 mm

50 mm

Fig. P4.46 and P4.47

i 0.2m | O.lm»‘«O.lmj
s e

Fig. P4.49 and P4.50
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Fig. P4.54
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4.51 Knowing that the tension in wire BD is 300 b, determine the re-
action at fixed support C for the frame shown.

180 Ib

6 in.
~——20 in. ‘»"\—7410&)
Y 5
@
A
100 Ib
74—.
] 24 in.
16 in.
C D v

Fig. P4.51 and P4.52

4.52  Determine the range of allowable values of the tension in wire BD
if the magnitude of the couple at the fixed support C is not to exceed 75 1b - ft.

4.53  Uniform rod AB of length [ and weight W lies in a vertical plane
and is acted upon by a couple M. The ends of the rod are connected to small
rollers which rest against frictionless surfaces. (a) Express the angle 6 corre-
sponding to equilibrium in terms of M, W, and [. (b) Determine the value of
6 corresponding to equilibrium when M = 1.51b - ft, W = 4 1b, and [ = 2 ft.

4.54 A slender rod AB, of weight W, is attached to blocks A and B,
which move freely in the guides shown. The blocks are connected by an elas-
tic cord which passes over a pulley at C. (a) Express the tension in the cord
in terms of W and 6. (b) Determine the value of 0 for which the tension in
the cord is equal to 3W.

4.55 A thin, uniform ring of mass m and radius R is attached by a fric-
tionless pin to a collar at A and rests against a small roller at B. The ring lies
in a vertical plane, and the collar can move freely on a horizontal rod and is
acted upon by a horizontal force P. (¢) Express the angle 6 corresponding to
equilibrium in terms of m and P. (b) Determine the value of 6 correspond-
ing to equilibrium when m = 500 g and P = 5 N.

e/j
p(
A

Fig. P4.55

o
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4.56 Rod AB is acted upon by a couple M and two forces, each of mag- Problems 4181
nitude P. (a) Derive an equation in 6, P, M, and [ which must be satisfied
when the rod is in equilibrium. (b) Determine the value of 6 corresponding
to equilibrium when M =150 1b - in., P =20 lb, and [ = 6 in.

Fig. P4.56 Fig. P4.57

4.57 A vertical load P is applied at end B of rod BC. The constant of
the spring is k, and the spring is unstretched when 6 = 90°. () Neglecting
the weight of the rod, express the angle 6 corresponding to equilibrium in
terms of P, k, and [. (b) Determine the value of 6 corresponding to equilib-
rium when P = ikl.

4.58 Solve Sample Prob. 4.5 assuming that the spring is unstretched
when 6 = 90°.

4.59 A collar B of weight W can move freely along the vertical rod
shown. The constant of the spring is k, and the spring is unstretched when
6 = 0. (a) Derive an equation in 6, W, k, and [ which must be satisfied when
the collar is in equilibrium. (b) Knowing that W =3 1b, [ =6 in., and k =
8§ Ib/ft, determine the value of 6 corresponding to equilibrium.

| l |
I |

efm

A
L MW —IBG
Fig. P4.59 l ¢¢(/&W4@ﬁg
4.60 A slender rod AB, of mass m, is attached to blocks A and B which W @ B
move freely in the guides shown. The constant of the spring is k, and the \ 4
spring is unstretched when 6 = 0. (a) Neglecting the mass of the blocks, de- l\
rive an equation in m, g, k, [, and 6 which must be satisfied when the rod is

in equilibrium. (b) Determine the value of 8 when m = 2 kg, | = 750 mm,
and k = 30 N/m. Fig. P4.60

o
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182 Equilibrium of Rigid Bodies 4.61 The bracket ABC can be supported in the eight different ways

shown. All connections consist of smooth pins, rollers, or short links. In each

B case, determine whether (a) the plate is completely, partially, or improperly

1Tm . ) constrained, (b) the reactions are statically determinate or indeterminate, (c)

L c the equilibrium of the plate is maintained in the position shown. Also, wher-

) -— Jﬂ% ever possible, compute the reactions assuming that the magnitude of the
L_IVP__‘ Yo force P is 100 N.

0.6 m 0.6 m 4.62 Eightidentical 20 X 30-in. rectangular plates, each weighing 50 Ib,

are held in a vertical plane as shown. All connections consist of frictionless

o pins, rollers, or short links. For each case, answer the questions listed in Prob.

3 NS 4.61, and, wherever possible, compute the reactions.

Yp Yr -
J ﬁ
N 2 | 3 4
\\\5 6
\\ l
=1 — !
 J  J r
r r 6 B A 7 8 bt
Fig. P4.62
7 8
Yr P 4.6. EQUILIBRIUM OF A TWO-FORCE BODY
Fig. P4.61 A particular case of equilibrium which is of considerable interest is

that of a rigid body subjected to two forces. Such a body is commonly
called a two-force body. Tt will be shown that if a two-force body is
in equilibrium, the two forces must have the same magnitude, the same
line of action, and opposite sense.

Consider a corner plate subjected to two forces Fy and Fy act-
ing at A and B, respectively (Fig. 4.8a). If the plate is to be in equi-
librium, the sum of the moments of F; and F about any point must
be zero. First, we sum moments about A. Since the moment of F,
is obviously zero, the moment of Fy must also be zero and the line
of action of Fy must pass through A (Fig. 4.8b). Summing moments
about B, we prove similarly that the line of action of Fy must pass
through B (Fig. 4.8c). Therefore, both forces have the same line of
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action (line AB). From either of the equations 2F, = 0 and 2F, = 0
it is seen that they must also have the same magnitude but opposite

sense.

If several forces act at two points A and B, the forces acting at A
can be replaced by their resultant F; and those acting at B can be re-
placed by their resultant Fy. Thus a two-force body can be more gen-
erally defined as a rigid body subjected to forces acting at only two
points. The resultants F; and Fy then must have the same line of

action, the same magnitude, and opposite sense (Fig. 4.8).

In the study of structures, frames, and machines, you will see how
the recognition of two-force bodies simplifies the solution of certain

problems.

4.7. EQUILIBRIUM OF A THREE-FORCE BODY

Another case of equilibrium that is of great interest is that of a three-
force body, that is, a rigid body subjected to three forces or, more
generally, a rigid body subjected to forces acting at only three points.
Consider a rigid body subjected to a system of forces which can be
reduced to three forces F;, Fy, and F3 acting at A, B, and C, respec-
tively (Fig. 4.9a). It will be shown that if the body is in equilibrium,
the lines of action of the three forces must be either concurrent or

parallel.

Since the rigid body is in equilibrium, the sum of the moments
of Fy, Fs, and F5 about any point must be zero. Assuming that the
lines of action of F; and F; intersect and denoting their point of in-
tersection by D, we sum moments about D (Fig. 4.9b). Since the mo-
ments of F, and Fy about D are zero, the moment of F5 about D
must also be zero, and the line of action of F5 must pass through D
(Fig. 4.9¢). Therefore, the three lines of action are concurrent. The
only exception occurs when none of the lines intersect; the lines of

action are then parallel.

Although problems concerning three-force bodies can be solved
by the general methods of Secs. 4.3 to 4.5, the property just estab-
lished can be used to solve them either graphically or mathematically

from simple trigonometric or geometric relations.

F, F,
\ /F_-; \ /F;;
°B C ?B C

\
\

(a) (b)
Fig. 4.9

4.7. Equilibrium of a Three-Force Body
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98.1 N

SAMPLE PROBLEM 4.6

A man raises a 10-kg joist, of length 4 m, by pulling on a rope. Find the ten-
sion T in the rope and the reaction at A.

SOLUTION

Free-Body Diagram. The joist is a three-force body, since it is acted
upon by three forces: its weight W, the force T exerted by the rope, and the
reaction R of the ground at A. We note that

W =mg = (10 kg)(9.81 m/s*>) = 98.1 N

Three-Force Body. Since the joist is a three-force body, the forces
acting on it must be concurrent. The reaction R, therefore, will pass through
the point of intersection C of the lines of action of the weight W and the
tension force T. This fact will be used to determine the angle « that R forms
with the horizontal.

Drawing the vertical BF through B and the horizontal CD through C,
we note that

AF = BF = (AB) cos 45° = (4 m) cos 45° = 2.828 m

CD = EF = AE = 4(AF) = 1.414 m

BD = (CD) cot (45° + 25°) = (1.414 m) tan 20° = 0.515 m
CE = DF = BF — BD = 2828 m — 0.515 m = 2313 m

We write

CE 2313 m
tana = —=—"7""—"""

= = 1.636
AE 1.414 m

a=586° <

We now know the direction of all the forces acting on the joist.

Force Triangle. A force triangle is drawn as shown, and its interior
angles are computed from the known directions of the forces. Using the law
of sines, we write

T _ R _ 98.1 N
sin 31.4° sin 110° sin 38.6°

T=819N 4«
R =1478 N £58.6° <«
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SOLVING PROBLEMS

ON YOUR OWN

The preceding sections covered two particular cases of equilibrium of a rigid body.

1. A two-force body is a body subjected to forces at only two points. The
resultants of the forces acting at each of these points must have the same magni-
tude, the same line of action, and opposite sense. This property will allow you to
simplify the solutions of some problems by replacing the two unknown components
of a reaction by a single force of unknown magnitude but of known direction.

2. A three-force body is subjected to forces at only three points. The re-
sultants of the forces acting at each of these points must be concurrent or parallel.
To solve a problem involving a three-force body with concurrent forces, draw your
free-body diagram showing that the lines of action of these three forces pass through
the same point. The use of geometry will then allow you to complete the solution
using a force triangle [Sample Prob. 4.6].

Although the principle noted above for the solution of problems involving three-
force bodies is easily understood, it can be difficult to determine the needed geo-
metric constructions. If you encounter difficulty, first draw a reasonably large free-
body diagram and then seek a relation between known or easily calculated lengths
and a dimension that involves an unknown. This was done in Sample Prob. 4.6,
where the easily calculated dimensions AE and CE were used to determine the
angle a.
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P
A
C
B
=3

— ]
Fig. P4.67 and P4.68
150 N
1m | 1m |
Y |
O o
A B
0.5 m
D —*-
0.5m
cE ¢
Fig. P4.69
Al 130 N
30 mm
C
Q 3 D
B e - D
40 mm~>L— 60 mm —|
Fig. P4.70
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Problems

4.63 Horizontal and vertical links are hinged to a wheel, and forces
are applied to the links as shown. Knowing that ¢ = 3.0 in., determine the
value of P and the reaction at A.

4in. 4 in.

211b

Fig. P4.63 and P4.64

4.64 Horizontal and vertical links are hinged to a wheel, and forces
are applied to the links as shown. Determine the range of values of the dis-
tance a for which the magnitude of the reaction at A does not exceed 42 lb.

4.65 Using the method of Sec. 4.7, solve Prob. 4.21.
4.66 Using the method of Sec. 4.7, solve Prob. 4.22.

4.67 To remove a nail, a small block of wood is placed under a crow-
bar, and a horizontal force P is applied as shown. Knowing that [ = 3.5 in.
and P = 30 b, determine the vertical force exerted on the nail and the re-
action at B.

4.68 To remove a nail, a small block of wood is placed under a crow-
bar, and a horizontal force P is applied as shown. Knowing that the maxi-
mum vertical force needed to extract the nail is 600 1b and that the hori-
zontal force P is not to exceed 65 1b, determine the largest acceptable value
of distance .

4.69 For the frame and loading shown, determine the reactions at C
and D.

4.70 For the frame and loading shown, determine the reactions at A
and C.

o
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4.71  To remove the lid from a 5-gallon pail, the tool shown is used to Problems 4187
apply an upward and radially outward force to the bottom inside rim of the
lid. Assuming that the rim rests against the tool at A and that a 100-N force
is applied as indicated to the handle, determine the force acting on the rim.

20°

e

45 mm

— 4 A
t D
90 mm 53(}\]
Fig. P4.71 1‘5‘ ft
4.72  To remove the lid from a 5-gallon pail, the tool shown is used to A ¢ _¢_05 ft
apply an upward and radially outward force to the bottom inside rim of the | €, 2 ‘ OB
lid. Assuming that the top and the rim of the lid rest against the tool at A
and B, respectively, and that a 60-N force is applied as indicated to the han-
dle, determine the force acting on the rim.
200 1b
|~
Fig. P4.73
150 mm
A
P
B 60 N
350 300
\?00
45 mm
@

Fig. P4.72

Fig. P4.75 and P4.76
4.73 A 200-1b crate is attached to the trolley-beam system shown. Know-

ing that @ = 1.5 ft, determine (a) the tension in cable CD, (b) the reaction at B.

4.74  Solve Prob. 4.73 assuming that « = 3 ft. D

1.2m
4.75 A 20-kg roller, of diameter 200 mm, which is to be used on a tile

floor, is resting directly on the subflooring as shown. Knowing that the thick-
ness of each tile is § mm, determine the force P required to move the roller
onto the tiles if the roller is pushed to the left.

4.76 A 20-kg roller, of diameter 200 mm, which is to be used on a tile
floor, is resting directly on the subflooring as shown. Knowing that the thick-
ness of each tile is § mm, determine the force P required to move the roller
onto the tiles if the roller is pulled to the right.

4.77 A small hoist is mounted on the back of a pickup truck and is
used to lift a 120-kg crate. Determine (a) the force exerted on the hoist by
the hydraulic cylinder BC, (b) the reaction at A. Fig. P4.77

o
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¢ 70 mm

L 105 mm—»L—QO mm —|

Fig. P4.78

0.2m
Fig. P4.79 and P4.80

Fig. P4.85 and P4.86

4.78 The clamp shown is used to hold the rough workpiece C. Know-
ing that the maximum allowable compressive force on the workpiece is 200
N and neglecting the effect of friction at A, determine the corresponding (a)
reaction at B, (b) reaction at A, (c¢) tension in the bolt.

4.79 A modified peavey is used to lift a 0.2-m-diameter log of mass
36 kg. Knowing that 6 = 45° and that the force exerted at C by the worker
is perpendicular to the handle of the peavey, determine (a) the force exerted
at C, (b) the reaction at A.

*4.80 A modified peavey is used to lift a 0.2-m-diameter log of mass
36 kg. Knowing that & = 60° and that the force exerted at C by the worker
is perpendicular to the handle of the peavey, determine (a) the force exerted
at C, (b) the reaction at A.

4.81 Member ABC is supported by a pin and bracket at B and by an
inextensible cord attached at A and C and passing over a frictionless pulley
at D. The tension may be assumed to be the same in portion AD and CD of
the cord. For the loading shown and neglecting the size of the pulley, de-
termine the tension in the cord and the reaction at B.

|<— 16 in4‘>|

sl |

25 in.

A
300 1b

 /
Fig. P4.81

4.82 Member ABCD is supported by a pin and bracket at C and by
an inextensible cord attached at A and D and passing over frictionless pul-
leys at B and E. Neglecting the size of the pulleys, determine the tension in
the cord and the reaction at C.

80 N

—| a =300 mm |€
c D

175 mm

l

400 mm

Fig. P4.82

4.83 Using the method of Sec. 4.7, solve Prob. 4.18.
4.84 Using the method of Sec. 4.7, solve Prob. 4.28.
4.85 Knowing that 6 = 35°, determine the reaction (a) at B, (b) at C.

4.86 Knowing that 6 = 50°, determine the reaction (a) at B, (b) at C.

o
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4.87 A slender rod of length L and weight W is held in equilibrium as Problems 480
shown, with one end against a frictionless wall and the other end attached to
a cord of length S. Derive an expression for the distance h in terms of L and
S. Show that this position of equilibrium does not exist if S > 2L.

Fig. P4.87 and P4.88 Fig. P4.89 and P4.90

4.88 A slender rod of length L = 200 mm is held in equilibrium as
shown, with one end against a frictionless wall and the other end attached to B
a cord of length S = 300 mm. Knowing that the mass of the rod is 1.5 kg, de- 950 mm
termine (a) the distance h, (b) the tension in the cord, (¢) the reaction at B.

0
4.89 A slender rod of length L and weight W is attached to collars

which can slide freely along the guides shown. Knowing that the rod is in / C
A

equilibrium, derive an expression for the angle 6 in terms of the angle B.

4.90 A 10-kg slender rod of length L is attached to collars which can
slide freely along the guides shown. Knowing that the rod is in equilibrium
and that B = 25°, determine (@) the angle 6 that the rod forms with the ver-
tical, (b) the reactions at A and B.

4.91 A uniform slender rod of mass 5 g and length 250 mm is balanced
on a glass of inner diameter 70 mm. Neglecting friction, determine the an- Fig. P4.91
gle 6 corresponding to equilibrium.

4.92 Rod AB is bent into the shape of a circular arc and is lodged be-
tween two pegs D and E. It supports a load P at end B. Neglecting friction
and the weight of the rod, determine the distance ¢ corresponding to equi-
librium when ¢ = 1 in. and R = 5 in.

4.93 A uniform rod AB of weight W and length 2L rests inside a hemi-
spherical bowl of radius R as shown. Neglecting friction, determine the an-
gle 6 corresponding to equilibrium.

Fig. P4.93

4.94 A uniform slender rod of mass m and length 4r rests on the sur-
face shown and is held in the given equilibrium position by the force P. Ne-
glecting the effect of friction at A and C, (a) determine the angle 6, (b) de-
rive an expression for P in terms of m. Fig. P4.94

o
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Equilibrium of Rigid Bodies

4.95 A uniform slender rod of length 2L and mass m rests against a
roller at D and is held in the equilibrium position shown by a cord of length
a. Knowing that L = 200 mm, determine (a) the angle 6, (b) the length a.

A/ C

Fig. P4.95

EQUILIBRIUM IN THREE DIMENSIONS

4.8. EQUILIBRIUM OF A RIGID BODY IN THREE DIMENSIONS

We saw in Sec. 4.1 that six scalar equations are required to express
the conditions for the equilibrium of a rigid body in the general three-
dimensional case:

2F. =0 S, =1 2F. =0 (4.2)
2M, =0 M, =0 2M,. =0 (4.3)

These equations can be solved for no more than six unknowns, which
generally will represent reactions at supports or connections.

In most problems the scalar equations (4.2) and (4.3) will be more
conveniently obtained if we first express in vector form the conditions
for the equilibrium of the rigid body considered. We write

2F=0 My =2(r x F) =0 (4.1)

and express the forces F and position vectors r in terms of scalar com-
ponents and unit vectors. Next, we compute all vector products, either
by direct calculation or by means of determinants (see Sec. 3.8). We
observe that as many as three unknown reaction components may be
eliminated from these computations through a judicious choice of the
point O. By equating to zero the coefficients of the unit vectors in each
of the two relations (4.1), we obtain the desired scalar equations.t

4.9. REACTIONS AT SUPPORTS AND CONNECTIONS
FOR A THREE-DIMENSIONAL STRUCTURE

The reactions on a three-dimensional structure range from the single
force of known direction exerted by a frictionless surface to the force-
couple system exerted by a fixed support. Consequently, in problems
involving the equilibrium of a three-dimensional structure, there can
be between one and six unknowns associated with the reaction at each

tIn some problems, it will be found convenient to eliminate the reactions at two points
A and B from the solution by writing the equilibrium equation ZM,z = 0, which involves
the determination of the moments of the forces about the axis AB joining points A and B
(see Sample Prob. 4.10).

o
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support or connection. Various types of supports and connections are ~ 4.9- Reactions at Supports and Connections Q1
for a Three-Dimensional Structure

shown in Fig. 4.10 with their corresponding reactions. A simple way
of determining the type of reaction corresponding to a given support
or connection and the number of unknowns involved is to find which
of the six fundamental motions (translation in the x, y, and z direc-
tions, rotation about the x, y, and z axes) are allowed and which mo-
tions are prevented.

Ball supports, frictionless surfaces, and cables, for example, pre-
vent translation in one direction only and thus exert a single force whose
line of action is known; each of these supports involves one unknown,
namely, the magnitude of the reaction. Rollers on rough surfaces and
wheels on rails prevent translation in two directions; the corresponding
reactions consist of two unknown force components. Rough surfaces in
direct contact and ball-and-socket supports prevent translation in three
directions; these supports involve three unknown force components.

Some supports and connections can prevent rotation as well as
translation; the corresponding reactions include couples as well as
forces. For example, the reaction at a fixed support, which prevents
any motion (rotation as well as translation), consists of three unknown Photo 4.6 Universal joints, easily seen on the
forces and three unknown couples. A universal joint, which is designed drive shafts of rear-wheek-drive cars and trucks,

> allow rotational motion to be transferred between
to allow rotation about two axes, will exert a reaction consisting of  two non-collinear shafts.
three unknown force components and one unknown couple.

Other supports and connections are primarily intended to pre-
vent translation; their design, however, is such that they also prevent
some rotations. The corresponding reactions consist essentially of
force components but may also include couples. One group of sup-
ports of this type includes hinges and bearings designed to support
radial loads only (for example, journal bearings, roller bearings). The
corresponding reactions consist of two force components but may also
include two couples. Another group includes pin-and-bracket sup-
ports, hinges, and bearings designed to support an axial thrust as well
as a radial load (for example, ball bearings). The corresponding reac-
tions consist of three force components but may include two couples.
However, these supports will not exert any appreciable couples un-
der normal conditions of use. Therefore, only force components
should be included in their analysis unless it is found that couples are
necessary to maintain the equilibrium of the rigid body, or unless the
support is known to have been specifically designed to exert a couple
(see Probs. 4.128 through 4.131).

If the reactions involve more than six unknowns, there are more
unknowns than equations, and some of the reactions are statically in-
determinate. If the reactions involve fewer than six unknowns, there
are more equations than unknowns, and some of the equations of
equilibrium cannot be satisfied under general loading conditions; the
rigid body is only partially constrained. Under the particular loading
C.OndlthHS correspondleg'to a glve'n.problem, however, the extra equa- o a7 The pillow block bearing shown
tions often reduce to trivial identities, such as 0 = 0, and can be dis- ¢ 500115 the shaft of a fan used to ventilate a
regarded; although only partially constrained, the rigid body remains  foundry.
in equilibrium (see Sample Probs. 4.7 and 4.8). Even with six or more
unknowns, it is possible that some equations of equilibrium will not
be satisfied. This can occur when the reactions associated with the
given supports either are parallel or intersect the same line; the rigid
body is then improperly constrained.

o
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Force with known
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(one unknown)

~~
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line of action
(one unknown)

Cable

Roller on
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Universal
joint
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Fig. 4.10 Reactions at supports and connections.
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SAMPLE PROBLEM 4.7

A 20-kg ladder used to reach high shelves in a storeroom is supported by two
flanged wheels A and B mounted on a rail and by an unflanged wheel C rest-
ing against a rail fixed to the wall. An 80-kg man stands on the ladder and
leans to the right. The line of action of the combined weight W of the man
and ladder intersects the floor at point D. Determine the reactions at A, B,
and C.

SOLUTION

Free-Body Diagram. A free-body diagram of the ladder is drawn.
The forces involved are the combined weight of the man and ladder.
W = —mgj = —(80 kg + 20 ke)(9.81 m/s2)j = — (981 N)j

and five unknown reaction components, two at each flanged wheel and one
at the unflanged wheel. The ladder is thus only partially constrained; it is free
to roll along the rails. It is, however, in equilibrium under the given load since
the equation 2F, = 0 is satisfied.

Equilibrium Equations. We express that the forces acting on the lad-
der form a system equivalent to zero:
SF=0.  Ayj+Ak+B,j+Bk— (981 Nj+Ck=0
(A, + B, — 981 N)j + (A. + B. + O)k = 0
M, =23(r X F)=0:12i X (B,jj + B.k) + (0.9i — 0.6k) % (—981_]')
+ (0.6i + 3j — 1.2k) X Ck=0
Computing the vector product, we havet
I.ZByk —12B.j — 882.9k — 588.6i — 0.6Cj+3Ci=0
(3C — 588.6)i — (1.2B. + 0.6C)j + (I.ZBy — 8829k =0 (2)
Setting the coefficients of i, j, k equal to zero in Eq. (2), we obtain the
following three scalar equations, which express that the sum of the moments
about each coordinate axis must be zero:
3C — 5886 =0 C=+1962 N
12B.+06C=0 B.=-981N
12B, ~ 8829=0 B, = +736 N
The reactions at B and C are therefore
B =+(736 N)j — (98.1 N)k C=+(1962N)k <«

Setting the coefficients of j and k equal to zero in Eq. (1), we obtain two scalar

equations expressing that the sums of the components in the y and z directions

are zero. Substituting for B,, B., and C the values obtained above, we write
A +B,—981=0 A, +T6-981=0 A, =+245N
A+B.+C=0 A —981+1962=0 A =-981N

We conclude that the reaction at A is A=+(245N)j — (981 Nk <

tThe moments in this sample problem and in Sample Probs. 4.8 and 4.9 can also be ex-
pressed in the form of determinants (see Sample Prob. 3.10).

193
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W=—(2701b)j

™4 ft‘L\

46t

SAMPLE PROBLEM 4.8

A 5 X 8-t sign of uniform density weighs 270 Ib and is supported by a ball-
and-socket joint at A and by two cables. Determine the tension in each ca-
ble and the reaction at A.

SOLUTION

Free-Body Diagram. A free-body diagram of the sign is drawn. The
forces acting on the free body are the weight W = —(270 Ib)j and the reactions
at A, B, and E. The reaction at A is a force of unknown direction and is repre-
sented by three unknown components. Since the directions of the forces ex-
erted by the cables are known, these forces involve only one unknown each,
namely, the magnitudes Tgp and Tre. Since there are only five unknowns, the
sign is partially constrained. It can rotate freely about the x axis; it is, however,
in equilibrium under the given loading, since the equation ZM, = 0 is satisfied.

The components of the forces Tgp and Ty can be expressed in terms
of the unknown magnitudes Tp and Txc by writing

BD = —(8ft)i+ (4f)j— (Sfok  BD =12 ft
EC =—(6f)i+@BRj+@Q2fk EC=TH

BD
) = Tap(—3i + 5 = 5K)

Tpp = TBD(EB

Tpe = TEC<__) = TEC(—%i + %} + %k)

Equilibrium Equations. We express that the forces acting on the sign
form a system equivalent to zero:
SF=0.  Ai+Aj+Ak+ T+ Tee — (270 b)j =0
(A = 3Tsp — STpc)i + (A, + 35Twp + 3T — 270 b)j
+ (A, — STBD + ?TEC>k =0 (1)
M, =23(rXF)=0:
(8 )i X Tpp(—3i+ 5j — 3K) + (6 f0)i X Tpe(—2i + 2j + 2k)
+ (4 f)i x (=270 Ib)j =0
(2.66TTgp + 2.571Tkc — 1080 Ib)k + (5.333T5p — 1.714TEC)j =0 (2)

Setting the coefficients of j and k equal to zero in Eq. (2), we obtain
two scalar equations which can be solved for Tgp and Tre:

TBD =101.31b T[,:(j 3151b «

Setting the coefficients of i, j, and k equal to zero in Eq. (1), we obtain three
more equations, which yield the components of A. We have

A= +(3381bj)i + (101.21b)j — (22.51b)k <
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160 mm SAMPLE PROBLEM 4.9

A uniform pipe cover of radius = 240 mm and mass 30 kg is held in a hor-
izontal position by the cable CD. Assuming that the bearing at B does not
exert any axial thrust, determine the tension in the cable and the reactions
at A and B.

SOLUTION

Free-Body Diagram. A free-body diagram is drawn with the coordi-
nate axes shown. The forces acting on the free body are the weight of the cover.

W = —mgj = —(30 kg)(9.81 m/s?)j = —(294 N)j

and reactions involving six unknowns, namely, the magnitude of the force T
exerted by the cable, three force components at hinge A, and two at hinge
B. The components of T are ¢ expressed in terms of the unknown magnitude
T by resolving the vector DC into rectangular components and writing

—_—

DC = —(480 mm)i + (240 mm)j — (160 mm)k DC = 560 mm
DC : .
T=T55 = —¢Ti+ ;Tj— 3Tk
Equilibrium Equations. We express that the forces acting on the
pipe cover form a system equivalent to zero:

SF = 0: Ad+Aj+AKk+Bi+ Byj+T— (294N)j=0
(A, + B, — ST)i + (A, + B, + 2T — 294 N)j + (A, — 30k =0 (1)
My = 3(r X F) = 0:
2k X (Ad +A,j+AK) o
+ (2ri + rk) X (—=Ti + =Tj — -Tk)
+ (ri + rk) X (—294 N)j = 0
(—2A, — 3T + 294 N)ri + (24, — 2T)rj + (ST — 294 N)rk =0 (2)

Setting the coefficients of the unit vectors equal to zero in Eq. (2), we
write three scalar equations, which yield

A,=+490N A, =+T35N  T=313N <

Setting the coefficients of the unit vectors equal to zero in Eq. (1), we ob-
tain three more scalar equations. After substituting the values of T, A, and
A, into these equations, we obtain

A.=+980N B, =+245N B, = +735N
The reactions at A and B are therefore

A=+49.0N)i+ (7T3.5N)j + (9S.0N)k <«
B = +(245 N)i + (73.5 N)j <
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SAMPLE PROBLEM 4.10

G

B LE ¢ b A 450-1b load hangs from the corner C of a rigid piece of
P i pipe ABCD which has been be‘n't as shown. The pipe is sup-
ported by the ball-and-socket joints A and D, which are fas-

tened, respectively, to the floor and to a vertical wall, and by
a cable attached at the midpoint E of the portion BC of the
pipe and at a point G on the wall. Determine (a) where G
should be located if the tension in the cable is to be mini-
mum, (b) the corresponding minimum value of the tension.

12 ft

SOLUTION

Free-Body Diagram. The free-body diagram of the pipe includes the
load W = (—450 Ib)j, the reactions at A and D, and the force T exerted by
the cable. To eliminate the reactions at A and D from the computations, we
express that the sum of the moments of the forces about AD is zero. De-
noting by A the unit vector along AD, we write

D]/J — —

2

T bi SMup=0. A-(AE X T)+A-(AC x W) =0 (1)

XE o T The second term in Eq. (1) can be computed as follows:

B -
— AC X W = (12i + 12j) x (—450j) = —5400k
61t} _AD _12i 412 -6k _a s 1y
12 fi A=D1z “sitiiTs
12 Y W=-450 A (AC x W) = (i + 2§ — 2k) - (—5400k) = +1800
: Substituting the value obtained into Eq. (1), we write
J —
. % BT % A (AE x T) = —1800 Ib - ft @)
x . Lo L
Ak 4 rA Minimum Value of Tension. Recalling the commutative property for
p | 12 ft mixed triple products, we rewrite Eq. (2) in the form
Ayj T-(A X AE) = —1800Ib - ft (3)
y which shows that the projection of T on the vector A X AE is a constant. Tt
H‘ Glx,y,0) follows that T is minimum when parallel to the vector
‘T,..m A X AE = CGi+23j — 2k) x (6i + 12j) = 4i — 2j + 4k

5 X /% Since the corresponding unit vector is %i - %J + %k, we write
E(6,12,6) | ¢ Tonin = T(3i = 5j + 5K (4)
W Substituting for T and A X AE in Eq. (3) and computing the dot products, we
obtain 6T = —1800 and, thus, T = —300. Carrying this value into (4), we obtain
Tyin = —200i + 100j — 200k Toin=3001b <
Location of G. Since the vector EG and the force T, have the same
Al * direction, their components must be proportional. Denoting the coordinates

1

196

of G by x, y, 0, we write

-6 _y—12 _0-6 \
= = x =0 =151
Z200 100 —a00 L0 v Iolt 4

o
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SOLVING PROBLEMS

ON YOUR OWN

The equilibrium of a three-dimensional body was considered in the sections you
just completed. It is again most important that you draw a complete free-body
diagram as the first step of your solution.

1. As you draw the free-body diagram, pay particular attention to the re-
actions at the supports. The number of unknowns at a support can range from
one to six (Fig. 4.10). To decide whether an unknown reaction or reaction compo-
nent exists at a support, ask yourself whether the support prevents motion of the
body in a certain direction or about a certain axis.

a. If motion is prevented in a certain direction, include in your free-
body diagram an unknown reaction or reaction component that acts in the same
direction.

b. If a support prevents rotation about a certain axis, include in your free-
body diagram a couple of unknown magnitude that acts about the same axis.

2. The external forces acting on a three-dimensional body form a system
equivalent to zero. Writing ZF = 0 and M, = 0 about an appropriate point A,
and setting the coefficients of i, j, k in both equations equal to zero will provide
you with six scalar equations. In general, these equations will contain six unknowns
and can be solved for these unknowns.

3. After completing your free-body diagram, you may want to seek equa-
tions involving as few unknowns as possible. The following strategies may

help you.

a. By summing moments about a ball-and-socket support or a hinge, you will
obtain equations from which three unknown reaction components have been elim-
inated [Sample Probs. 4.8 and 4.9].

b. If you can draw an axis through the points of application of all but one of
the unknown reactions, summing moments about that axis will yield an equation in
a single unknown [Sample Prob. 4.10].

4. After drawing your free-body diagram, we encourage you to compare
the number of unknowns to the number of nontrivial, scalar equations of
equilibrium for the given problem. Doing so will tell you if the body is prop-
erly or partially constrained and whether the problem is statically determinate or
indeterminate. Further, as we consider more complex problems in later chapters,
keeping track of the numbers of unknowns and equations will help you to develop
correct solutions.

197

o
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Problems

4.96  Gears A and B are attached to a shaft supported by bearings at
C and D. The diameters of gears A and B are 150 mm and 75 mm, respec-
tively, and the tangential and radial forces acting on the gears are as shown.
Knowing that the system rotates at a constant rate, determine the reactions
at C and D. Assume that the bearing at C does not exert any axial force, and
neglect the weights of the gears and the shaft.

Fig. P4.96

4.97  Solve Prob. 4.96 assuming that for gear A the tangential and ra-
dial forces are acting at E, so that F, = (1325 N)j + (482 N)k.

4.98 Two transmission belts pass over sheaves welded to an axle sup-
ported by bearings at B and D. The sheave at A has a radius of 50 mm, and
the sheave at C has a radius of 40 mm. Knowing that the system rotates with
a constant rate, determine (a) the tension T, (b) the reactions at B and D.
Assume that the bearing at D does not exert any axial thrust and neglect the
weights of the sheaves and the axle.

Fig. P4.98

o
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4.99 For the portion of a machine shown, the 4-in.-diameter pulley A
and wheel B are fixed to a shaft supported by bearings at C and D. The spring
of constant 2 Ib/in. is unstretched when 6 = 0, and the bearing at C does not
exert any axial force. Knowing that & = 180° and that the machine is at rest
and in equilibrium, determine (a) the tension T, (b) the reactions at C and

D. Neglect the weights of the shaft, pulley, and wheel.

12 in.

4.100 Solve Prob. 4.99 for 6 = 90°. Fig.

4.101 A 1.2 X 2.4-m sheet of plywood having a mass of 17 kg has been

temporarily placed among three pipe supports. The lower edge of the sheet
rests on small collars A and B and its upper edge leans against pipe C. Ne-
glecting friction at all surfaces, determine the reactions at A, B, and C.

4.102 The 200 X 200-mm square plate shown has a mass of 25 kg and
is supported by three vertical wires. Determine the tension in each wire.

4.103 The 200 X 200-mm square plate shown has a mass of 25 kg and
is supported by three vertical wires. Determine the mass and location of the
lightest block which should be placed on the plate if the tensions in the three

cables are to be equal.

0.3 m

Fig. P4.99 /
~
27 1125m \5/

Problems

199

/,9‘9 m 12m
12m />

P4.101

100 mm

Fig. P4.102 and P4.103

X

40 mm
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z

Fig. P4.107 and P4.108

4.104 A camera of mass 240 g is mounted on a small tripod of mass
200 g. Assuming that the mass of the camera is uniformly distributed and
that the line of action of the weight of the tripod passes through D, deter-
mine (a) the vertical components of the reactions at A, B, and C when 6 = 0,
(b) the maximum value of 6 if the tripod is not to tip over.

Fig. P4.104

4.105 Two steel pipes AB and BC, each having a weight per unit length
of 5 Ib/ft, are welded together at B and are supported by three wires. Know-
ing that @ = 1.25 ft, determine the tension in each wire.

A

A C
z 4 ft >\
2 ft

Fig. P4.105 < *

4.106 For the pile assembly of Prob. 4.105, determine (a) the largest
permissible value of a if the assembly is not to tip, (b) the corresponding ten-
sion in each wire.

4.107 A uniform aluminum rod of weight W is bent into a circular ring
of radius R and is supported by three wires as shown. Determine the ten-
sion in each wire.

4.108 A uniform aluminum rod of weight W is bent into a circular ring
of radius R and is supported by three wires as shown. A small collar of weight
W’ is then placed on the ring and positioned so that the tensions in the three
wires are equal. Determine (a) the position of the collar, (b) the value of W',
(c) the tension in the wires.

o



bee0491x_ch04_ 201 1/9/03 4:25 PM Page 201 mac76 mac76:38$eb:

4.109 An opening in a floor is covered by a 3 X 4-ft sheet of plywood Problems 201
weighing 12 Ib. The sheet is hinged at A and B and is maintained in a posi-
tion slightly above the floor by a small block C. Determine the vertical com-
ponent of the reaction (a) at A, (b) at B, (c) at C.

Yy

Fig. P4.109

4.110  Solve Prob. 4.109 assuming that the small block C is moved and
placed under edge DE at a point 0.5 ft from corner E.

4.111  The 10-kg square plate shown is supported by three vertical wires.
Determine (a) the tension in each wire when ¢ = 100 mm, (b) the value of
a for which tensions in the three wires are equal.

4.112  The 3-m flagpole AC forms an angle of 30° with the z axis. It is
held by a ball-and-socket joint at C and by two thin braces BD and BE. Know-
ing that the distance BC is 0.9 m, determine the tension in each brace and
the reaction at C. Fig. P4.111

4.113 A 3-m boom is acted upon by the 4-kN force shown. Determine
the tension in each cable and the reaction at the ball-and-socket joint at A.

Fig. P4.112 Fig. P4.113
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198 1b
Fig. P4.114

4.5 ft

Fig. P4.116

60 mm

240 mm/>\

220 N

A 250 mm

t
120 mm

Fig. P4.120

4.114  An 8-ft-long boom is held by a ball-and-socket joint at C and by
two cables AD and BE. Determine the tension in each cable and the reac-
tion at C.

4.115  Solve Prob. 4.114 assuming that the given 198-1b load is replaced
with two 99-1b loads applied at A and B.

4.116 The 18-ft pole ABC is acted upon by a 210-Ib force as shown.
The pole is held by a ball-and-socket joint at A and by two cables BD and
BE. For a = 9 ft, determine the tension in each cable and the reaction at A.

4.117 Solve Prob. 4.116 for a = 4.5 ft.

4.118 Two steel pipes ABCD and EBF are welded together at B to
form the boom shown. The boom is held by a ball-and-socket joint at D and
by two cables EG and ICFH; cable ICFH passes around frictionless pulleys
at C and F. For the loading shown, determine the tension in each cable and
the reaction at D.

15

3.0m
\ 560 N

Fig. P4.118

4.119  Solve Prob. 4.118 assuming that the 560-N load is applied at B.

4.120 The lever AB is welded to the bent rod BCD which is supported
by bearings at E and F and by cable DG. Knowing that the bearing at E does
not exert any axial thrust, determine (a) the tension in cable DG, (b) the re-
actions at E and F.
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4.121 A 30-kg cover for a roof opening is hinged at corners A and B. Problems 203
The roof forms an angle of 30° with the horizontal, and the cover is main-
tained in a horizontal position by the brace CE. Determine (a) the magni-
tude of the force exerted by the brace, (b) the reactions at the hinges. As-
sume that the hinge at A does not exert any axial thrust.

Yy

Fig. P4.121

4.122 The rectangular plate shown has a mass of 15 kg and is held in
the position shown by hinges A and B and cable EF. Assuming that the hinge P
at B does not exert any axial thrust, determine (a) the tension in the cable, ¢
(b) the reactions at A and B.

40 mm 250 mm

300 mm

4.123 Solve Prob. 4.122 assuming that cable EF is replaced by a cable 200mm

attached at points E and H.
80 mm

4.124 A small door weighing 16 Ib is attached by hinges A and B to a Fig. P4.122
wall and is held in the horizontal position shown by rope EFH. The rope
passes around a small, frictionless pulley at F and is tied to a fixed cleat at
H. Assuming that the hinge at A does not exert any axial thrust, determine
(a) the tension in the rope, (b) the reactions at A and B.

3 in.7 IZ:/[
A\)
y

5 in.
I;I%,/ /
5/in.; IZ

LN C

E 9in.
‘ < 40 i
D \/

Fig. P4.124

4.125 Solve Prob. 4.124 assuming that the rope is attached to the door
at [

o
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4.126 A 285-1b uniform rectangular plate is supported in the position
shown by hinges A and B and by cable DCE, which passes over a friction-
less hook at C. Assuming that the tension is the same in both parts of the ca-
ble, determine (a) the tension in the cable, (b) the reactions at A and B. As-
sume that the hinge at B does not exert any axial thrust.

Fig. P4.126

4.127  Solve Prob. 4.126 assuming that cable DCE is replaced by a ca-
ble attached to point E and hook C.

4.128 The tensioning mechanism of a belt drive consists of frictionless
pulley A, mounting plate B, and spring C. Attached below the mounting plate
is slider block D which is free to move in the frictionless slot of bracket E.
Knowing that the pulley and the belt lie in a horizontal plane, with portion
F of the belt parallel to the x axis and portion G forming an angle of 30° with
the x axis, determine (a) the force in the spring, (b) the reaction at D.

B
s
D

Detail of slider block D

2
=

Fig. P4.128
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4.129 The assembly shown is welded to collar A which fits on the ver- Problems 920§
tical pin shown. The pin can exert couples about the x and z axes but does
not prevent motion about or along the y axis. For the loading shown, deter-
mine the tension in each cable and the reaction at A.

4.130 The lever AB is welded to the bent rod BCD which is supported
by bearing E and by cable DG. Assuming that the bearing can exert an axial
thrust and couples about axes parallel to the x and z axes, determine (a) the
tension in cable DG, (b) the reaction at E.

240 mm

60 m 120 mm

/f 250 mm
J

800 N

2250790 mm Fig. P4.129

z 160 mm

DY G I
Fig. P4.130

4.131  Solve Prob. 4.124 assuming that the hinge at A is removed and
that the hinge at B can exert couples about the y and z axes.

4.132  The frame shown is supported by three cables and a ball-and-
socket joint at A. For P = 0, determine the tension in each cable and the re-

action at A.
Yy 440 m //‘

o

420 mm

60 mm <

320 mm

80 mm

450 mm 200 mm

280 N

Fig. P4.132 and P4.133

4.133 The frame shown is supported by three cables and a ball-and-
socket joint at A. For P = 50 N, determine the tension in each cable and the
reaction at A.

o
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4.134 The rigid L-shaped member ABF is supported by a ball-and-
socket joint at A and by three cables. For the loading shown, determine the
tension in each cable and the reaction at A.

1201b
- 12 in.
20| 1257
12 in.

2 12 in

Fig. P4.134

4.135 Solve Prob. 4.134 assuming that the load at C has been removed.

4.136 In order to clean the clogged drainpipe AE, a plumber has dis-
connected both ends of the pipe and inserted a power snake through the
opening at A. The cutting head of the snake is connected by a heavy cable
to an electric motor which rotates at a constant speed as the plumber forces
the cable into the pipe. The forces exerted by the plumber and the motor
on the end of the cable can be represented by the wrench F = —(60 N)k,
M = —(108 N - m)k. Determine the additional reactions at B, C, and D
caused by the cleaning operation. Assume that the reaction at each support
consists of two force components perpendicular to the pipe.

Yy

\Sm )
m
= D

\ 2m

2

Fig. P4.136

o
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4.137 Solve Prob. 4.136 assuming that the plumber exerts a force Problems 9207
F = —(60 N)k and that the motor is turned off (M = 0).

4.138 Three rods are welded together to form a “corner” which is sup-
ported by three eyebolts. Neglecting friction, determine the reactions at A,
B, and C when P = 240 N, @ = 120 mm, b = 80 mm, and ¢ = 100 mm.

Fig. P4.138

4.139 Solve Prob. 4.138 assuming that the force P is removed and is
replaced by a couple M = +(6 N - m)j acting at B.

4.140 The uniform 10-1b rod AB is supported by a ball-and-socket joint
at A and leans against both the rod CD and the vertical wall. Neglecting the
effects of friction, determine (a) the force which rod CD exerts on AB, (b)
the reactions at A and B. (Hint: The force exerted by CD on AB must be
perpendicular to both rods.)

P X
4 40 in.
18in. = A_/

- 24 in.

Fig. P4.140
3
4.141 A 2l-in.-long uniform rod AB weighs 6.4 b and is attached to S
a ball-and-socket joint at A. The rod rests against an inclined frictionless sur- .
face and is held in the position shown by cord BC. Knowing that the cord is
21 in. long, determine (@) the tension in the cord, (b) the reactions at A and B. Fig. P4.141

o
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4.142  While being installed, the 56-1b chute ABCD is attached to a wall
with brackets E and F and is braced with props GH and I]. Assuming that
the weight of the chute is uniformly distributed, determine the magnitude
of the force exerted on the chute by prop GH if prop I] is removed.

4.143 While being installed, the 56-Ib chute ABCD is attached to a
wall with brackets E and F and is braced with props GH and IJ. Assuming
that the weight of the chute is uniformly distributed, determine the magni-
tude of the force exerted on the chute by prop IJ if prop GH is removed.

42 in.

S

97 in. ]

Fig. P4.142 and P4.143

4.144  To water seedlings, a gardener joins three lengths of pipe, AB,
BC, and CD, fitted with spray nozzles and suspends the assembly using
hinged supports at A and D and cable EF. Knowing that the pipe weighs
0.85 Ib/ft, determine the tension in the cable.

4.145  Solve Prob. 4.144 assuming that cable EF is replaced by a cable
connecting E and C. y
|‘\3 ft

Fig. P4.144
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4.146 The bent rod ABDE is supported by ball-and-socket joints at A Problems 209
and E and by the cable DF. If a 600-N load is applied at C as shown, deter-
mine the tension in the cable.

4.147 Solve Prob. 4.146 assuming that cable DF is replaced by a cable
connecting B and F.

r\G() mm

110 mm

100 mm 200 N

160 mm 140 mm 90 mm

Fig. P4.146
4.148 Two rectangular plates are welded together to form the assem- 120 mm *
bly shown. The assembly is supported by ball-and-socket joints at B and D
and by a ball on a horizontal surface at C. For the loading shown, determine
the reaction at C. Fig. P4.148

4.149 Two 1 X 2-m plywood panels, each of mass 15 kg, are nailed to-
gether as shown. The panels are supported by ball-and-socket joints at A and F y
and by the wire BH. Determine (@) the location of H in the xy plane if the ten-
sion in the wire is to be minimum, (b) the corresponding minimum tension.

4.150 Solve Prob. 4.149 subject to the restriction that H must lie on
the y axis.

4.151 A uniform 20 X 30-in. steel plate ABCD weighs 85 Ib and is at-
tached to ball-and-socket joints at A and B. Knowing that the plate leans
against a frictionless vertical wall at D, determine (a) the location of D, (b)
the reaction at D.

Z 1Im
*/DL
Fig. P4.149

28 in.

Fig. P4.151
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Equilibrium equations

Free-body diagram

Equilibrium of a two-dimensional
structure

REVIEW AND SUMMARY

e N

This chapter was devoted to the study of the equilibrium of rigid
bodies, that is, to the situation when the external forces acting on a
rigid body form a system equivalent to zero [Sec. 4.1]. We then have

2F =0 SMp=2(r X F)=0 (4.1)

Resolving each force and each moment into its rectangular
components, we can express the necessary and sufficient condi-
tions for the equilibrium of a rigid body with the following six scalar
equations:

SF,=0 SF,=0 3F, =0 (4.2)
SM,=0 3M,=0 3M,=0 (4.3)

These equations can be used to determine unknown forces applied
to the rigid body or unknown reactions exerted by its supports.

When solving a problem involving the equilibrium of a rigid
body, it is essential to consider all of the forces acting on the body.
Therefore, the first step in the solution of the problem should be to
draw a free-body diagram showing the body under consideration and
all of the unknown as well as known forces acting on it [Sec. 4.2].

In the first part of the chapter, we considered the equilibrium
of a two-dimensional structure; that is, we assumed that the struc-
ture considered and the forces applied to it were contained in the
same plane. We saw that each of the reactions exerted on the struc-
ture by its supports could involve one, two, or three unknowns, de-
pending upon the type of support [Sec. 4.3].

In the case of a two-dimensional structure, Egs. (4.1), or Egs.
(4.2) and (4.3), reduce to three equilibrium equations, namely

SF,=0 3SF,=0 3IM,=0 (4.5)

where A is an arbitrary point in the plane of the structure [Sec.
4.4]. These equations can be used to solve for three unknowns.
While the three equilibrium equations (4.5) cannot be augmented
with additional equations, any of them can be replaced by another
equation. Therefore, we can write alternative sets of equilibrium
equations, such as

2F, =0 2M,=0 2Mp =10 (4.6)

where point B is chosen in such a way that the line AB is not parallel
to the y axis, or

M, =0 Mg =0 2ZM;=0 (4.7)
where the points A, B, and C do not lie in a straight line.

o
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Since any set of equilibrium equations can be solved for only
three unknowns, the reactions at the supports of a rigid two-
dimensional structure cannot be completely determined if they in-
volve more than three unknowns; they are said to be statically in-
determinate [Sec. 4.5]. On the other hand, if the reactions involve
fewer than three unknowns, equilibrium will not be maintained un-
der general loading conditions; the structure is said to be partially
constrained. The fact that the reactions involve exactly three un-
knowns is no guarantee that the equilibrium equations can be
solved for all three unknowns. If the supports are arranged in such
a way that the reactions are either concurrent or parallel, the re-
actions are statically indeterminate, and the structure is said to be
improperly constrained.

Two particular cases of equilibrium of a rigid body were given
special attention. In Sec. 4.6, a two-force body was defined as a
rigid body subjected to forces at only two points, and it was shown
that the resultants F; and F;, of these forces must have the same
magnitude, the same line of action, and opposite sense (Fig. 4.11),
a property which will simplify the solution of certain problems in
later chapters. In Sec. 4.7, a three-force body was defined as a rigid
body subjected to forces at only three points, and it was shown that
the resultants F;, Fy, and F; of these forces must be either con-
current (Fig. 4.12) or parallel. This properly provides us with an
alternative approach to the solution of problems involving a three-
force body [Sample Prob. 4.6].

= D
A/CX
Fy
Fig. 4.1 Fig. P4.12

In the second part of the chapter, we considered the equilib-
rium of a three-dimensional body and saw that each of the reactions
exerted on the body by its supports could involve between one and
six unknowns, depending upon the type of support [Sec. 4.8].

In the general case of the equilibrium of a three-dimensional
body, all of the six scalar equilibrium equations (4.2) and (4.3) listed
at the beginning of this review should be used and solved for six
unknowns [Sec. 4.9]. In most problems, however, these equations
will be more conveniently obtained if we first write

SF=0 3SMy,=3rXF) =0 (4.1)

and express the forces F and position vectors r in terms of scalar
components and unit vectors. The vector products can then be

o
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Partial constraints

Improper constraints

Two-force body

Three-force body

Equilibrium of a three-dimensional body
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computed either directly or by means of determinants, and the de-
sired scalar equations obtained by equating to zero the coefficients
of the unit vectors [Sample Probs. 4.7 through 4.9].

We noted that as many as three unknown reaction components
may be eliminated from the computation of M, in the second of
the relations (4.1) through a judicious choice of point O. Also, the
reactions at two points A and B can be eliminated from the solu-
tion of some problems by writing the equation 2M,5 = 0, which
involves the computation of the moments of the forces about an
axis AB joining points A and B [Sample Prob. 4.10].

If the reactions involve more than six unknowns, some of the
reactions are statically indeterminate; if they involve fewer than six
unknowns, the rigid body is only partially constrained. Even with
six or more unknowns, the rigid body will be improperly con-
strained if the reactions associated with the given supports either
are parallel or intersect the same line.
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Review Problems

4.152 Beam AD carries the two 40-1b loads shown. The beam is held by
a fixed support at D and by the cable BE which is attached to the counter
weight W. Determine the reaction at D when (a) W = 100 1b, (b) W = 90 Ib.

1

(©) (
<—5ft—>| E

Q@ Q w

A B lc D
401b 401
(B S B,

Fig. P4.152 and P4.153

| 280 mm |
@ A
4.153 For the beam and loading shown, determine the range of values
of W for which the magnitude of the couple at D does not exceed 40 Ib - ft. 150
mim
4.154 Determine the reactions at A and D when 8 = 30°. B D
—)
4.155 Determine the reactions at A and D when 8 = 60°. 100 mm
4.156 A 2100-Ib tractor is used to lift 900 Ib of gravel. Determine the J— C
reaction at each of the two (a) rear wheels A, (b) front wheels B. \‘\/
BY150 N

Fig. P4.154 and P4.155

90, 40in. | 50in.
Fig. P4.156

4.157 A tension of 5 1b is maintained in a tape as it passes the support
system shown. Knowing that the radius of each pulley is 0.4 in., determine
the reaction at C.

4.158 Solve Prob. 4.157 assuming that 0.6-in.-radius pulleys are used.  Fig. P4.157
213

o



bee0491x_ch04 214 1/9/03 4:26 PM Page 214 mac76 mac76:38$eb:

21 4 Equilibrium of Rigid Bodies

A

950 mm :

\
 50mm 300 mm 950 mm

Fig. P4.159

51 201 351b 201 151b 4.159 The bent rod ABEF is supported by bearings at C and D and by
l l wire AH. Knowing that portion AB of the rod is 250 mm long, determine (a)

l l l the tension in wire AH, (b) the reactions at C and D. Assume that the bear-
d A > 5 ing at D does not exert any axial thrust.
_d
4.160 For the beam and loading shown, determine (@) the reaction at
lc A, (b) the tension in cable BC.

6inol< 8 in—»<§ in‘lﬁ in»l 4.161 Frame ABCD is supported by a ball-and-socket joint at A and by
three cables. For ¢ = 150 mm, determine the tension in each cable and the

Fig. P4.160
9 reaction at A.

Fig. P4.161 and P4.162

4.162 Frame ABCD is supported by a ball-and-socket joint at A and by
three cables. Knowing that the 350-N load is applied at D (¢ = 300 mm),
determine the tension in each cable and the reaction at A.

*4.163 In the problems listed below, the rigid bodies considered were
completely constrained and the reactions were statically determinate. For
each of these rigid bodies it is possible to create an improper set of con-
straints by changing a dimension of the body. In each of the following prob-
lems determine the value of @ which results in improper constraints. () Prob.
4.81, (b) Prob. 4.82.
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Computer Problems

4.C1 A slender rod AB of weight W is attached to blocks at A and B
which can move freely in the guides shown. The constant of the spring is k
and the spring is unstretched when the rod is horizontal. Neglecting the
weight of the blocks, derive an equation in terms of (6, W, [, and k which
must be satisfied when the rod is in equilibrium. Knowing that W = 10 Ib
and [ = 40 in., (a) calculate and plot the value of the spring constant k as a
function of the angle 6 for 15° = 6 = 40°, (b) determine the two values of
the angle 6 corresponding to equilibrium when k = 0.7 Ib/in.

Fig. P4.C1

4.C2 The position of the L-shaped rod shown is controlled by a cable
attached at point B. Knowing that the rod supports a load of magnitude P =
200 N, use computational software to calculate and plot the tension T in the
cable as a function of 0 for values of 0 from from 0 to 120°. Determine the
maximum tension T, and the corresponding value of 6.

4.C3  The position of the 20-1b rod AB is controlled by the block shown,
which is slowly moved to the left by the force P. Neglecting the effect of fric-
tion, use computational software to calculate and plot the magnitude P of the Fig. P4.C2
force as a function of x for values of x decreasing from 30 in. to 0. Deter-
mine the maximum value of P and the corresponding value of x.

Fig. P4.C3

215



bee0491x_ch04 216 1/9/03 4:26 PM Page 216 mac76 mac76:38$eb:

21 6 Introduction

600 N
A

< 21 m ]

0.7m

Fig. P4.C4

*4.C4  Member ABC is supported by a pin and bracket at C and by an
inextensible cable of length 3.5 m that is attached at A and B and passes over
a frictionless pulley at D. Neglecting the mass of ABC and the radius of the
pulley, (a) plot the tension in the cable as a function of a for 0 =a = 2.4 m,
(b) determine the largest value of a for which equilibrium can be maintained.

4.C5 and 4.C6 The constant of spring AB is k, and the spring is un-
stretched when 6 = 0. Knowing that R = 200 mm, ¢ = 400 mm, and k =
1 kN/m, use computational software to calculate and plot the mass m corre-
sponding to equilibrium as a function of 6 for values of 6 from 0 to 90°. De-
termine the value of 6 corresponding to equilibrium when m = 2 kg.

Fig. P4.C6

4.C7 An 8 X 10-in. panel of weight W = 40 Ib is supported by hinges
along edge AB. Cable CDE is attached to the panel at point C, passes over
a small pulley at D, and supports a cylinder of weight W. Neglecting the ef-
fect of friction, use computational software to calculate and plot the weight
of the cylinder corresponding to equilibrium as a function of 6 for values of
6 from 0 to 90°. Determine the value of 6 corresponding to equilibrium when
W =20 Ib.

Fig. P4.C7
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4.C8 A uniform circular plate of radius 300 mm and mass 26 kg is sup- Computer Problems 947
ported by three vertical wires that are equally spaced around its edge. A small
3-kg block E is placed on the plate at D and is then slowly moved along di-
ameter CD until it reaches C. (a) Plot the tension in wires A and C as func-
tions of a, where a is the distance of the block from D. (b) Determine the
value of a for which the tension in wires A and C is minimum.

Fig. P4.C8

4.C9 The derrick shown supports a 4000-Ib crate. It is held by a ball-
and-socket joint at point A and by two cables attached at points D and E.
Knowing that the derrick lies in a vertical plane forming an angle ¢ with the
xy plane, use computational software to calculate and plot the tension in each
cable as a function of ¢ for values of ¢ from 0 to 40°. Determine the value
of ¢ for which the tension in cable BE is maximum.

4.C10  The 140-Ib uniform steel plate ABCD is welded to shaft EF and
is maintained in the position shown by the couple M. Knowing that collars
prevent the shaft from sliding in the bearings and that the shaft lies in the yz
plane, plot the magnitude M of the couple as a function of 6 for 0 = 6 = 90°.

Fig. P4.C10



