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Kinetics of Particles:
Newton’s Second Law

A roller-coaster car may travel on a straight path, a curved path in the horizontal plane, or a curved path in the
vertical plane. In each case the force of gravity and the forces exerted by the track on the car must be considered
as well as the acceleration of the car as studied in the previous chapter. The relation existing among force, mass,
and acceleration will be studied in this chapter.

C H A P T E R

1212Kinetics of Particles:
Newton’s Second Law
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12.1. INTRODUCTION

Newton’s first and third laws of motion were used extensively in stat-
ics to study bodies at rest and the forces acting upon them. These two
laws are also used in dynamics; in fact, they are sufficient for the study
of the motion of bodies which have no acceleration. However, when
bodies are accelerated, that is, when the magnitude or the direction
of their velocity changes, it is necessary to use Newton’s second law
of motion to relate the motion of the body with the forces acting on it.

In this chapter we will discuss Newton’s second law and apply it
to the analysis of the motion of particles. As we state in Sec. 12.2, if
the resultant of the forces acting on a particle is not zero, the parti-
cle will have an acceleration proportional to the magnitude of the re-
sultant and in the direction of this resultant force. Moreover, the ra-
tio of the magnitudes of the resultant force and of the acceleration
can be used to define the mass of the particle.

In Sec. 12.3, the linear momentum of a particle is defined as the
product L � mv of the mass m and velocity v of the particle, and it
is demonstrated that Newton’s second law can be expressed in an al-
ternative form relating the rate of change of the linear momentum
with the resultant of the forces acting on that particle.

Section 12.4 stresses the need for consistent units in the solution
of dynamics problems and provides a review of the International Sys-
tem of Units (SI units) and the system of U.S. customary units.

In Secs. 12.5 and 12.6 and in the Sample Problems which follow,
Newton’s second law is applied to the solution of engineering prob-
lems, using either rectangular components or tangential and normal
components of the forces and accelerations involved. We recall that
an actual body—including bodies as large as a car, rocket, or 
airplane—can be considered as a particle for the purpose of analyz-
ing its motion as long as the effect of a rotation of the body about its
mass center can be ignored.

The second part of the chapter is devoted to the solution of prob-
lems in terms of radial and transverse components, with particular
emphasis on the motion of a particle under a central force. In Sec.
12.7, the angular momentum HO of a particle about a point O is de-
fined as the moment about O of the linear momentum of the parti-
cle: HO � r � mv. It then follows from Newton’s second law that the
rate of change of the angular momentum HO of a particle is equal
to the sum of the moments about O of the forces acting on that
particle.

Section 12.9 deals with the motion of a particle under a central
force, that is, under a force directed toward or away from a fixed
point O. Since such a force has zero moment about O, it follows that
the angular momentum of the particle about O is conserved. This
property greatly simplifies the analysis of the motion of a particle
under a central force; in Sec. 12.10 it is applied to the solution of
problems involving the orbital motion of bodies under gravitational
attraction.

Sections 12.11 through 12.13 are optional. They present a more
extensive discussion of orbital motion and contain a number of prob-
lems related to space mechanics.

KINETICS OF PARTICLES:
NEWTON’S SECOND LAW
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12-312.2. Newton’s Second Law of Motion

†More accurately, to the mass center of the solar system.
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12.2. NEWTON’S SECOND LAW OF MOTION

Newton’s second law can be stated as follows:
If the resultant force acting on a particle is not zero, the particle

will have an acceleration proportional to the magnitude of the resul-
tant and in the direction of this resultant force.

Newton’s second law of motion is best understood by imagining
the following experiment: A particle is subjected to a force F1 of con-
stant direction and constant magnitude F1. Under the action of that
force, the particle is observed to move in a straight line and in the di-
rection of the force (Fig. 12.1a). By determining the position of the
particle at various instants, we find that its acceleration has a constant
magnitude a1. If the experiment is repeated with forces F2, F3, . . . ,
of different magnitude or direction (Fig. 12.1b and c), we find each
time that the particle moves in the direction of the force acting on it
and that the magnitudes a1, a2, a3, . . . , of the accelerations are pro-
portional to the magnitudes F1, F2, F3, . . . , of the corresponding
forces:

� � � p � constant

The constant value obtained for the ratio of the magnitudes of
the forces and accelerations is a characteristic of the particle under
consideration; it is called the mass of the particle and is denoted by
m. When a particle of mass m is acted upon by a force F, the force
F and the acceleration a of the particle must therefore satisfy the 
relation

F � ma (12.1)

This relation provides a complete formulation of Newton’s second law;
it expresses not only that the magnitudes of F and a are proportional
but also (since m is a positive scalar) that the vectors F and a have
the same direction (Fig. 12.2). We should note that Eq. (12.1) still
holds when F is not constant but varies with time in magnitude or di-
rection. The magnitudes of F and a remain proportional, and the two
vectors have the same direction at any given instant. However, they
will not, in general, be tangent to the path of the particle.

When a particle is subjected simultaneously to several forces, 
Eq. (12.1) should be replaced by

�F � ma (12.2)

where �F represents the sum, or resultant, of all the forces acting on
the particle.

It should be noted that the system of axes with respect to which
the acceleration a is determined is not arbitrary. These axes must have
a constant orientation with respect to the stars, and their origin must
either be attached to the sun† or move with a constant velocity with

F3�
a3

F2�
a2

F1�
a1
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Fig. 12.3

respect to the sun. Such a system of axes is called a newtonian frame
of reference.† A system of axes attached to the earth does not consti-
tute a newtonian frame of reference, since the earth rotates with
respect to the stars and is accelerated with respect to the sun. How-
ever, in most engineering applications, the acceleration a can be
determined with respect to axes attached to the earth and Eqs. (12.1)
and (12.2) used without any appreciable error. On the other hand,
these equations do not hold if a represents a relative acceleration
measured with respect to moving axes, such as axes attached to an ac-
celerated car or to a rotating piece of machinery.

We observe that if the resultant �F of the forces acting on the
particle is zero, it follows from Eq. (12.2) that the acceleration a of
the particle is also zero. If the particle is initially at rest (v0 � 0) with
respect to the newtonian frame of reference used, it will thus remain
at rest (v � 0). If originally moving with a velocity v0, the particle will
maintain a constant velocity v � v0; that is, it will move with the con-
stant speed v0 in a straight line. This, we recall, is the statement of
Newton’s first law (Sec. 2.10). Thus, Newton’s first law is a particular
case of Newton’s second law and can be omitted from the fundamental
principles of mechanics.

12.3. LINEAR MOMENTUM OF A PARTICLE. RATE OF
CHANGE OF LINEAR MOMENTUM

Replacing the acceleration a by the derivative dv�dt in Eq. (12.2), we
write

�F � m

or, since the mass m of the particle is constant,

�F � (mv) (12.3)

The vector mv is called the linear momentum, or simply the mo-
mentum, of the particle. It has the same direction as the velocity of
the particle, and its magnitude is equal to the product of the mass m
and the speed v of the particle (Fig. 12.3). Equation (12.3) expresses
that the resultant of the forces acting on the particle is equal to the
rate of change of the linear momentum of the particle. It is in this
form that the second law of motion was originally stated by Newton.
Denoting by L the linear momentum of the particle,

L � mv (12.4)

and by L̇ its derivative with respect to t, we can write Eq. (12.3) in
the alternative form

�F � L̇ (12.5)

d
�
dt

dv
�
dt

12-4 Kinetics of Particles: Newton’s Second Law

†Since stars are not actually fixed, a more rigorous definition of a newtonian frame of
reference (also called an inertial system) is one with respect to which Eq. (12.2) holds.

v

m
mv
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It should be noted that the mass m of the particle is assumed to
be constant in Eqs. (12.3) to (12.5). Equation (12.3) or (12.5) should
therefore not be used to solve problems involving the motion of bod-
ies, such as rockets, which gain or lose mass. Problems of that type
will be considered in Sec. 14.12.†

It follows from Eq. (12.3) that the rate of change of the linear
momentum mv is zero when �F � 0. Thus, if the resultant force act-
ing on a particle is zero, the linear momentum of the particle remains
constant, in both magnitude and direction. This is the principle of
conservation of linear momentum for a particle, which can be recog-
nized as an alternative statement of Newton’s first law (Sec. 2.10).

12.4. SYSTEMS OF UNITS

In using the fundamental equation F � ma, the units of force, mass,
length, and time cannot be chosen arbitrarily. If they are, the magni-
tude of the force F required to give an acceleration a to the mass m
will not be numerically equal to the product ma; it will be only pro-
portional to this product. Thus, we can choose three of the four units
arbitrarily but must choose the fourth unit so that the equation
F � ma is satisfied. The units are then said to form a system of con-
sistent kinetic units.

Two systems of consistent kinetic units are currently used by
American engineers, the International System of Units (SI units‡) and
the system of U.S. customary units. Both systems were discussed in
detail in Sec. 1.3 and are described only briefly in this section.

International System of Units (SI Units). In this system, the
base units are the units of length, mass, and time, and are called,
respectively, the meter (m), the kilogram (kg), and the second (s). All
three are arbitrarily defined (Sec. 1.3). The unit of force is a derived
unit. It is called the newton (N) and is defined as the force which
gives an acceleration of 1 m/s2 to a mass of 1 kg (Fig. 12.4). From Eq.
(12.1) we write

1 N � (1 kg)(1 m/s2) � 1 kg � m/s2

The SI units are said to form an absolute system of units. This means
that the three base units chosen are independent of the location where
measurements are made. The meter, the kilogram, and the second
may be used anywhere on the earth; they may even be used on an-
other planet. They will always have the same significance.

The weight W of a body, or force of gravity exerted on that body,
should, like any other force, be expressed in newtons. Since a body
subjected to its own weight acquires an acceleration equal to the ac-
celeration of gravity g, it follows from Newton’s second law that the
magnitude W of the weight of a body of mass m is

W � mg (12.6)

12-512.4. Systems of Units

†On the other hand, Eqs. (12.3) and (12.5) do hold in relativistic mechanics, where the
mass m of the particle is assumed to vary with the speed of the particle.

‡SI stands for Système International d’Unités (French).

a = 1 m/s2

m = 1 kg
F = 1 N

Fig 12.4
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Recalling that g � 9.81 m/s2, we find that the weight of a body of
mass 1 kg (Fig. 12.5) is

W � (1 kg)(9.81 m/s2) � 9.81 N

Multiples and submultiples of the units of length, mass, and force
are frequently used in engineering practice. They are, respectively,
the kilometer (km) and the millimeter (mm); the megagram† (Mg)
and the gram (g); and the kilonewton (kN). By definition,

1 km � 1000 m 1 mm � 0.001 m
1 Mg � 1000 kg 1 g � 0.001 kg

1 kN � 1000 N

The conversion of these units to meters, kilograms, and newtons, re-
spectively, can be effected simply by moving the decimal point three
places to the right or to the left.

Units other than the units of mass, length, and time can all be ex-
pressed in terms of these three base units. For example, the unit of
linear momentum can be obtained by recalling the definition of lin-
ear momentum and writing

mv � (kg)(m/s) � kg � m/s

U.S. Customary Units. Most practicing American engineers
still commonly use a system in which the base units are the units of
length, force, and time. These units are, respectively, the foot (ft), the
pound (lb), and the second (s). The second is the same as the corre-
sponding SI unit. The foot is defined as 0.3048 m. The pound is de-
fined as the weight of a platinum standard, called the standard pound,
which is kept at the National Institute of Standards and Technology
outside Washington and the mass of which is 0.453 592 43 kg. Since
the weight of a body depends upon the gravitational attraction of the
earth, which varies with location, it is specified that the standard
pound should be placed at sea level and at a latitude of 45° to prop-
erly define a force of 1 lb. Clearly, the U.S. customary units do not
form an absolute system of units. Because of their dependence upon
the gravitational attraction of the earth, they are said to form a grav-
itational system of units.

While the standard pound also serves as the unit of mass in com-
mercial transactions in the United States, it cannot be so used in en-
gineering computations since such a unit would not be consistent with
the base units defined in the preceding paragraph. Indeed, when acted
upon by a force of 1 lb, that is, when subjected to its own weight, the
standard pound receives the acceleration of gravity, g � 32.2 ft/s2

(Fig. 12.6), and not the unit acceleration required by Eq. (12.1). The
unit of mass consistent with the foot, the pound, and the second is
the mass which receives an acceleration of 1 ft/s2 when a force of 1 lb
is applied to it (Fig. 12.7). This unit, sometimes called a slug, can be
derived from the equation F � ma after substituting 1 lb and 1 ft/s2

for F and a, respectively. We write

F � ma 1 lb � (1 slug)(1 ft/s2)

Fig 12.5

Fig 12.6

Fig 12.7

12-6 Kinetics of Particles: Newton’s Second Law

†Also known as a metric ton.

a = 9.81 m/s2

m = 1 kg

W = 9.81 N

a = 32.2 ft/s2

m = 1 lb

F = 1 lb

a = 1 ft/s2

m = 1 slug
(= 1 lb⋅s2/ft)

F = 1 lb
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and obtain

1 slug � � 1 lb � s2/ft

Comparing Figs. 12.6 and 12.7, we conclude that the slug is a mass
32.2 times larger than the mass of the standard pound.

The fact that bodies are characterized in the U.S. customary sys-
tem of units by their weight in pounds rather than by their mass in
slugs was a convenience in the study of statics, where we were deal-
ing for the most part with weights and other forces and only seldom
with masses. However, in the study of kinetics, which involves forces,
masses, and accelerations, it will be repeatedly necessary to express
in slugs the mass m of a body, the weight W of which has been given
in pounds. Recalling Eq. (12.6), we will write

m � (12.7)

where g is the acceleration of gravity (g � 32.2 ft/s2).
Units other than the units of force, length, and time can all be

expressed in terms of these three base units. For example, the unit
of linear momentum can be obtained by using the definition of lin-
ear momentum to write

mv � (lb � s2/ft)(ft/s) � lb � s

Conversion from One System of Units to Another. The con-
version from U.S. customary units to SI units, and vice versa, was dis-
cussed in Sec. 1.4. You will recall that the conversion factors obtained
for the units of length, force, and mass are, respectively,

Length: 1 ft � 0.3048 m
Force: 1 lb � 4.448 N
Mass: 1 slug � 1 lb � s2/ft � 14.59 kg

Although it cannot be used as a consistent unit of mass, the mass of
the standard pound is, by definition,

1 pound-mass � 0.4536 kg

This constant can be used to determine the mass in SI units (kilo-
grams) of a body which has been characterized by its weight in U.S.
customary units (pounds).

12.5. EQUATIONS OF MOTION

Consider a particle of mass m acted upon by several forces. We recall
from Sec. 12.2 that Newton’s second law can be expressed by the
equation

�F � ma (12.2)

which relates the forces acting on the particle and the vector ma
(Fig. 12.8). In order to solve problems involving the motion of a par-
ticle, however, it will be found more convenient to replace Eq. (12.2)
by equivalent equations involving scalar quantities.

W
�
g

1 lb
�
1 ft/s2

12-712.5. Equations of Motion

= 
m m

ma

F1

F2

Fig. 12.8
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Fig. 12.9

Rectangular Components. Resolving each force F and the
acceleration a into rectangular components, we write

�(Fxi � Fy j � Fzk) � m(axi � ay j � azk)

from which it follows that

�Fx � max �Fy � may �Fz � maz (12.8)

Recalling from Sec. 11.11 that the components of the acceleration are
equal to the second derivatives of the coordinates of the particle, we
have

�Fx � mẍ �Fy � mÿ �Fz � mz̈ (12.8�)

Consider, as an example, the motion of a projectile. If the resis-
tance of the air is neglected, the only force acting on the projectile
after it has been fired is its weight W � �Wj. The equations defin-
ing the motion of the projectile are therefore

mẍ � 0 mÿ � �W mz̈ � 0

and the components of the acceleration of the projectile are

ẍ � 0 ÿ � � � �g z̈ � 0

where g is 9.81 m/s2 or 32.2 ft/s2. The equations obtained can be
integrated independently, as shown in Sec. 11.11, to obtain the velocity
and displacement of the projectile at any instant.

When a problem involves two or more bodies, equations of motion
should be written for each of the bodies (see Sample Probs. 12.3 and
12.4). You will recall from Sec. 12.2 that all accelerations should be
measured with respect to a newtonian frame of reference. In most
engineering applications, accelerations can be determined with
respect to axes attached to the earth, but relative accelerations mea-
sured with respect to moving axes, such as axes attached to an accel-
erated body, cannot be substituted for a in the equations of motion.

Tangential and Normal Components. Resolving the forces
and the acceleration of the particle into components along the tan-
gent to the path (in the direction of motion) and the normal (toward

W
�
m

12-8 Kinetics of Particles: Newton’s Second Law

the inside of the path) (Fig. 12.9), and substituting into Eq. (12.2),
we obtain the two scalar equations

�Ft � mat �Fn � man (12.9)

Substituting for at and an from Eqs. (11.40), we have

�Ft � m �Fn � m (12.9�)

The equations obtained may be solved for two unknowns.

v2

�
�

dv
�
dt

=
man

ma t

n

m

t

n

m

t
ΣFn

ΣFt

Photo 12.1 As it travels on the curved portion
of a track, the bobsled is subjected to a normal
component of acceleration directed toward the
center of curvature of its path.
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12.6. DYNAMIC EQUILIBRIUM

Returning to Eq. (12.2) and transposing the right-hand member, we
write Newton’s second law in the alternative form

�F � ma � 0 (12.10)

which expresses that if we add the vector �ma to the forces acting
on the particle, we obtain a system of vectors equivalent to zero
(Fig. 12.10). The vector �ma, of magnitude ma and of direction op-
posite to that of the acceleration, is called an inertia vector. The par-
ticle may thus be considered to be in equilibrium under the given
forces and the inertia vector. The particle is said to be in dynamic
equilibrium, and the problem under consideration can be solved by
the methods developed earlier in statics.

In the case of coplanar forces, all the vectors shown in Fig. 12.10,
including the inertia vector, can be drawn tip-to-tail to form a 
closed-vector polygon. Or the sums of the components of all the vec-
tors in Fig. 12.10, again including the inertia vector, can be equated
to zero. Using rectangular components, we therefore write

�Fx � 0 �Fy � 0 including inertia vector (12.11)

When tangential and normal components are used, it is more con-
venient to represent the inertia vector by its two components �mat

and �man in the sketch itself (Fig. 12.11). The tangential component
of the inertia vector provides a measure of the resistance the particle
offers to a change in speed, while its normal component (also called
centrifugal force) represents the tendency of the particle to leave its
curved path. We should note that either of these two components may
be zero under special conditions: (1) if the particle starts from rest,
its initial velocity is zero and the normal component of the inertia vec-
tor is zero at t � 0; (2) if the particle moves at constant speed along
its path, the tangential component of the inertia vector is zero and
only its normal component needs to be considered.

Because they measure the resistance that particles offer when we
try to set them in motion or when we try to change the conditions of
their motion, inertia vectors are often called inertia forces. The iner-
tia forces, however, are not forces like the forces found in statics,
which are either contact forces or gravitational forces (weights). Many
people, therefore, object to the use of the word “force’’ when refer-
ring to the vector �ma or even avoid altogether the concept of 
dynamic equilibrium. Others point out that inertia forces and actual
forces, such as gravitational forces, affect our senses in the same way
and cannot be distinguished by physical measurements. A man riding
in an elevator which is accelerated upward will have the feeling that
his weight has suddenly increased; and no measurement made within
the elevator could establish whether the elevator is truly accelerated
or whether the force of attraction exerted by the earth has suddenly
increased.

Sample problems have been solved in this text by the direct ap-
plication of Newton’s second law, as illustrated in Figs. 12.8 and 12.9,
rather than by the method of dynamic equilibrium.

Fig. 12.10

12-912.6. Dynamic Equilibrium
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–ma
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t

Fig. 12.11
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SAMPLE PROBLEM 12.1

A 200-lb block rests on a horizontal plane. Find the magnitude of the force
P required to give the block an acceleration of 10 ft/s2 to the right. The co-
efficient of kinetic friction between the block and the plane is �k � 0.25.

SOLUTION

The mass of the block is

m � � � 6.21 lb � s2/ft

We note that F � �kN � 0.25N and that a � 10 ft/s2. Expressing that the
forces acting on the block are equivalent to the vector ma, we write

y� �Fx � ma: P cos 30° � 0.25N � (6.21 lb � s2/ft)(10 ft/s2)
P cos 30° � 0.25N � 62.1 lb (1)

�x�Fy � 0: N � P sin 30° � 200 lb � 0 (2)

Solving (2) for N and substituting the result into (1), we obtain

N � P sin 30° � 200 lb
P cos 30° � 0.25(P sin 30° � 200 lb) � 62.1 lb P � 151 lb 

200 lb
�
32.2 ft/s2

W
�
g

SAMPLE PROBLEM 12.2

An 80-kg block rests on a horizontal plane. Find the magnitude of the force
P required to give the block an acceleration of 2.5 m/s2 to the right. The co-
efficient of kinetic friction between the block and the plane is �k � 0.25.

SOLUTION

The weight of the block is

W � mg � (80 kg)(9.81 m/s2) � 785 N

We note that F � �kN � 0.25N and that a � 2.5 m/s2. Expressing that the
forces acting on the block are equivalent to the vector ma, we write

y� �Fx � ma: P cos 30° � 0.25N � (80 kg)(2.5 m/s2)
P cos 30° � 0.25N � 200 N (1)

�x�Fy � 0: N � P sin 30° � 785 N � 0 (2)

Solving (2) for N and substituting the result into (1), we obtain

N � P sin 30° � 785 N
P cos 30° � 0.25(P sin 30° � 785 N) � 200 N P � 535 N 

P

30°

200 lb

=

P
30°

N
F

W = 200 lb

ma

m = 6.21 lb⋅s2/ft

P

30°

80 kg

=

P

30°

N
F

W = 785 N

ma

m = 80 kg 

12-10
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SAMPLE PROBLEM 12.3

The two blocks shown start from rest. The horizontal plane and the pulley
are frictionless, and the pulley is assumed to be of negligible mass. Deter-
mine the acceleration of each block and the tension in each cord.

SOLUTION

Kinematics. We note that if block A moves through xA to the right,
block B moves down through

xB � �
1
2�xA

Differentiating twice with respect to t, we have

aB � �
1
2�aA (1)

Kinetics. We apply Newton’s second law successively to block A, block
B, and pulley C.

Block A. Denoting by T1 the tension in cord ACD, we write

y� �Fx � mAaA: T1 � 100aA (2)

Block B. Observing that the weight of block B is

WB � mBg � (300 kg)(9.81 m/s2) � 2940 N

and denoting by T2 the tension in cord BC, we write

�w�Fy � mBaB: 2940 � T2 � 300aB

or, substituting for aB from (1),

2940 � T2 � 300(�
1
2�aA)

T2 � 2940 � 150aA (3)

Pulley C. Since mC is assumed to be zero, we have

�w�Fy � mCaC � 0: T2 � 2T1 � 0 (4)

Substituting for T1 and T2 from (2) and (3), respectively, into (4) we write

2940 � 150aA � 2(100aA) � 0
2940 � 350aA � 0 aA � 8.40 m/s2

Substituting the value obtained for aA into (1) and (2), we have

aB � �
1
2�aA � �

1
2�(8.40 m/s2) aB � 4.20 m/s2

T1 � 100aA � (100 kg)(8.40 m/s2) T1 � 840 N 

Recalling (4), we write

T2 � 2T1 T2 � 2(840 N) T2 � 1680 N 

We note that the value obtained for T2 is not equal to the weight of block B.

12-11

100 kg

300 kg

A

B

D

C

=

=

=

B

A

WA

WB = 2940 N

T1

T1 T1

T2

T2

N

 0

mAaA

mBaB

mA = 100 kg

mB = 300 kg

C
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SAMPLE PROBLEM 12.4

The 12-lb block B starts from rest and slides on the 30-lb wedge A, which is
supported by a horizontal surface. Neglecting friction, determine (a) the ac-
celeration of the wedge, (b) the acceleration of the block relative to the wedge.

SOLUTION

Kinematics. We first examine the acceleration of the wedge and the
acceleration of the block.

Wedge A. Since the wedge is constrained to move on the horizontal
surface, its acceleration aA is horizontal. We will assume that it is directed to
the right.

Block B. The acceleration aB of block B can be expressed as the sum
of the acceleration of A and the acceleration of B relative to A. We have

aB � aA � aB�A

where aB�A is directed along the inclined surface of the wedge.
Kinetics. We draw the free-body diagrams of the wedge and of the

block and apply Newton’s second law.
Wedge A. We denote the forces exerted by the block and the hori-

zontal surface on wedge A by N1 and N2, respectively.

y� �Fx � mAaA: N1 sin 30° � mAaA

0.5N1 � (WA�g)aA (1)

Block B. Using the coordinate axes shown and resolving aB into its
components aA and aB�A, we write

�p�Fx � mBax: �WB sin 30° � mBaA cos 30° � mBaB�A
�WB sin 30° � (WB�g)(aA cos 30° � aB�A)

aB�A � aA cos 30° � g sin 30° (2)
�r�Fy � mBay: N1 � WB cos 30° � �mBaA sin 30°

N1 � WB cos 30° � �(WB�g)aA sin 30° (3)

a. Acceleration of Wedge A. Substituting for N1 from Eq. (1) into
Eq. (3), we have

2(WA�g)aA � WB cos 30° � �(WB�g)aA sin 30°

Solving for aA and substituting the numerical data, we write

aA � g � (32.2 ft/s2)
(12 lb) cos 30°

���
2(30 lb) � (12 lb) sin 30°

WB cos 30°
���
2WA � WB sin 30°

30°
A

B

=

=

30°

30°

30°

30°

A

B

WA

WB

N1

N1

N2

mAaA

aA

aA

aB/A

mBaA

mBaB/A

y y

x x

aA � �5.07 ft/s2 aA � 5.07 ft/s2y

b. Acceleration of Block B Relative to A. Substituting the value
obtained for aA into Eq. (2), we have

aB�A � (5.07 ft/s2) cos 30° � (32.2 ft/s2) sin 30°
aB�A � �20.5 ft/s2 aB�A � 20.5 ft/s2 d30°
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SAMPLE PROBLEM 12.5

The bob of a 2-m pendulum describes an arc of circle in a vertical plane. If
the tension in the cord is 2.5 times the weight of the bob for the position
shown, find the velocity and the acceleration of the bob in that position.

SOLUTION

The weight of the bob is W � mg; the tension in the cord is thus 2.5 mg.
Recalling that an is directed toward O and assuming at as shown, we apply
Newton’s second law and obtain

�o�Ft � mat: mg sin 30° � mat

at � g sin 30° � �4.90 m/s2 at � 4.90 m/s2o

�r�Fn � man: 2.5 mg � mg cos 30° � man

an � 1.634 g � �16.03 m/s2 an � 16.03 m/s2r

Since an � v2��, we have v2 � �an � (2 m)(16.03 m/s2)

v � 	5.66 m/s v � 5.66 m/s (up or down)

SAMPLE PROBLEM 12.6

Determine the rated speed of a highway curve of radius � � 400 ft banked
through an angle � � 18°. The rated speed of a banked highway curve is the
speed at which a car should travel if no lateral friction force is to be exerted
on its wheels.

SOLUTION

The car travels in a horizontal circular path of radius �. The normal compo-
nent an of the acceleration is directed toward the center of the path; its mag-
nitude is an � v2��, where v is the speed of the car in ft/s. The mass m of
the car is W�g, where W is the weight of the car. Since no lateral friction
force is to be exerted on the car, the reaction R of the road is shown per-
pendicular to the roadway. Applying Newton’s second law, we write

�x�Fy � 0: R cos � � W � 0 R � �
co

W
s �
� (1)

z� �Fn � man: R sin � � �
W
g
�an (2)

Substituting for R from (1) into (2), and recalling that an � v2��,

�
co

W
s �
�sin � � �

W
g
� �

v
�

2

� v2 � g� tan �

Substituting � � 400 ft and � � 18° into this equation, we obtain

v2 � (32.2 ft/s2)(400 ft) tan 18°
v � 64.7 ft/s v � 44.1 mi/h

G

30°
2 m

O

m

=
T = 2.5 mg

W = mg

man

n

t

mat

30°

n

y

W

R

man

 = 18° 90°

 = 18°

 = 18°

=

q

q

q
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S O LV I N G  P R O B L E M S  
O N  YO U R  O W N

In the problems for this lesson, you will apply Newton’s second law of motion,
�F � ma, to relate the forces acting on a particle to the motion of the particle.

1. Writing the equations of motion. When applying Newton’s second law to
the types of motion discussed in this lesson, you will find it most convenient to ex-
press the vectors F and a in terms of either their rectangular components or their
tangential and normal components.

a. When using rectangular components, and recalling from Sec. 11.11 the
expressions found for ax, ay, and az, you will write

�Fx � mẍ �Fy � mÿ �Fz � mz̈

b. When using tangential and normal components, and recalling from Sec.
11.13 the expressions found for at and an, you will write

�Ft � m�
d
d
v
t
� �Fn � m�

v
�

2

�

2. Drawing a free-body diagram showing the applied forces and an equiva-
lent diagram showing the vector ma or its components will provide you with a pic-
torial representation of Newton’s second law [Sample Probs. 12.1 through 12.6].
These diagrams will be of great help to you when writing the equations of motion.
Note that when a problem involves two or more bodies, it is usually best to con-
sider each body separately.

3. Applying Newton’s second law. As we observed in Sec. 12.2, the accelera-
tion used in the equation �F � ma should always be the absolute acceleration of
the particle (that is, it should be measured with respect to a newtonian frame of
reference). Also, if the sense of the acceleration a is unknown or is not easily de-
duced, assume an arbitrary sense for a (usually the positive direction of a coordi-
nate axis) and then let the solution provide the correct sense. Finally, note how the
solutions of Sample Probs. 12.3 and 12.4 were divided into a kinematics portion
and a kinetics portion, and how in Sample Prob. 12.4 we used two systems of co-
ordinate axes to simplify the equations of motion.

4. When a problem involves dry friction, be sure to review the relevant sec-
tions of Statics [Secs. 8.1 to 8.3] before attempting to solve that problem. In par-
ticular, you should know when each of the equations F � �sN and F � �kN may
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be used. You should also recognize that if the motion of a system is not specified,
it is necessary first to assume a possible motion and then to check the validity of
that assumption.

5. Solving problems involving relative motion. When a body B moves with
respect to a body A, as in Sample Prob. 12.4, it is often convenient to express the
acceleration of B as

aB � aA � aB�A

where aB�A is the acceleration of B relative to A, that is, the acceleration of B as ob-
served from a frame of reference attached to A and in translation. If B is observed
to move in a straight line, aB�A will be directed along that line. On the other hand,
if B is observed to move along a circular path, the relative acceleration aB�A should
be resolved into components tangential and normal to that path.

6. Finally, always consider the implications of any assumption you make.
Thus, in a problem involving two cords, if you assume that the tension in one of
the cords is equal to its maximum allowable value, check whether any requirements
set for the other cord will then be satisfied. For instance, will the tension T in that
cord satisfy the relation 0 
 T 
 Tmax? That is, will the cord remain taut and will
its tension be less than its maximum allowable value?

12-15
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Problems

12.1 The value of the acceleration of gravity at any latitude � is given
by g � 9.7087(1 � 0.0053 sin2 �) m/s2, where the effect of the rotation of
the earth as well as the fact that the earth is not spherical have been taken
into account. Knowing that the mass of a gold bar has been officially desig-
nated as 2 kg, determine to four significant figures its mass in kilograms and
its weight in newtons at a latitude of (a) 0°, (b) 45°, (c) 60°.

12.2 The acceleration due to gravity on Mars is 3.75 m/s2. Knowing
that the mass of a silver bar has been officially designated as 20 kg, deter-
mine, on Mars, its weight in newtons.

12.3 An artificial satellite is in a circular orbit 900 mi above the sur-
face of Venus. The weight of the satellite was determined to be 400 lb be-
fore it was launched from earth. Determine the magnitude of the linear mo-
mentum of the satellite knowing that its orbital speed is 14.5 � 103 mi/h.

12.4 A spring scale A and a lever scale B having equal lever arms are
fastened to the roof on an elevator, and identical packages are attached to
the scales as shown. Knowing that when the elevator moves downward with
an acceleration of 2 ft/s2 the spring scale indicates a load of 7 lb, determine
(a) the weight of the packages, (b) the load indicated by the spring scale and
the mass needed to balance the lever scale when the elevator moves upward
with an acceleration of 2 ft/s2.

12.5 In the braking test of a sports car its velocity is reduced from
110 km/h to zero in a distance of 51 m with slipping impending. Knowing
that the coefficient of kinetic friction is 80 percent of the coefficient of static
friction, determine (a) the coefficient of static friction, (b) the stopping dis-
tance for the same initial velocity if the car skids. Ignore air resistance and
rolling resistance.

12.6 A 0.1-kg model rocket is launched vertically from rest at time
t � 0 with a constant thrust of 10 N for one second and no thrust for t � 1 s.
Neglecting air resistance and the decrease in mass of the rocket, determine
(a) the maximum height h reached by the rocket, (b) the time required to
reach this maximum height.

12.7 Determine the maximum theoretical speed that an automobile
starting from rest can reach after traveling 1320 ft. Assume that the coeffi-
cient of static friction is 0.80 between the tires and the pavement and that
(a) the automobile has front-wheel drive and the front wheels support 65 per-
cent of the automobile’s weight, (b) the automobile has rear-wheel drive and
the rear wheels support 42 percent of the automobile’s weight.

12.8 A hockey player hits a puck so that it comes to rest 4 s after slid-
ing 60 ft on the ice. Determine (a) the initial velocity of the puck, (b) the
coefficient of friction between the puck and the ice.

A

B

h

Fig. P12.4

Fig. P12.6
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12.9 A 40-kg package is at rest on an incline when a force P is applied
to it. Determine the magnitude of P if 4 s is required for the package to
travel 10 m up the incline. The static and kinetic coefficients of friction be-
tween the package and the incline are 0.30 and 0.25, respectively.

12.10 If an automobile’s braking distance from 100 km/h is 60 m on
level pavement, determine the automobile’s braking distance from 100 km/h
when it is (a) going up a 6° incline, (b) going down a 2-percent incline.

12.11 A tractor-trailer is traveling at 90 km/h when the driver applies
his brakes. Knowing that the braking forces of the tractor and the trailer are
16 kN and 60 kN, respectively, determine (a) the distance traveled by the
tractor-trailer before it comes to a stop, (b) the horizontal component of the
force in the hitch between the tractor and the trailer while they are slowing
down.

7900 kg
6800 kg

A

25 lb

30°

20 lb
B

30°

20°

P

12.14 The two blocks shown are originally at rest. Neglecting the
masses of the pulleys and the effect of friction in the pulleys and assuming
that the coefficients of friction between both blocks and the incline are �s �
0.25 and �k � 0.20, determine (a) the acceleration of each block, (b) the ten-
sion in the cable.

12.12 Solve Prob. 12.11 assuming that a second trailer and dolly, with
a combined mass of 11 300 kg, are coupled to the rear of the tractor-trailer.
The braking force of the second trailer is 57 kN.

12.13 The two blocks shown are originally at rest. Neglecting the
masses of the pulleys and the effect of friction in the pulleys and between
the blocks and the incline, determine (a) the acceleration of each block, (b)
the tension in the cable.

Fig. P12.9

Fig. P12.11 and P12.12

Fig. P12.13 and P12.14

12-17Problems

bee0491x_ch12.qxd  1/16/03  11:14 AM  Page 12-17 mac76 mac76:385_reb:



12-18 Kinetics of Particles: Newton’s Second Law 12.15 Block A weighs 80 lb, and block B weighs 16 lb. The coefficients
of friction between all surfaces of contact are �s � 0.20 and �k � 0.15. Know-
ing that P � 0, determine (a) the acceleration of block B, (b) the tension in
the cord.

12.16 Block A weighs 80 lb, and block B weighs 16 lb. The coefficients
of friction between all surfaces of contact are �s � 0.20 and �k � 0.15. Know-
ing that P � 10 lby, determine (a) the acceleration of block B, (b) the ten-
sion in the cord.

12.17 Boxes A and B are at rest on a conveyor belt that is initially at
rest. The belt is suddenly started in an upward direction so that slipping oc-
curs between the belt and the boxes. Knowing that the coefficients of kinetic
friction between the belt and the boxes are (�k)A � 0.30 and (�k)B � 0.32,
determine the initial acceleration of each box.

B

A

P

25°

12.18 The system shown is initially at rest. Neglecting the masses of
the pulleys and the effect of friction in the pulleys, determine (a) the accel-
eration of each block, (b) the tension in each cable.

12.19 Each of the systems shown is initially at rest. Neglecting axle
friction and the masses of the pulleys, determine for each system (a) the ac-
celeration of block A, (b) the velocity of block A after it has moved through
5 ft, (c) the time required for block A to reach a velocity of 10 ft/s.

A B

45 kg

36 kg

15°

10 kg 10 kgA
B

30 kg C

AA A
50 lb

100 lb100 lb

50 lb 1050 lb

1100 lb

(1) (2) (3)

12.20 The flat-bed trailer carries two 1500-kg beams with the upper
beam secured by a cable. The coefficients of static friction between the two
beams and between the lower beam and the bed of the trailer are 0.25 and
0.30, respectively. Knowing that the load does not shift, determine (a) the
maximum acceleration of the trailer and the corresponding tension in the ca-
ble, (b) the maximum deceleration of the trailer.

Fig. P12.17

Fig. P12.15 and P12.16

Fig. P12.18

Fig. P12.20

Fig. P12.19
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12.23 To unload a bound stack of plywood from a truck, the driver
first tilts the bed of the truck and then accelerates from rest. Knowing that
the coefficients of friction between the bottom sheet of plywood and the bed
are �s � 0.40 and �k � 0.30, determine (a) the smallest acceleration of the
truck which will cause the stack of plywood to slide, (b) the acceleration of
the truck which causes corner A of the stack of plywood to reach the end of
the bed in 0.4 s.

12.24 The propellers of a ship of mass m can produce a propulsive
force F0; they produce a force of the same magnitude but opposite direction
when the engines are reversed. Knowing that the ship was proceeding for-
ward at its maximum speed v0 when the engines were put into reverse, de-
termine the distance the ship travels before coming to a stop. Assume that
the frictional resistance of the water varies directly with the square of the 
velocity.

12.21 A package is at rest on a conveyor belt which is initially at rest.
The belt is started and moves to the right for 1.5 s with a constant acceler-
ation of 3.2 m/s2. The belt then moves with a constant deceleration a2 and
comes to a stop after a total displacement of 4.6 m. Knowing that the coef-
ficients of friction between the package and the belt are �s � 0.35 and
�k � 0.25, determine (a) the deceleration a2 of the belt, (b) the displace-
ment of the package relative to the belt as the belt comes to a stop.

12.22 To transport a series of bundles of shingles A to a roof, a con-
tractor uses a motor-driven lift consisting of a horizontal platform BC which
rides on rails attached to the sides of a ladder. The lift starts from rest and
initially moves with a constant acceleration a1 as shown. The lift then decel-
erates at a constant rate a2 and comes to rest at D, near the top of the lad-
der. Knowing that the coefficient of static friction between the bundle of
shingles and the horizontal platform is 0.30, determine the largest allowable
acceleration a1 and the largest allowable deceleration a2 if the bundle is not
to slide on the platform.

A

B C

5 m

65°

0.9 m

a1

D

1 m 20°
A

Fig. P12.21

Fig. P12.22
Fig. P12.23
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12-20 Kinetics of Particles: Newton’s Second Law 12.25 A constant force P is applied to a piston and rod of total mass
m to make them move in a cylinder filled with oil. As the piston moves, the
oil is forced through orifices in the piston and exerts on the piston a force of
magnitude kv in a direction opposite to the motion of the piston. Knowing
that the piston starts form rest at t � 0 and x � 0, show that the equation re-
lating x, v, and t, where x is the distance traveled by the piston and v is the
speed of the piston, is linear in each of the variables.

12.26 Determine the maximum theoretical speed that a 1225 kg au-
tomobile starting from rest can reach after traveling 400 m if air resistance
is considered. Assume that the coefficient of static friction between the tires
and the pavement is 0.70, that the automobile has front-wheel drive, that the
front wheels support 62 percent of the automobile’s weight, and that the aero-
dynamic drag D has a magnitude D � 0.575v2, where D and v are expressed
in newtons and m/s, respectively.

12.27 A spring AB of constant k is attached to a support A and to a
collar of mass m. The unstretched length of the spring is l. Knowing that the
collar is released from rest at x � x0 and neglecting friction between the col-
lar and the horizontal rod, determine the magnitude of the velocity of the
collar as it passes through point C.

12.28 The masses of blocks A, B, and C are mA � mC � 10 kg, and
mB � 5 kg. Knowing that P � 200 N and neglecting the masses of the pul-
leys and the effect of friction, determine (a) the acceleration of each block,
(b) the tension in the cable.

Problems

P

A

BC
l

x0

C
P

B

A

A

B

30 lb

55 lb

25°

50 lb

A

B

30°

12.29 The coefficients of friction between the three blocks and the
horizontal surfaces are �s � 0.25 and �k � 0.20. The masses of the blocks
are mA � mC � 10 kg, and mB � 5 kg. Knowing that the blocks are initially
at rest and that C moves to the right through 0.8 m in 0.4 s, determine (a)
the acceleration of each block, (b) the tension in the cable, (c) the force P.
Neglect axle friction and the masses of the pulleys.

12.30 The 30-lb block B is supported by the 55-lb block A and is at-
tached to a cord to which a 50-lb horizontal force is applied as shown. Ne-
glecting friction, determine (a) the acceleration of block A, (b) the acceler-
ation of block B relative to A.

12.31 The coefficients of friction between block B and block A are
�s � 0.12 and �k � 0.10 and the coefficients of friction between block A and
the incline are �s � 0.24 and �k � 0.20. Block A weighs 20 lb and block B
weighs 10 lb. Knowing that the system is released from rest in the position
shown, determine (a) the acceleration of A, (b) the velocity of B relative to
A at t � 0.5 s.

Fig. P12.28 and P12.29

Fig. P12.25

Fig. P12.27

Fig. P12.30

Fig. P12.31
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20°

A
B

A

B

C D

T

25°

B

A

C

d

1

2q

q

A

C

B

q
r

12.32 A 25-kg block A rests on an inclined surface, and a 15-kg coun-
terweight B is attached to a cable as shown. Neglecting friction, determine
the acceleration of A and the tension in the cable immediately after the sys-
tem is released from rest.

12.33 A 250-kg crate B is suspended from a cable attached to a 20-kg
trolley A which rides on an inclined I-beam as shown. Knowing that at the
instant shown the trolley has an acceleration of 0.4 m/s2 up to the right, de-
termine (a) the acceleration of B relative to A, (b) the tension in cable CD.

12.34 A single wire ACB of length 2 m passes through a ring at C that
is attached to a sphere which revolves at a constant speed v in the horizon-
tal circle shown. Knowing that �1 � 60° and �2 � 30° and that the tension is
the same in both portions of the wire, determine the speed v.

12.35 A single wire ACB passes through a ring at C that is attached
to a 5-kg sphere which revolves at a constant speed v in the horizontal cir-
cle shown. Knowing that �1 � 50° and d � 0.8 m and that the tension in both
portions of the wire is 34 N, determine (a) the angle �2, (b) the speed v.

12.36 Two wires AC and BC are tied to a 15-lb sphere which revolves
at a constant speed v in the horizontal circle shown. Knowing that �1 � 50°
and �2 � 25° and that d � 4 ft, determine the range of values of v for which
both wires are taut.

12.37 During a hammer thrower’s practice swings, the 16-lb head A
of the hammer revolves at a constant speed v in a horizontal circle as shown.
If � � 3 ft and � � 60°, determine (a) the tension in wire BC, (b) the speed
of the hammer’s head.

Fig. P12.32

Fig. P12.33

Fig. P12.34, P12.35, and P12.36

Fig. P12.37
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12-22 Kinetics of Particles: Newton’s Second Law 12.38 A 2-lb sphere is at rest relative to a parabolic dish which rotates
at a constant rate about a vertical axis. Neglecting friction and knowing that
r � 3 ft, determine (a) the velocity v of the sphere, (b) the magnitude of the
normal force exerted by the sphere on the inclined surface of the dish.

12.39 A 2-lb collar C slides without friction along the rod OA and is
attached to rod BC by a frictionless pin. The rods rotate in the horizontal
plane. At the instant shown BC is rotating counterclockwise and the speed
of C is 3 ft/s, increasing at a rate of 4 ft/s2. Determine at this instant, (a) the
tension in rod BC, (b) the force exerted by the collar on rod OA.

3 ft

r

y
y = r2

6

2 ft

A

C

1 ft 30°

O

B

*12.40 The 0.5-kg flyballs of a centrifugal governor revolve at a con-
stant speed v in the horizontal circle of 150-mm radius shown. Neglecting
the mass of links AB, BC, AD, and DE and requiring that the links support
only tensile forces, determine the range of the allowable values of v so that
the magnitudes of the forces in the links do not exceed 75 N.

A

B

C

D

E

20°

0.5 kg 0.5 kg

30°

B

A

C

15°

40°
0.9 m

*12.41 As part of an outdoor display, a 5-kg model C of the earth is 
attached to wires AC and BC and revolves at a constant speed v in the hor-
izontal circle shown. Determine the range of the allowable values of v if both
wires are to remain taut and if the tension in either of the wires is not to ex-
ceed 116 N.

Fig. P12.39

Fig. P12.38

Fig. P12.40

Fig. P12.41
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12-23Problems12.42 An airline pilot climbs to a new flight level along the path shown.
Knowing that the speed of the airplane decreases at a constant rate from
180 m/s at point A to 160 m/s at point C, determine the magnitude of the
abrupt change in the force exerted on a 90-kg passenger as the airplane passes
point B.

0.8 km

8°

r = 6 km

A B C

A

B

40°

A

BC

D

q

A

r

12.43 An airline pilot climbs to a new flight level along the path shown.
The motion of the airplane between A and B is defined by the relation
s � t(180 � t), where s is the arc length in meters, t is the time in seconds,
and t � 0 when the airplane is at point A. Determine the force exerted by
his seat on a 75-kg passenger (a) just after the airplane passes point A, (b)
just before the airplane reaches point B.

12.44 A 60-lb child sits on a swing and is held in the position shown
by a second child. Neglecting the weight of the swing, determine the ten-
sion in rope AB (a) while the second child holds the swing with his arms out-
stretched horizontally, (b) immediately after the swing is released.

12.45 A 180-lb wrecking ball B is attached to a 40-ft-long steel cable
AB and swings in the vertical arc shown. Determine the tension in the cable
(a) at the top C of the swing, where � � 30°, (b) at the bottom D of the
swing, where the speed of B is 18.6 ft/s.

12.46 During a high-speed chase, an 1100-kg sports car traveling at a
speed of 160 km/h just loses contact with the road as it reaches the crest A
of a hill. (a) Determine the radius of curvature � of the vertical profile of the
road at A. (b) Using the value of � found in part a, determine the force ex-
erted on a 70-kg driver by the seat of his 1400-kg car as the car, traveling at
a constant speed of 80 km/h, passes through A.

Fig. P12.42 and P12.43

Fig. P12.44

Fig. P12.45

Fig. P12.46
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12-24 Kinetics of Particles: Newton’s Second Law 12.47 A 220-g block B fits inside a small cavity cut in arm OA, which
rotates in the vertical plane at a constant rate. When � � 180°, the spring is
stretched to its maximum length and the block exerts a force of 3.5 N on the
face of the cavity closest to A. Neglecting friction, determine the range of
values of � for which the block is not in contact with that face of the cavity.

A
B

O

v

q

2 ft

B O

A

C

1 ft

v0

A

B

C

3600 ft

12.48 A small 0.4-lb sphere B is given a downward velocity v0 and
swings freely in the vertical plane, first about O and then about the peg A
after the cord comes in contact with the peg. Determine the largest allow-
able velocity v0 if the tension in the cord is not to exceed 2.4 lb.

12.49 A 120-lb pilot flies a jet trainer in a half vertical loop of 3600-
ft radius so that the speed of the trainer decreases at a constant rate. Know-
ing that the pilot’s apparent weights at points A and C are 380 lb and 80 lb,
respectively, determine the force exerted on her by the seat of the trainer
when the trainer is at point B.

12.50 A car is traveling on a banked road at a constant speed v. De-
termine the range of values of v for which the car does not skid. Express your
answer in terms of the radius r of the curve, the banking angle �, and the
angle of static friction �s between the tires and the pavement.

12.51 A car traveling at a speed of 110 km/h approaches a curve of ra-
dius 50 m. Knowing that the coefficient of static friction between the tires
and the road is 0.65, determine by how much the driver must reduce his
speed to safely negotiate the curve if the banking angle is (a) � � 10°,
(b) � � �5°, because of the presence of a sinkhole under the roadbed.

Fig. P12.47

Fig. P12.48

Fig. P12.49
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12-25Problems12.52 Tilting trains such as the Acela, which runs from Washington to
New York to Boston, are designed to travel safely at high speeds on curved
sections of track which were built for slower, conventional trains. As it en-
ters a curve, each car is tilted by hydraulic actuators mounted on its trucks.
The tilting feature of the cars also increases passenger comfort by eliminat-
ing or greatly reducing the side force Fs (parallel to the floor of the car) to
which passengers feel subjected. For a train traveling at 125 mi/h on a curved
section of track banked at an angle � � 8° and with a rated speed of 75 mi/h,
determine (a) the magnitude of the side force felt by a passenger of weight
W in a standard car with no tilt (� � 0), (b) the required angle of tilt � if
the passenger is to feel no side force. (See Sample Problem 12.6 for the def-
inition or rated speed.)

�
q

f

B

0.3 m

O

q

A

y = r2

4

2 m

r

y

12.53 Tests carried out with the tilting trains described in Prob. 12.52
revealed that passengers feel queasy when they see through the car windows
that the train is rounding a curve at high speed, yet do not feel any side force.
Designers, therefore, prefer to reduce, but not eliminate that force. For the
train of Prob. 12.52, determine the required angle of tilt � if passengers are
to feel side forces equal to 12 percent of their weights.

12.54 A small block B fits inside a slot cut in arm OA which rotates
in a vertical plane at a constant rate. The block remains in contact with the
end of the slot closest to A and its speed is 1.4 m/s for 0 
 � 
 150°. Know-
ing that the block begins to slide when � � 150°, determine the coefficient
of static friction between the block and the slot.

12.55 A 3-kg block is at rest relative to a parabolic dish which rotates
at a constant rate about a vertical axis. Knowing that the coefficient of static
friction is 0.5 and that r � 2 m, determine the maximum allowable velocity
v of the block.

Fig. P12.52 and P12.53

Fig. P12.54

Fig. P12.55
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12-26 Kinetics of Particles: Newton’s Second Law 12.56 A small 12-oz collar D can slide on portion AB of a rod which
is bent as shown. Knowing that � � 35° and that the rod rotates about the
vertical AC at a constant rate of 6 rad/s, determine the value of r for which
the collar will not slide on the rod if the effect of friction between the rod
and the collar is neglected.

A

B

D

C

a

v

r

v

A B
2.5 m

A B
8 ft

12.57 A small 8-oz collar D can slide on portion AB of a rod which is
bent as shown. Knowing that the rod rotates about the vertical AC at a con-
stant rate and that � � 40° and r � 24 in., determine the range of values of
the speed v for which the collar will not slide on the rod if the coefficient of
static friction between the rod and the collar is 0.35. 

12.58 Four seconds after a polisher is started from rest, small tufts of
fleece from along the circumference of the 10-in.-diameter polishing pad are
observed to fly free of the pad. If the polisher is started so that the fleece
along the circumference undergoes a constant tangential acceleration of
12 ft/s2, determine (a) the speed v of a tuft as it leaves the pad, (b) the mag-
nitude of the force required to free the tuft if the average weight of a tuft is
60 � 10�6 oz.

12.59 A turntable A is built into a stage for use in a theatrical pro-
duction. It is observed during a rehearsal that a trunk B starts to slide on the
turntable 12 s after the turntable begins to rotate. Knowing that the trunk
undergoes a constant tangential acceleration of 0.75 ft/s2, determine the co-
efficient of static friction between the trunk and the turntable.

Fig. P12.56 and P12.57

Fig. P12.58

Fig. P12.59
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12.60 The parallel-link mechanism ABCD is used to transport a com-
ponent I between manufacturing processes at stations E, F, and G by picking
it up at a station when � � 0 and depositing it at the next station when � �
180°. Knowing that member BC remains horizontal throughout its motion and
that links AB and CD rotate at a constant rate in a vertical plane in such a way
that vB � 0.7 m/s, determine (a) the minimum value of the coefficient of static
friction between the component and BC if the component is not to slide on
BC while being transferred, (b) the values of � for which sliding is impending.

I

B
E F G

C

DA

0.2 m 0.4 m 0.2 m

0.2 m 0.2 m

0.4 m

q

vB

A

B

x

y

V
l

d

Anode

Cathode

Screen

d

L

12.61 Knowing that the coefficients of friction between the compo-
nent I and member BC of the mechanism of Prob. 12.60 are �s � 0.35 and
�k � 0.25, determine (a) the maximum allowable speed vB if the component
is not to slide on BC while being transferred, (b) the values of � for which
sliding is impending.

12.62 In the cathode-ray tube shown, electrons emitted by the cathode
and attracted by the anode pass through a small hole in the anode and then
travel in a straight line with a speed v0 until they strike the screen at A. How-
ever, if a difference of potential V is established between the two parallel plates,
the electrons will be subjected to a force F perpendicular to the plates while
they travel between the plates and will strike the screen at point B, which is at
a distance � from A. The magnitude of the force F is F � eV�d, where �e is
the charge of an electron and d is the distance between the plates. Neglecting
the effects of gravity, derive an expression for the deflection � in terms of V, v0,
the charge �e and the mass m of an electron, and the dimensions d, l, and L.

12.63 In Prob. 12.62, determine the smallest allowable value of the
ratio d�l in terms of e, m, v0, and V if at x � l the minimum permissible dis-
tance between the path of the electrons and the positive plate is 0.075d.

Fig. P12.60

Fig. P12.62 and P12.63

12-27Problems
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12-28 Kinetics of Particles: Newton’s Second Law

Fig. 12.12

12.7. ANGULAR MOMENTUM OF A PARTICLE. RATE OF
CHANGE OF ANGULAR MOMENTUM

Consider a particle P of mass m moving with respect to a newtonian
frame of reference Oxyz. As we saw in Sec. 12.3, the linear momen-
tum of the particle at a given instant is defined as the vector mv ob-
tained by multiplying the velocity v of the particle by its mass m. The
moment about O of the vector mv is called the moment of momen-
tum, or the angular momentum, of the particle about O at that instant
and is denoted by HO. Recalling the definition of the moment of a
vector (Sec. 3.6) and denoting by r the position vector of P, we write

HO � r � mv (12.12)

and note that HO is a vector perpendicular to the plane containing r
and mv and of magnitude

HO � rmv sin � (12.13)

where � is the angle between r and mv (Fig. 12.12). The sense of HO

can be determined from the sense of mv by applying the right-hand
rule. The unit of angular momentum is obtained by multiplying the
units of length and of linear momentum (Sec. 12.4). With SI units,
we have

(m)(kg � m/s) � kg � m2/s

With U.S. customary units, we write

(ft)(lb � s) � ft � lb � s

Resolving the vectors r and mv into components and applying for-
mula (3.10), we write

HO � � � (12.14)

The components of HO, which also represent the moments of the lin-
ear momentum mv about the coordinate axes, can be obtained by ex-
panding the determinant in (12.14). We have

Hx � m(yvz � zvy)
Hy � m(zvx � xvz) (12.15)
Hz � m(xvy � yvx)

In the case of a particle moving in the xy plane, we have z �
vz � 0 and the components Hx and Hy reduce to zero. The angular
momentum is thus perpendicular to the xy plane; it is then completely
defined by the scalar

HO � Hz � m(xvy � yvx) (12.16)

i j k
x y z

mvx mvy mvz

P

HO

r
O

z

x

y

mv

f

Photo 12.2 During a hammer thrower’s practice
swings, the hammer acquires angular momentum
about a vertical axis at the center of its circular
path.
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mv

mvr

mv
f

q

q

which will be positive or negative according to the sense in which the
particle is observed to move from O. If polar coordinates are used,
we resolve the linear momentum of the particle into radial and trans-
verse components (Fig. 12.13) and write

HO � rmv sin � � rmv� (12.17)

or, recalling from (11.45) that v� � r �̇,

HO � mr2�̇ (12.18)

Let us now compute the derivative with respect to t of the an-
gular momentum HO of a particle P moving in space. Differentiating
both members of Eq. (12.12), and recalling the rule for the differen-
tiation of a vector product (Sec. 11.10), we write

ḢO � ṙ � mv � r � mv̇ � v � mv � r � ma

Since the vectors v and mv are collinear, the first term of the ex-
pression obtained is zero; and, by Newton’s second law, ma is equal
to the sum �F of the forces acting on P. Noting that r � �F rep-
resents the sum �MO of the moments about O of these forces, we
write

�MO � ḢO (12.19)

Equation (12.19), which results directly from Newton’s second
law, states that the sum of the moments about O of the forces acting
on the particle is equal to the rate of change of the moment of mo-
mentum, or angular momentum, of the particle about O.

12.8. EQUATIONS OF MOTION IN TERMS OF RADIAL AND
TRANSVERSE COMPONENTS

Consider a particle P, of polar coordinates r and �, which moves in a
plane under the action of several forces. Resolving the forces and the
acceleration of the particle into radial and transverse components
(Fig. 12.14) and substituting into Eq. (12.2), we obtain the two scalar
equations

Fig. 12.13

12-2912.8 Equations of Motion in Terms of
Radial and Transverse Components

P

O

r
m P

O

r
m=

mar

ma
ΣF ΣFrq

q

q q

Fig 12.14
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12-30 Kinetics of Particles: Newton’s Second Law �Fr � mar �F� � ma� (12.20)

Substituting for ar and a� from Eqs. (11.46), we have

�Fr � m(r̈ � r�̇2) (12.21)

�F� � m(r�̈ � 2ṙ�̇) (12.22)

The equations obtained can be solved for two unknowns.
Equation (12.22) could have been derived from Eq. (12.19). Re-

calling (12.18) and noting that �MO � r�F�, Eq. (12.19) yields

r�F� � �
d
d
t
�(mr2�̇)

� m(r2�̈ � 2rṙ �̇)

and, after dividing both members by r,

�F� � m(r�̈ � 2ṙ �̇) (12.22)

12.9. MOTION UNDER A CENTRAL FORCE. CONSERVATION
OF ANGULAR MOMENTUM

When the only force acting on a particle P is a force F directed 
toward or away from a fixed point O, the particle is said to be moving
under a central force, and the point O is referred to as the center of
force (Fig. 12.15). Since the line of action of F passes through O, we
must have �MO � 0 at any given instant. Substituting into Eq. (12.19),
we therefore obtain

ḢO � 0

for all values of t and, integrating in t,

HO � constant (12.23)

We thus conclude that the angular momentum of a particle moving
under a central force is constant, in both magnitude and direction.

Recalling the definition of the angular momentum of a particle
(Sec. 12.7), we write

r � mv � HO � constant (12.24)

from which it follows that the position vector r of the particle P must
be perpendicular to the constant vector HO. Thus, a particle under a
central force moves in a fixed plane perpendicular to HO. The vector
HO and the fixed plane are defined by the initial position vector r0

P

F

O

z

x

y

Fig. 12.15

Photo 12.3 The path of specimen being tested
in a centrifuge is a horizontal circle. The forces
acting on the specimen and its acceleration may
be resolved into radial and transverse
components with r � constant.
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and the initial velocity v0 of the particle. For convenience, let us as-
sume that the plane of the figure coincides with the fixed plane of
motion (Fig. 12.16).

Since the magnitude HO of the angular momentum of the parti-
cle P is constant, the right-hand member in Eq. (12.13) must be con-
stant. We therefore write

rmv sin � � r0mv0 sin �0 (12.25)

This relation applies to the motion of any particle under a central
force. Since the gravitational force exerted by the sun on a planet is
a central force directed toward the center of the sun, Eq. (12.25) is
fundamental to the study of planetary motion. For a similar reason,
it is also fundamental to the study of the motion of space vehicles in
orbit about the earth.

Alternatively, recalling Eq. (12.18), we can express the fact that
the magnitude HO of the angular momentum of the particle P is con-
stant by writing

mr2�̇ � HO � constant (12.26)

or, dividing by m and denoting by h the angular momentum per unit
mass HO�m,

r2�̇ � h (12.27)

Equation (12.27) can be given an interesting geometric interpretation.
Observing from Fig. 12.17 that the radius vector OP sweeps an in-
finitesimal area dA � �

1
2�r2 d� as it rotates through an angle d�, and

defining the areal velocity of the particle as the quotient dA�dt, we
note that the left-hand member of Eq. (12.27) represents twice the
areal velocity of the particle. We thus conclude that when a particle
moves under a central force, its areal velocity is constant.

12.10. NEWTON’S LAW OF GRAVITATION

As you saw in the preceding section, the gravitational force exerted
by the sun on a planet or by the earth on an orbiting satellite is an
important example of a central force. In this section, you will learn
how to determine the magnitude of a gravitational force.

In his law of universal gravitation, Newton states that two parti-
cles of masses M and m at a distance r from each other attract each
other with equal and opposite forces F and �F directed along the
line joining the particles (Fig. 12.18). The common magnitude F of
the two forces is

F � G (12.28)
Mm
�
r2

O

P

r

mv

mv0

P0r0

  0f

P

r

O

F
dq

r d

dA

q

q

m

M

F

–F

r

Fig. 12.16

Fig. 12.17

Fig. 12.18

12-3112.10 Newton’s Law of Gravitation
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12-32 Kinetics of Particles: Newton’s Second Law where G is a universal constant, called the constant of gravitation. Ex-
periments show that the value of G is (66.73 	 0.03) � 10�12 m3/
kg � s2 in SI units or approximately 34.4 � 10�9 ft4/lb � s4 in U.S. cus-
tomary units. Gravitational forces exist between any pair of bodies,
but their effect is appreciable only when one of the bodies has a very
large mass. The effect of gravitational forces is apparent in the cases
of the motion of a planet about the sun, of satellites orbiting about
the earth, or of bodies falling on the surface of the earth.

Since the force exerted by the earth on a body of mass m located
on or near its surface is defined as the weight W of the body, we can
substitute the magnitude W � mg of the weight for F, and the radius
R of the earth for r, in Eq. (12.28). We obtain

W � mg � m or g � (12.29)

where M is the mass of the earth. Since the earth is not truly spher-
ical, the distance R from the center of the earth depends upon the
point selected on its surface, and the values of W and g will thus vary
with the altitude and latitude of the point considered. Another rea-
son for the variation of W and g with latitude is that a system of axes
attached to the earth does not constitute a newtonian frame of refer-
ence (see Sec. 12.2). A more accurate definition of the weight of a
body should therefore include a component representing the cen-
trifugal force due to the rotation of the earth. Values of g at sea level
vary from 9.781 m/s2, or 32.09 ft/s2, at the equator to 9.833 m/s2, or
32.26 ft/s2, at the poles.†

The force exerted by the earth on a body of mass m located in
space at a distance r from its center can be found from Eq. (12.28).
The computations will be somewhat simplified if we note that ac-
cording to Eq. (12.29), the product of the constant of gravitation G
and the mass M of the earth can be expressed as

GM � gR2 (12.30)

where g and the radius R of the earth will be given their average val-
ues g � 9.81 m/s2 and R � 6.37 � 106 m in SI units‡ and g � 32.2 ft/s2

and R � (3960 mi)(5280 ft/mi) in U.S. customary units.
The discovery of the law of universal gravitation has often been

attributed to the belief that, after observing an apple falling from a
tree, Newton had reflected that the earth must attract an apple and
the moon in much the same way. While it is doubtful that this inci-
dent actually took place, it may be said that Newton would not have
formulated his law if he had not first perceived that the acceleration
of a falling body must have the same cause as the acceleration which
keeps the moon in its orbit. This basic concept of the continuity of
gravitational attraction is more easily understood today, when the gap
between the apple and the moon is being filled with artificial earth
satellites.

GM
�
R2

GM
�
R2

†A formula expressing g in terms of the latitude � was given in Prob. 12.1.

‡The value of R is easily found if one recalls that the circumference of the earth is
2�R � 40 � 106 m.
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12-33

SAMPLE PROBLEM 12.7

A block B of mass m can slide freely on a frictionless arm OA which ro-
tates in a horizontal plane at a constant rate �̇0. Knowing that B is re-
leased at a distance r0 from O, express as a function of r, (a) the compo-
nent vr of the velocity of B along OA, (b) the magnitude of the horizontal
force F exerted on B by the arm OA.

SOLUTION

Since all other forces are perpendicular to the plane of the figure, the only
force shown acting on B is the force F perpendicular to OA.

Equations of Motion. Using radial and transverse components.
�p�Fr � mar: 0 � m(r̈ � r �̇2) (1)
�r�F� � ma�: F � m(r�̈ � 2ṙ �̇) (2)

a. Component vr of Velocity. Since vr � ṙ , we have

r̈ � v̇r � �
d
d
v
t
r

� � �
d
d
v
r
r

� �
d
d
r
t
� � vr�

d
d
v
r
r

�

Substituting for r̈ in (1), recalling that �̇ � �̇0, and separating the variables,
vr dvr � �̇2

0 r dr
Multiplying by 2, and integrating from 0 to vr and from r0 to r,

vr
2 � �̇2

0(r2 � r2
0) vr � �̇0(r2 � r2

0)1�2

b. Horizontal Force F. Setting �̇ � �̇0, �̈ � 0, ṙ � vr in Eq. (2), and
substituting for vr the expression obtained in part a,

F � 2m �̇0(r2 � r2
0)1�2 �̇0 F � 2m�̇2

0(r2 � r2
0)1�2

SAMPLE PROBLEM 12.8

A satellite is launched in a direction parallel to the surface of the earth with
a velocity of 18,820 mi/h from an altitude of 240 mi. Determine the velocity
of the satellite as it reaches its maximum altitude of 2340 mi. It is recalled
that the radius of the earth is 3960 mi.

SOLUTION

Since the satellite is moving under a central force directed toward the cen-
ter O of the earth, its angular momentum HO is constant. From Eq. (12.13)
we have

rmv sin � � HO � constant
which shows that v is minimum at B, where both r and sin � are maximum.
Expressing conservation of angular momentum between A and B.

rAmvA � rBmvB

vB � vA �
r
r

A

B
� � (18,820 mi/h)

vB � 12,550 mi/h

3960 mi � 240 mi
���
3960 mi � 2340 mi

q

vr
r

B

A

O

q    q⋅     ⋅
0=

q

ma

mar

O

F

=
q

2340 mi

18,820 mi /h

Earth

240 mi

AB

mvA

mvB

rB rA

mv

O
AB

f

bee0491x_ch12.qxd  1/16/03  11:14 AM  Page 12-33 mac76 mac76:385_reb:



12-34

S O LV I N G  P R O B L E M S  
O N  YO U R  O W N

In this lesson we continued our study of Newton’s second law by expressing the
force and the acceleration in terms of their radial and transverse components, where
the corresponding equations of motion are

�Fr � mar: �Fr � m(r̈ � r�̇2)
�F� � ma�: �F� � m(r�̈ � 2ṙ�̇)

We introduced the moment of the momentum, or the angular momentum, HO of a
particle about O:

HO � r � mv (12.12)

and found that HO is constant when the particle moves under a central force with
its center located at O.

1. Using radial and transverse components. Radial and transverse components
were introduced in the last lesson of Chap. 11 [Sec. 11.14]; you should review that
material before attempting to solve the following problems. Also, our comments in
the preceding lesson regarding the application of Newton’s second law (drawing a
free-body diagram and a ma diagram, etc.) still apply [Sample Prob. 12.7]. Finally,
note that the solution of that sample problem depends on the application of tech-
niques developed in Chap. 11—you will need to use similar techniques to solve some
of the problems of this lesson.

2. Solving problems involving the motion of a particle under a central force.
In problems of this type, the angular momentum HO of the particle about the cen-
ter of force O is conserved. You will find it convenient to introduce the constant
h � HO�m representing the angular momentum per unit mass. Conservation of the
angular momentum of the particle P about O can then be expressed by either of
the following equations

rv sin � � h or r2�̇ � h

where r and � are the polar coordinates of P, and � is the angle that the velocity v
of the particle forms with the line OP (Fig. 12.16). The constant h can be determined
from the initial conditions and either of the above equations can be solved for one
unknown.

3. In space-mechanics problems involving the orbital motion of a planet about
the sun, or a satellite about the earth, the moon, or some other planet, the central
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12-3512-35

force F is the force of gravitational attraction; it is directed toward the center of
force O and has the magnitude

F � G�
M
r2
m
� (12.28)

Note that in the particular case of the gravitational force exerted by the earth, the
product GM can be replaced by gR2, where R is the radius of the earth [Eq. 12.30].

The following two cases of orbital motion are frequently encountered:

a. For a satellite in a circular orbit, the force F is normal to the orbit and
you can write F � man; substituting for F from Eq. (12.28) and observing that an �
v2/� � v2/r, you will obtain

G�
M
r2
m
� � m �

v
r

2

� or v2 � �
G

r
M
�

b. For a satellite in an elliptic orbit, the radius vector r and the velocity v
of the satellite are perpendicular to each other at the points A and B which are, re-
spectively, farthest and closest to the center of force O [Sample Prob. 12.8]. Thus,
conservation of angular momentum of the satellite between these two points can
be expressed as

rAmvA � rBmvB
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12-36

Problems

12.64 Rod OA rotates about O in a horizontal plane. The motion of
the 400-g collar B is defined by the relations r � 500 � 300 sin �t and � �
2�(t2 � 2t), where r is expressed in millimeters, t in seconds, and � in radi-
ans. Determine the radial and transverse components of the force exerted
on the collar when (a) t � 0, (b) t � 0.8 s.

12.65 Rod OA oscillates about O in a horizontal plane. The motion of
the 200-g collar B is defined by the relations r � 5�(t � 2) and � � (4��)
sin �t, where r is expressed in meters, t in seconds, and � in radians. De-
termine the radial and transverse components of the force exerted on the
collar when (a) t � 2 s, (b) t � 7 s.

12.66 A 1.2-lb block B slides without friction inside a slot cut in arm
OA which rotates in a vertical plane at a constant rate, �̇ � 2 rad/s. At the
instant when � � 30°, r � 2 ft and the force exerted on the block by the arm
is zero. Determine, at this instant, (a) the relative velocity of the block with
respect to the arm, (b) the relative acceleration of the block with respect to
the arm.

12.67 A 1.2-lb block B slides without friction inside a slot cut in arm
OA which rotates in a vertical plane. The motion of the rod is defined by the
relation �̈ � 10 rad/s2, constant. At the instant when � � 45°, r � 2.4 ft and
the velocity of the block is zero. Determine, at this instant, (a) the force ex-
erted on the block by the arm, (b) the relative acceleration of the block with
respect to the arm.

12.68 The 6-lb collar B slides on the frictionless arm AA�. The arm is
attached to drum D and rotates about O in a horizontal plane at the rate
�̇ � 0.8t, where �̇ and t are expressed in rad/s and seconds, respectively. As
the arm-drum assembly rotates, a mechanism within the drum releases cord
so that the collar moves outward from O with a constant speed of 1.5 ft/s.
Knowing that at t � 0, r � 0, determine the time at which the tension in the
cord is equal to the magnitude of the horizontal force exerted on B by arm
AA�.

q

O

B A

r

r

B

q

O

A

A

r

q
B

A'

O

D

Fig. P12.64 and P12.65

Fig. P12.66 and P12.67

Fig. P12.68
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12.69 The 4-oz pin B slides along the slot in the rotating arm OC and
along the slot DE which is cut in a fixed horizontal plate. Neglecting friction
and knowing that arm OC rotates at a constant rate �̇0 � 10 rad/s, determine
for any given value of � (a) the radial and transverse components of the re-
sultant force F exerted on pin B, (b) the forces P and Q exerted on pin B by
arm OC and the wall of the slot DE, respectively.

12.70 Disk A rotates in a horizontal plane about a vertical axis at the
constant rate of �̇0 � 15 rad/s. Slider B has a mass of 230 g and moves in a
frictionless slot cut in the disk. The slider is attached to a spring of constant
k � 60 N/m, which is undeformed when r � 0. Knowing that at a given instant
the acceleration of the slider relative to the disk is r̈ � �12 m/s2 and that the
horizontal force exerted on the slider by the disk is 9 N, determine at that in-
stant (a) the distance r, (b) the radial component of the velocity of the slider.

B

O

E

D
C

r

q

9 in.

  0
⋅ 

B

A

O

Spring

r

q

0.5 m

B

O

q

A

12.71 The horizontal rod OA rotates about a vertical shaft according
to the relation �̇ � 10t, where �̇ and t are expressed in rad/s and seconds, re-
spectively. A 250-g collar B is held by a cord with a breaking strength of 18 N.
Neglecting friction, determine, immediately after the cord breaks, (a) the rel-
ative acceleration of the collar with respect to the rod, (b) the magnitude of
the horizontal force exerted on the collar by the rod.

20 kg A

B

25 kg

r q

12.72 The two blocks are released from rest when r � 0.8 m and
� � 30°. Neglecting the mass of the pulley and the effect of friction in the
pulley and between block A and the horizontal surface, determine (a) the
initial tension in the cable, (b) the initial acceleration of block A, (c) the ini-
tial acceleration of block B.

12.73 The velocity of block A is 2 m/s to the right at the instant when
r � 0.8 m and � � 30°. Neglecting the mass of the pulley and the effect of
friction in the pulley and between block A and the horizontal surface, de-
termine, at this instant, (a) the tension in the cable, (b) the acceleration of
block A, (c) the acceleration of block B.

Fig. P12.69

Fig. P12.70

Fig. P12.71

Fig. P12.72 and P12.73

12-37Problems
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12-38 Kinetics of Particles: Newton’s Second Law 12.74 A particle of mass m is projected from point A with an initial
velocity v0 perpendicular to line OA and moves under a central force F di-
rected away from the center of force O. Knowing that the particle follows a
path defined by the equation r � r0 /�cos 2�� and using Eq. (12.27), express
the radial and transverse components of the velocity v of the particle as func-
tions of �.

12.75 For the particle of Prob. 12.74, show (a) that the velocity of the
particle and the central force F are proportional to the distance r from the
particle to the center of force O, (b) that the radius of curvature of the path
is proportional to r3.

12.76 A particle of mass m is projected from point A with an initial
velocity v0 perpendicular to line OA and moves under a central force F along
a semicircular path of diameter OA. Observing that r � r0 cos � and using
Eq. (12.27), show that the speed of the particle is v � v0�cos2 �.

12.77 For the particle of Prob. 12.76, determine the tangential com-
ponent Ft of the central force F along the tangent to the path of the parti-
cle for (a) � � 0, (b) � � 45°.

12.78 The radius of the orbit of a moon of a given planet is three times
as large as the radius of that planet. Denoting by � the mean density of the
planet, show that the time required by the moon to complete one full revo-
lution about the planet is 9(��G�)1�2, where G is the constant of gravitation.

12.79 Communication satellites are placed in a geosynchronous orbit,
that is, in a circular orbit such that they complete one full revolution about
the earth in one sidereal day (23.934 hr), and thus appear stationary with re-
spect to the ground. Determine (a) the altitude of these satellites above the
surface of the earth, (b) the velocity with which they describe their orbit.
Give the answers in both SI and U.S. customary units.

12.80 Show that the radius r of the orbit of a moon of a given planet
can be determined from the radius R of the planet, the acceleration of grav-
ity at the surface of the planet, and the time 	 required by the moon to com-
plete one full revolution about the planet. Determine the acceleration of
gravity at the surface of the planet Jupiter knowing that R � 44,400 mi, 	 �
3.551 days, and r � 417,000 mi for its moon Europa.

12.81 A spacecraft is placed into a polar orbit about the planet Mars
at an altitude of 230 mi. Knowing that the mean density of Mars is 
7.65 lb � s2/ft4 and that the radius of Mars is 2111 mi, determine (a) the time
	 required for the spacecraft to complete one full revolution about Mars, (b)
the velocity with which the spacecraft describes its orbit.

12.82 Determine the mass of the earth knowing that the mean radius
of the moon’s orbit about the earth is 384.5 Mm and that the moon requires
27.32 days to complete one full revolution about the earth.

12.83 The periodic times of the planet Jupiter’s satellites, Ganymede
and Callisto, have been observed to be 7.15 days and 16.69 days, respectively.
Knowing that the mass of Jupiter is 319 times that of the earth and that the
orbits of the two satellites are circular, determine (a) the radius of the orbit
of Ganymede, (b) the velocity with which Callisto describes its orbit. Give
the answers in U.S. customary units. (The periodic time of a satellite is the
time it requires to complete one full revolution about the planet.)

r0
AO

F

mr

θ v0

v

O
q

F
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v0

r0

m

r

Fig. P12.74 and P12.75

Fig. P12.76 and P12.77
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12-39Problems12.84 The periodic time (see Prob. 12.83) of an earth satellite in a cir-
cular polar orbit is 120 min. Determine (a) the altitude h of the satellite,
(b) the time during which the satellite is above the horizon for an observer
located at the north pole.

12.85 A 540-kg spacecraft first is placed into a circular orbit about the
earth at an altitude of 4500 km and then is transferred to a circular orbit
about the moon. Knowing that the mass of the moon is 0.01230 times the
mass of the earth and that the radius of the moon is 1740 km, determine (a)
the gravitational force exerted on the spacecraft as it was orbiting the earth,
(b) the required radius of the orbit of the spacecraft about the moon if the
periodic times of the two orbits are to be equal, (c) the acceleration of grav-
ity at the surface of the moon. (The periodic time of a satellite is the time it
requires to complete one full revolution about a planet.)

12.86 As a first approximation to the analysis of a space flight from
the earth to Mars, assume the orbits of the earth and Mars are circular and
coplanar. The mean distances from the sun to the earth and to Mars are
149.6 � 106 km and 227.8 � 106 km, respectively. To place the spacecraft
into an elliptical transfer orbit at point A, its speed is increased over a short
interval of time to vA which is 2.94 km/s faster than the earth’s orbital speed.
When the spacecraft reaches point B on the elliptical transfer orbit, its speed
vB is increased to the orbital speed of Mars. Knowing that the mass of the
sun is 332.8 � 103 times the mass of the earth, determine the increase in
speed required at B.

12.87 During a flyby of the earth, the velocity of a spacecraft is
34.2 � 103 ft/s as it reaches its minimum altitude of 600 mi above the sur-
face at point A. At point B the spacecraft is observed to have an altitude of
5160 mi. Assuming that the trajectory of the spacecraft is parabolic, deter-
mine its velocity at B.

h
A

N

S

B
Horizon

R = 3960 mi

Orbit
of earth

Sun
A B

Transfer
orbit

Orbit
of Mars

3960 mi
5160 mi

600 mi
A

B

12.88 A space vehicle is in a circular orbit of 1400-mi radius around
the moon. To transfer to a smaller orbit of 1300-mi radius, the vehicle is first
placed in an elliptic path AB by reducing its speed by 86 ft/s as it passes
through A. Knowing that the mass of the moon is 5.03 � 1021 lb � s2/ft, de-
termine (a) the speed of the vehicle as it approaches B on the elliptic path,
(b) the amount by which its speed should be reduced as it approaches B to
insert it into the smaller circular orbit.

1300 mi

1400 mi

A B

Fig. P12.84

Fig. P12.86

Fig. P12.87

Fig. P12.88
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12-40 Kinetics of Particles: Newton’s Second Law 12.89 A space shuttle S and a satellite A are in the circular orbits
shown. In order for the shuttle to recover the satellite, the shuttle is first
placed in an elliptic path BC by increasing its speed by �vB � 85 m/s as it
passes through B. As the shuttle approaches C, its speed is increased by
�vC � 79 m/s to insert it into a second elliptic transfer orbit CD. Knowing
that the distance from O to C is 6900 km, determine the amount by which
the speed of the shuttle should be increased as it approaches D to insert it
into the circular orbit of the satellite.

12.90 A 1-lb ball A and a 2-lb ball B are mounted on a horizontal rod
which rotates freely about a vertical shaft. The balls are held in the positions
shown by pins. The pin holding B is suddenly removed and the ball moves
to position C as the rod rotates. Neglecting friction and the mass of the rod
and knowing that the initial speed of A is vA � 8 ft/s, determine (a) the ra-
dial and transverse components of the acceleration of ball B immediately af-
ter the pin is removed, (b) the acceleration of ball B relative to the rod at
that instant, (c) the speed of ball A after ball B has reached the stop at C.

D COB

A

S

610 km

290 km

A B

C

16 in. 16 in.

8 in.10 in.

vA

vB

1

2

O

l1
l2

q

q

r

E

A

O

D

B

C

12.91 A small ball swings in a horizontal circle at the end of a cord of
length l1, which forms an angle �1 with the vertical. The cord is then slowly
drawn through the support at O until the length of the free end is l2. (a) De-
rive a relation among l1, l2, �1, and �2. (b) If the ball is set in motion so that
initially l1 � 2 ft and �1 � 40°, determine the angle �2 when l2 � 1.5 ft.

12.92 Two 1.2-kg collars A and B can slide without friction on a frame,
consisting of the horizontal rod OE and the vertical rod CD, which is free to
rotate about CD. The two collars are connected by a cord running over a
pulley that is attached to the frame at O and a stop prevents collar B from
moving. The frame is rotating at the rate �̇ � 10 rad/s and r � 0.2 m when
the stop is removed allowing collar A to move out along rod OE. Neglecting
friction and the mass of the frame, determine (a) the tension in the cord and
the acceleration of collar A relative to rod OE immediately after the stop is
removed, (b) the transverse component of the velocity of collar A when
r � 0.3 m.

12.93 Two 1.2-kg collars A and B can slide without friction on a frame,
consisting of the horizontal rod OE and the vertical rod CD, which is free to
rotate about CD. The two collars are connected by a cord running over a
pulley that is attached to the frame at O and a stop prevents collar B from
moving. The frame is rotating at the rate �̇ � 12 rad/s and r � 0.2 m when
the stop is removed allowing collar A to move out along rod OE. Neglecting
friction and the mass of the frame, determine, for the position r � 0.4 m, (a)
the transverse component of the velocity of collar A, (b) the tension in the
cord and the acceleration of collar A relative to the rod OE.

Fig. P12.89

Fig. P12.90

Fig. P12.91

Fig. P12.92 and P12.93
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12-4112.11 Trajectory of a Particle under a
Central Force

*12.11. TRAJECTORY OF A PARTICLE UNDER A 
CENTRAL FORCE

Consider a particle P moving under a central force F. We propose to
obtain the differential equation which defines its trajectory.

Assuming that the force F is directed toward the center of force
O, we note that �Fr and �F� reduce, respectively, to �F and zero in
Eqs. (12.21) and (12.22). We therefore write

m(r̈ � r�̇2) � �F (12.31)
m(r�̈ � 2ṙ�̇) � 0 (12.32)

These equations define the motion of P. We will, however, replace
Eq. (12.32) by Eq. (12.27), which is equivalent to Eq. (12.32), as can
easily be checked by differentiating it with respect to t, but which is
more convenient to use. We write

r2�̇ � h or r2 � h (12.33)

Equation (12.33) can be used to eliminate the independent vari-
able t from Eq. (12.31). Solving Eq. (12.33) for �̇ or d��dt, we have

�̇ � � (12.34)

from which it follows that

ṙ � �
d
d
r
t
� � �

d
d
�

r
� �

d
d
�

t
� � �

r
h
2� �

d
d
�

r
� � �h�

d
d
�
� ��

1
r

�� (12.35)

r̈ � �
d
d
ṙ
t
� � �

d
d
�

ṙ
� �

d
d
�

t
� � �

r
h
2� �

d
d
�

ṙ
�

or, substituting for ṙ from (12.35),

r̈ � �
r
h
2� �

d
d
�
� ��h�

d
d
�
� ��

1
r

��	
r̈ � ��

h
r2

2

� �
d
d
�

2

2� ��
1
r

�� (12.36)

Substituting for � and r̈ from (12.34) and (12.36), respectively, in Eq.
(12.31) and introducing the function u � l�r, we obtain after
reductions

� u � (12.37)

In deriving Eq. (12.37), the force F was assumed directed toward O.
The magnitude F should therefore be positive if F is actually directed
toward O (attractive force) and negative if F is directed away from O
(repulsive force). If F is a known function of r and thus of u,
Eq. (12.37) is a differential equation in u and �. This differential equa-
tion defines the trajectory followed by the particle under the central
force F. The equation of the trajectory can be obtained by solving the
differential equation (12.37) for u as a function of � and determining
the constants of integration from the initial conditions.

F
�
mh2u2

d2u
�
d�2

h
�
r2

d�
�
dt

d�
�
dt
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*12.12. APPLICATION TO SPACE MECHANICS

After the last stages of their launching rockets have burned out, earth
satellites and other space vehicles are subjected to only the gravita-
tional pull of the earth. Their motion can therefore be determined
from Eqs. (12.33) and (12.37), which govern the motion of a particle
under a central force, after F has been replaced by the expression ob-
tained for the force of gravitational attraction.† Setting in Eq. (12.37)

F � � GMmu2

where M � mass of earth
m � mass of space vehicle
r � distance from center of earth to vehicle
u � l/r

we obtain the differential equation

� u � (12.38)

where the right-hand member is observed to be a constant.
The solution of the differential equation (12.38) is obtained by

adding the particular solution u � GM�h2 to the general solution u �
C cos (� � �0) of the corresponding homogeneous equation (i.e., the
equation obtained by setting the right-hand member equal to zero).
Choosing the polar axis so that �0 � 0, we write

� u � � C cos � (12.39)

Equation (12.39) is the equation of a conic section (ellipse, parabola,
or hyperbola) in the polar coordinates r and �. The origin O of the
coordinates, which is located at the center of the earth, is a focus of
this conic section, and the polar axis is one of its axes of symmetry
(Fig. 12.19).

The ratio of the constants C and GM�h2 defines the eccentricity

 of the conic section; letting


 � � (12.40)

we can write Eq. (12.39) in the form

�
1
r

� � �
G
h
M
2� (1 � 
 cos �) (12.39�)

This equation represents three possible trajectories.

1. 
 � 1, or C � GM�h2: There are two values �1 and ��1 of
the polar angle, defined by cos �1 � �GM�Ch2, for which

Ch2

�
GM

C
�
GM�h2

GM
�
h2

1
�
r

GM
�
h2

d2u
�
d�2

GMm
�

r2

Fig. 12.19

†It is assumed that the space vehicles considered here are attracted by the earth only
and that their mass is negligible compared with the mass of the earth. If a vehicle moves
very far from the earth, its path may be affected by the attraction of the sun, the moon, or
another planet.

A

r

O

q

12-42 Kinetics of Particles: Newton’s Second Law

Photo 12.4 The International Space Station and
the space vehicle are subjected to the
gravitational pull of the earth and if all other
forces are neglected, the trajectory of each will
be a circle, an ellipse, a parabola, or a hyperbola.
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12-4312.12. Application to Space Mechanicsthe right-hand member of Eq. (12.39) becomes zero. For
both these values, the radius vector r becomes infinite; the
conic section is a hyperbola (Fig. 12.20).

2. 
 � 1, or C � GM�h2: The radius vector becomes infinite for
� � 180°; the conic section is a parabola.

3. 
  1, or C  GM�h2: The radius vector remains finite for
every value of �; the conic section is an ellipse. In the par-
ticular case when 
 � C � 0, the length of the radius vector
is constant; the conic section is a circle.

Let us now see how the constants C and GM�h2, which charac-
terize the trajectory of a space vehicle, can be determined from the
vehicle’s position and velocity at the beginning of its free flight. We
will assume that, as is generally the case, the powered phase of its
flight has been programmed in such a way that as the last stage of the
launching rocket burns out, the vehicle has a velocity parallel to the
surface of the earth (Fig. 12.21). In other words, we will assume that
the space vehicle begins its free flight at the vertex A of its trajectory.†

Denoting the radius vector and speed of the vehicle at the be-
ginning of its free flight by r0 and v0, respectively, we observe that
the velocity reduces to its transverse component and, thus, that v0 �
r0�̇0. Recalling Eq. (12.27), we express the angular momentum per
unit mass h as

h � r2
0�̇0 � r0v0 (12.41)

The value obtained for h can be used to determine the constant
GM�h2. We also note that the computation of this constant will be
simplified if we use the relation obtained in Sec. 12.10:

GM � gR2 (12.30)

where R is the radius of the earth (R � 6.37 � 106 m or 3960 mi) and
g is the acceleration of gravity at the surface of the earth.

The constant C is obtained by setting � � 0, r � r0 in (12.39):

C � � (12.42)

Substituting for h from (12.41), we can then easily express C in terms
of r0 and v0.

Let us now determine the initial conditions corresponding to each
of the three fundamental trajectories indicated above. Considering
first the parabolic trajectory, we set C equal to GM�h2 in Eq. (12.42)
and eliminate h between Eqs. (12.41) and (12.42). Solving for v0, we
obtain

v0 � 
�
2G

r0

M
��

We can easily check that a larger value of the initial velocity corre-
sponds to a hyperbolic trajectory and a smaller value corresponds to
an elliptic orbit. Since the value of v0 obtained for the parabolic 

GM
�
h2

1
�
r0

Fig. 12.20

Fig. 12.21
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†Problems involving oblique launchings will be considered in Sec. 13.9.
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12-44 Kinetics of Particles: Newton’s Second Law trajectory is the smallest value for which the space vehicle does not
return to its starting point, it is called the escape velocity. We write
therefore

vesc � 
� or vesc � 
� (12.43)

if we make use of Eq. (12.30). We note that the trajectory will be (1)
hyperbolic if v0 � vesc, (2) parabolic if v0 � vesc, and (3) elliptic if
v0  vesc.

Among the various possible elliptic orbits, the one obtained when
C � 0, the circular orbit, is of special interest. The value of the ini-
tial velocity corresponding to a circular orbit is easily found to be

vcirc � 
� or vcirc � 
� (12.44)

if Eq. (12.30) is taken into account. We note from Fig. 12.22 that for
values of v0 larger than vcirc but smaller than vesc, point A where free
flight begins is the point of the orbit closest to the earth; this point is
called the perigee, while point A�, which is farthest away from the
earth, is known as the apogee. For values of v0 smaller than vcirc, point
A is the apogee, while point A��, on the other side of the orbit, is the
perigee. For values of v0 much smaller than vcirc, the trajectory of the
space vehicle intersects the surface of the earth; in such a case, the
vehicle does not go into orbit.

Ballistic missiles, which were designed to hit the surface of the
earth, also travel along elliptic trajectories. In fact, we should now re-
alize that any object projected in vacuum with an initial velocity v0
smaller than vesc will move along an elliptic path. It is only when the
distances involved are small that the gravitational field of the earth
can be assumed uniform and that the elliptic path can be approxi-
mated by a parabolic path, as was done earlier (Sec. 11.11) in the case
of conventional projectiles.

Periodic Time. An important characteristic of the motion of an
earth satellite is the time required by the satellite to describe its or-
bit. This time, known as the periodic time of the satellite, is denoted
by 	. We first observe, in view of the definition of areal velocity (Sec.
12.9), that 	 can be obtained by dividing the area inside the orbit by
the areal velocity. Noting that the area of an ellipse is equal to �ab,
where a and b denote the semimajor and semiminor axes, respec-
tively, and that the areal velocity is equal to h�2, we write

	 � (12.45)

While h can be readily determined from r0 and v0 in the case of
a satellite launched in a direction parallel to the surface of the earth,
the semiaxes a and b are not directly related to the initial conditions.
Since, on the other hand, the values r0 and r1 of r corresponding to
the perigee and apogee of the orbit can easily be determined from
Eq. (12.39), we will express the semiaxes a and b in terms of r0 and r1.

Consider the elliptic orbit shown in Fig. 12.23. The earth’s cen-
ter is located at O and coincides with one of the two foci of the 

2�ab
�

h

gR2

�
r0

GM
�

r0

2gR2

�
r0

2GM
�

r0

Fig. 12.22

Fig. 12.23

O

v0 < vcirc

vcirc < v0 < vesc

v0 = vcirc

A' A" A

b

a

r1 r0

CA' AO'

B

O
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ellipse, while the points A and A� represent, respectively, the perigee
and apogee of the orbit. We easily check that

r0 � r1 � 2a

and thus
a � �

1
2�(r0 � r1) (12.46)

Recalling that the sum of the distances from each of the foci to any
point of the ellipse is constant, we write

O�B � BO � O�A � OA � 2a or BO � a

On the other hand, we have CO � a � r0. We can therefore write

b2 � (BC)2 � (BO)2 � (CO)2 � a2 � (a � r0)2

b2 � r0(2a � r0) � r0r1

and thus
b � �r0r1� (12.47)

Formulas (12.46) and (12.47) indicate that the semimajor and semimi-
nor axes of the orbit are equal, respectively, to the arithmetic and geo-
metric means of the maximum and minimum values of the radius vec-
tor. Once r0 and r1 have been determined, the lengths of the semiaxes
can be easily computed and substituted for a and b in formula (12.45).

*12.13. KEPLER’S LAWS OF PLANETARY MOTION

The equations governing the motion of an earth satellite can be used
to describe the motion of the moon around the earth. In that case,
however, the mass of the moon is not negligible compared with the
mass of the earth, and the results obtained are not entirely accurate.

The theory developed in the preceding sections can also be ap-
plied to the study of the motion of the planets around the sun. Al-
though another error is introduced by neglecting the forces exerted
by the planets on one another, the approximation obtained is excel-
lent. Indeed, even before Newton had formulated his fundamental
theory, the properties expressed by Eq. (12.39), where M now repre-
sents the mass of the sun, and by Eq. (12.33) had been discovered by
the German astronomer Johann Kepler (1571–1630) from astronom-
ical observations of the motion of the planets.

Kepler’s three laws of planetary motion can be stated as follows:

1. Each planet describes an ellipse, with the sun located at one
of its foci.

2. The radius vector drawn from the sun to a planet sweeps
equal areas in equal times.

3. The squares of the periodic times of the planets are propor-
tional to the cubes of the semimajor axes of their orbits.

The first law states a particular case of the result established in
Sec. 12.12, and the second law expresses that the areal velocity of
each planet is constant (see Sec. 12.9). Kepler’s third law can also be
derived from the results obtained in Sec. 12.12.†

†See Prob. 12.120.

12-4512.13 Kepler’s Laws of Planetary Motion
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12-46

SAMPLE PROBLEM 12.9

A satellite is launched in a direction parallel to the surface of the earth with
a velocity of 36 900 km/h from an altitude of 500 km. Determine (a) the max-
imum altitude reached by the satellite, (b) the periodic time of the satellite.

SOLUTION

a. Maximum Altitude. After the satellite is launched, it is subjected
only to the gravitational attraction of the earth; its motion is thus governed
by Eq. (12.39),

�
1
r

� � �
G
h
M
2� � C cos � (1)

Since the radial component of the velocity is zero at the point of launching
A, we have h � r0v0. Recalling that for the earth R � 6370 km, we compute

r0 � 6370 km � 500 km � 6870 km � 6.87 � 106 m

v0 � 36 900 km�h � �
3
3
6
.
.
6
9

�

�

1
1
0
0

3

6

s
m

� � 10.25 � 103 m/s

h � r0v0 � (6.87 � 106 m)(10.25 � 103 m/s) � 70.4 � 109 m2/s
h2 � 4.96 � 1021 m4/s2

Since GM � gR2, where R is the radius of the earth, we have

GM � gR2 � (9.81 m/s2)(6.37 � 106 m)2 � 398 � 1012 m3/s2

�
G
h
M
2� ��

4
3
.
9
9
8
6

�

�

1
1
0
0

1

2

2

1
m
m

3

4
/
/
s
s

2

2�� 80.3 � 10�9 m�1

Substituting this value into (1), we obtain

�
1
r

� � 80.3 � 10�9 m�1 � C cos � (2)

Noting that at point A we have � � 0 and r � r0 � 6.87 � 106 m, we com-
pute the constant C:

�
6.87 �

1
106 m
� � 80.3 � 10�9 m�1 � C cos 0° C � 65.3 � 10�9 m�1

At A�, the point on the orbit farthest from the earth, we have � � 180°. Using
(2), we compute the corresponding distance r1:

�
r
1

1
� � 80.3 � 10�9 m�1 � (65.3 � 10�9 m�1) cos 180°

r1 � 66.7 � 106 m � 66 700 km
Maximum altitude � 66 700 km � 6370 km � 60 300 km   

b. Periodic Time. Since A and A� are the perigee and apogee,
respectively, of the elliptic orbit, we use Eqs. (12.46) and (12.47) and com-
pute the semimajor and semiminor axes of the orbit:

a � �
1
2�(r0 � r1) � �

1
2�(6.87 � 66.7)(106) m � 36.8 � 106 m

b � �r0r1� � �(6.87)(�66.7)� � 106 m � 21.4 � 106 m

	 � �
2�

h
ab
� �

2�(36.8 � 106 m)(21.4 � 106 m)
����

70.4 � 109 m2/s

Maximum altitude

36,900 km/h

Earth

500 km

R
A' A

r1

v0

r0

r
q

OA' A
C

B

r1 r0

a

b

	 � 70.3 � 103 s � 1171 min � 19 h 31 min   
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S O LV I N G  P R O B L E M S  
O N  YO U R  O W N

In this lesson, we continued our study of the motion of a particle under a central force
and applied the results to problems in space mechanics. We found that the trajectory
of a particle under a central force is defined by the differential equation

�
d
d

2

�

u
2� � u � �

mh
F
2u2� (12.37)

where u is the reciprocal of the distance r of the particle to the center of force (u �
1�r), F is the magnitude of the central force F, and h is a constant equal to the angu-
lar momentum per unit mass of the particle. In space-mechanics problems, F is the
force of gravitational attraction exerted on the satellite or spacecraft by the sun, earth,
or other planet about which it travels. Substituting F � GMm�r2 � GMmu2 into Eq.
(12.37), we obtain for that case

�
d
d

2

�

u
2� � u � �

G
h
M
2� (12.38)

where the right-hand member is a constant.

1. Analyzing the motion of satellites and spacecraft. The solution of the differ-
ential equation (12.38) defines the trajectory of a satellite or spacecraft. It was obtained
in Sec. 12.12 and was given in the alternative forms

�
1
r

� � �
G
h
M
2� � C cos � or �

1
r

� � �
G
h
M
2�(1 � 
 cos �) (12.39, 12.39�)

Remember when applying these equations that � � 0 always corresponds to the perigee
(the point of closest approach) of the trajectory (Fig. 12.19) and that h is a constant for
a given trajectory. Depending on the value of the eccentricity 
, the trajectory will be
a hyperbola, a parabola, or an ellipse.

a. � � 1: The trajectory is a hyperbola, so that for this case the spacecraft
never returns to its starting point.

b. � � 1: The trajectory is a parabola. This is the limiting case between open
(hyperbolic) and closed (elliptic) trajectories. We had observed for this case that the ve-
locity v0 at the perigee is equal to the escape velocity vesc,

v0 � vesc � 
�
2G

r0

M
�� (12.43)

Note that the escape velocity is the smallest velocity for which the spacecraft does not
return to its starting point.

12-47
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c. �  1: The trajectory is an elliptic orbit. For problems involving elliptic or-
bits, you may find that the relation derived in Prob. 12.102,

�
r
1

0
� � �

r
1

1
� � �

2G
h2

M
�

will be useful in the solution of subsequent problems. When you apply this equation,
remember that r0 and r1 are the distances from the center of force to the perigee (� �
0) and apogee (� � 180°), respectively; that h � r0v0 � r1v1; and that, for a satellite or-
biting the earth, GMearth � gR2, where R is the radius of the earth. Also recall that the
trajectory is a circle when 
 � 0.

2. Determining the point of impact of a descending spacecraft. For problems
of this type, you may assume that the trajectory is elliptic and that the initial point of
the descent trajectory is the apogee of the path (Fig. 12.22). Note that at the point of
impact, the distance r in Eqs. (12.39) and (12.39�) is equal to the radius R of the body
on which the spacecraft lands or crashes. In addition, we have h � RvI sin �I, where
vI is the speed of the spacecraft at impact and �I is the angle that its path forms with
the vertical at the point of impact.

3. Calculating the time to travel between two points on a trajectory. For cen-
tral force motion, the time t required for a particle to travel along a portion of its tra-
jectory can be determined by recalling from Sec. 12.9 that the rate at which area is
swept per unit time by the position vector r is equal to one-half of the angular mo-
mentum per unit mass h of the particle: dA�dt � h�2. It follows, since h is a constant
for a given trajectory, that

t � �
2
h
A
�

where A is the total area swept in the time t.

a. In the case of an elliptic trajectory, the time required to complete one or-
bit is called the periodic time and is expressed as

	 � �
2(�

h
ab)
� (12.45)

where a and b are the semimajor and semiminor axes, respectively, of the ellipse and
are related to the distances r0 and r1 by

a � �
1
2�(r0 � r1) and b � �r0r1� (12.46, 12.47)

b. Kepler’s third law provides a convenient relation between the periodic times
of two satellites describing elliptic orbits about the same body [Sec. 12.13]. Denoting
the semimajor axes of the two orbits by a1 and a2, respectively, and the corresponding
periodic times by 	1 and 	2, we have

�
	

	

2
1
2
2
� � �

a
a

3
1
3
2
�

c. In the case of a parabolic trajectory, you may be able to use the expres-
sion given on the inside of the front cover of the book for a parabolic or a semipara-
bolic area to calculate the time required to travel between two points of the trajectory.
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12-49

Problems

12.94 A particle of mass m is projected from point A with an initial
velocity v0 perpendicular to OA and moves under a central force F along an
elliptic path defined by the equation r � r0�(2 � cos �). Using Eq. (12.37),
show that F is inversely proportional to the square of the distance r from the
particle to the center of force O.

AO

r

q

r0

F

m v0

v

F m

O

q

r

y

C

m
q

F

O

r

r0

x

12.95 A particle of mass m describes the path defined by the equa-
tion r � r0�(6 cos � � 5) under a central force F directed away from the cen-
ter of force O. Using Eq. (12.37), show that F is inversely proportional to
the square of the distance r from the particle to O.

12.96 A particle of mass m describes the parabola y � x2�4r0 under a
central force F directed toward the center of force C. Using Eq. (12.37) and
Eq. (12.39�) with 
 � 1, show that F is inversely proportional to the square
of the distance r from the particle to the center of force and that the angu-
lar momentum per unit mass h � �2GMr�0�.

12.97 For the particle of Prob. 12.74, and using Eq. (12.37), show that
the central force F is proportional to the distance r from the particle to the
center of force O.

12.98 It was observed that during the Galileo spacecraft’s first flyby of
the earth, its minimum altitude was 600 mi above the surface of the earth.
Assuming that the trajectory of the spacecraft was parabolic, determine the
maximum velocity of Galileo during its first flyby of the earth.

Fig. P12.94

Fig. P12.95

Fig. P12.96
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12-50 Kinetics of Particles: Newton’s Second Law 12.99 As a space probe approaching the planet Venus on a parabolic
trajectory reaches point A closest to the planet, its velocity is decreased to
insert it into a circular orbit. Knowing that the mass and the radius of Venus
are 334 � 1021 lb � s2/ft and 3761 mi, respectively, determine (a) the veloc-
ity of the probe as it approaches A, (b) the decrease in velocity required to
insert it into a circular orbit.

12.100 It was observed that as the Galileo spacecraft reached the point
of its trajectory closest to Io, a moon of the planet Jupiter, it was at a dis-
tance of 2820 km from the center of Io and had a velocity of 15 km/s. Know-
ing that the mass of Io is 0.01496 times the mass of the earth, determine the
eccentricity of the trajectory of the spacecraft as it approached Io.

12.101 It was observed that during its second flyby of the earth, the
Galileo spacecraft had a velocity of 14.1 km/s as it reached its minimum 
altitude of 303 km above the surface of the earth. Determine the eccentricity
of the trajectory of the spacecraft during this portion of its flight.

12.102 A satellite describes an elliptic orbit about a planet of mass M.
Denoting by r0 and r1, respectively, the minimum and maximum values of
the distance r from the satellite to the center of the planet, derive the relation

� �

where h is the angular momentum per unit mass of the satellite.

2GM
�

h2
1

�
r1

1
�
r0

175 mi

A

C

B

A B
O

r1r0

A B

6200 mi
86,900 mi

R = 3960 mi

12.103 The Chandra X-ray observatory, launched in 1999, achieved an
elliptical orbit of minimum altitude 6200 mi and maximum altitude 86,900 mi
above the surface of the earth. Assuming that the observatory was transferred
to this orbit from a circular orbit of altitude 6200 mi at point A, determine
(a) the increase in speed required at A, (b) the speed of the observatory at B.

Fig. P12.102

Fig. P12.99

Fig. P12.103
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12-51Problems12.104 A satellite describes a circular orbit at an altitude of 19 110 km
above the surface of the earth. Determine (a) the increase in speed required
at point A for the satellite to achieve the escape velocity and enter a para-
bolic orbit, (b) the decrease in speed required at point A for the satellite to
enter an elliptic orbit of minimum altitude 6370 km, (c) the eccentricity 
 of
the elliptic orbit.

12.105 As it describes an elliptic orbit about the sun, a spacecraft
reaches a maximum distance of 325 � 106 km from the center of the sun at
point A (called the aphelion) and a minimum distance of 148 � 106 km at
point B (called the perihelion). To place the spacecraft in a smaller elliptic
orbit with aphelion A� and perihelion B�, where A� and B� are located 264.7 �
106 km and 137.6 � 106 km, respectively, from the center of the sun, the
speed of the spacecraft is first reduced as it passes through A and then is fur-
ther reduced as it passes through B�. Knowing that the mass of the sun is
332.8 � 103 times the mass of the earth, determine (a) the speed of the space-
craft at A, (b) the amounts by which the speed of the spacecraft should be
reduced at A and B� to insert it into the desired elliptic orbit.

6370 km
19 110 km

R = 6370 km A

A' B'A B

264.7 × 106 km  

325 × 106 km

137.6 × 106 km 

148 × 106 km 

C

AB

Second transfer orbit

First
transfer

orbit

Approach trajectory

2500 mi

rB rA

O

12.106 A space probe is in a circular orbit about the planet Mars. The
orbit must have a radius of 2500 mi and be located in a specified plane which
is different from the plane of the approach trajectory. As the probe reaches
A, the point of its original trajectory closest to Mars, it is inserted into a first
elliptic transfer orbit by reducing its speed by �vA. This orbit brings it to
point B with a much reduced velocity. There the probe is inserted into a sec-
ond transfer orbit located in the specified plane by changing the direction of
its velocity and further reducing its speed by �vB. Finally, as the probe reaches
point C, it is inserted into the desired circular orbit by reducing its speed by
�vC. Knowing that the mass of Mars is 0.1074 times the mass of the earth,
that rA � 5625 mi and rB � 112,500 mi, and that the probe approaches A on
a parabolic trajectory, determine by how much the speed of the probe should
be reduced (a) at A, (b) at B, (c) at C.

12.107 For the probe of Prob. 12.106, it is known that rA � 5625 mi
and that the speed of the probe is reduced by 1300 ft/s as it passes through
A. Determine (a) the distance from the center of Mars to point B, (b) the
amounts by which the speed of the probe should be reduced at B and C,
respectively.

Fig. P12.106

Fig. P12.104

Fig. P12.105
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12-52 Kinetics of Particles: Newton’s Second Law 12.108 Determine the time needed for the space probe of Prob.
12.106 to travel from A to B on its first transfer orbit.

12.109 The Clementine spacecraft described an elliptic orbit of min-
imum altitude hA � 250 mi and a maximum altitude of hB � 1840 mi above
the surface of the moon. Knowing that the radius of the moon is 1080 mi
and the mass of the moon is 0.01230 times the mass of the earth, determine
the periodic time of the spacecraft.

12.110 A spacecraft and a satellite are at diametrically opposite posi-
tions in the same circular orbit of altitude 500 km above the earth. As it passes
through point A, the spacecraft fires its engine for a short interval of time to
increase its speed and enter an elliptic orbit. Knowing that the spacecraft re-
turns to A at the same time the satellite reaches A after completing one and
a half orbits, determine (a) the increase in speed required, (b) the periodic
time for the elliptic orbit.

A BhBhA

A
SpacecraftSatellite

500  km

R = 6370 km

A

B

C

4560 mi

12.111 Based on observations made during the 1996 sighting of the
comet Hyakutake, it was concluded that the trajectory of the comet is a highly
elongated ellipse for which the eccentricity is approximately 
 � 0.999887.
Knowing that for the 1996 sighting the minimum distance between the comet
and the sun was 0.230RE, where RE is the mean distance from the sun to the
earth, determine the periodic time of the comet.

12.112 It was observed that during its first flyby of the earth, the
Galileo spacecraft had a velocity of 6.48 mi/s as it reached its minimum dis-
tance of 4560 mi from the center of the earth. Assuming that the trajectory
of the spacecraft was parabolic, determine the time needed for the space-
craft to travel from B to C on its trajectory.

12.113 Determine the time needed for the space probe of Prob. 12.99
to travel from B to C.

12.114 A space probe is describing a circular orbit of radius nR with
a speed �0 about a planet of radius R and center O. As the probe passes
through point A, its speed is reduced from v0 to �v0, where �  1, to place
the probe on a crash trajectory. Express in terms of n and � the angle AOB,
where B denotes the point of impact of the probe on the planet.

B

R

A

bv0

nR

O

Fig. P12.109

Fig. P12.110

Fig. P12.112

Fig. P12.114

bee0491x_ch12.qxd  1/16/03  11:14 AM  Page 12-52 mac76 mac76:385_reb:



12-53

12-53Problems12.115 Prior to the Apollo missions to the moon, several Lunar Orbiter
spacecraft were used to photograph the lunar surface to obtain information
regarding possible landing sites. At the conclusion of each mission, the tra-
jectory of the spacecraft was adjusted so that the spacecraft would crash on
the moon to further study the characteristics of the lunar surface. Shown is
the elliptic orbit of Lunar Orbiter 2. Knowing that the mass of the moon is
0.01230 times the mass of the earth, determine the amount by which the
speed of the orbiter should be reduced at point B so that it impacts the lunar
surface at point C. (Hint. Point B is the apogee of the elliptic impact trajectory.)

R = 1080 mi

A B

C

70°

1110 mi 2240 mi

12.116 A long-range ballistic trajectory between points A and B on
the earth’s surface consists of a portion of an ellipse with the apogee at point
C. Knowing that point C is 1500 km above the surface of the earth and the
range R� of the trajectory is 6000 km, determine (a) the velocity of the pro-
jectile at C, (b) the eccentricity 
 of the trajectory.

12.117 A space shuttle is describing a circular orbit at an altitude of
563 km above the surface of the earth. As it passes through point A, it fires
its engine for a short interval of time to reduce its speed by 152 m/s and
begin its decent toward the earth. Determine the angle AOB so that the
altitude of the shuttle at point B is 121 km. (Hint. Point A is the apogee of
the elliptic decent orbit.)

12.118 A satellite describes an elliptic orbit about a planet. Denoting
by r0 and r1 the distances corresponding, respectively, to the perigee and
apogee of the orbit, show that the curvature of the orbit at each of these two
points can be expressed as

� � � �
12.119 (a) Express the eccentricity 
 of the elliptic orbit described by

a satellite about a planet in terms of the distances r0 and r1 corresponding,
respectively, to the perigee and apogee of the orbit. (b) Use the result ob-
tained in part a and the data given in Prob. 12.111, where R
 � 93.0 � 106 mi,
to determine the appropriate maximum distance from the sun reached by
comet Hyakutake.

12.120 Derive Kepler’s third law of planetary motion from Eqs. (12.39)
and (12.45).

12.121 Show that the angular momentum per unit mass h of a satel-
lite describing an elliptic orbit of semimajor axis a and eccentricity 
 about
a planet of mass M can be expressed as

h � �GMa(1� � 
2)�

1
�
r1

1
�
r0

1
�
2

1
�
�

Fig. P12.115

Fig. P12.117

Fig. P12.118 and P12.119

A

B

O

563 km

R = 6370 km

A B
O

r1r0

R = 6370 km

O

A

C

B

vC

f

Fig. P12.116
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12-54

Newton’s second law

Linear momentum

Consistent systems of units

Equations of motion for a particle

Dynamic equilibrium

R E V I E W  A N D  S U M M A R Y
F O R  C H A P T E R  1 2

This chapter was devoted to Newton’s second law and its applica-
tion to the analysis of the motion of particles.

Denoting by m the mass of a particle, by �F the sum, or
resultant, of the forces acting on the particle, and by a the accel-
eration of the particle relative to a newtonian frame of reference
[Sec. 12.2], we wrote

�F � ma (12.2)

Introducing the linear momentum of a particle, L � mv [Sec.
12.3], we saw that Newton’s second law can also be written in the
form

�F � L̇ (12.5)

which expresses that the resultant of the forces acting on a parti-
cle is equal to the rate of change of the linear momentum of the
particle.

Equation (12.2) holds only if a consistent system of units is
used. With SI units, the forces should be expressed in newtons, the
masses in kilograms, and the accelerations in m/s2; with U.S. cus-
tomary units, the forces should be expressed in pounds, the masses
in lb � s2/ft (also referred to as slugs), and the accelerations in ft/s2

[Sec. 12.4].

To solve a problem involving the motion of a particle, Eq. (12.2)
should be replaced by equations containing scalar quantities [Sec.
12.5]. Using rectangular components of F and a, we wrote

�Fx � max �Fy � may �Fz � maz (12.8)

Using tangential and normal components, we had

�Ft � m �Fn � m (12.9�)

We also noted [Sec. 12.6] that the equations of motion of a par-
ticle can be replaced by equations similar to the equilibrium equa-
tions used in statics if a vector �ma of magnitude ma but of sense
opposite to that of the acceleration is added to the forces applied
to the particle; the particle is then said to be in dynamic equilib-
rium. For the sake of uniformity, however, all the Sample Problems
were solved by using the equations of motion, first with rectangular
components [Sample Probs. 12.1 through 12.4], then with tangen-
tial and normal components [Sample Probs. 12.5 and 12.6].

v2

�
�

dv
�
dt
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12-55Review and Summary for Chapter 12
In the second part of the chapter, we defined the angular

momentum HO of a particle about a point O as the moment about
O of the linear momentum mv of that particle [Sec. 12.7]. We wrote

HO � r � mv (12.12)

and noted that HO is a vector perpendicular to the plane contain-
ing r and mv (Fig. 12.24) and of magnitude

HO � rmv sin � (12.13)

Resolving the vectors r and mv into rectangular components,
we expressed the angular momentum HO in the determinant form

HO � � � (12.14)

In the case of a particle moving in the xy plane, we have z � vz � 0.
The angular momentum is perpendicular to the xy plane and is
completely defined by its magnitude. We wrote

HO � Hz � m(xvy � yvx) (12.16)

Computing the rate of change ḢO of the angular momentum
HO, and applying Newton’s second law, we wrote the equation

�MO � ḢO (12.19)

which states that the sum of the moments about O of the forces act-
ing on a particle is equal to the rate of change of the angular mo-
mentum of the particle about O.

In many problems involving the plane motion of a particle, it
is found convenient to use radial and transverse components [Sec.
12.8, Sample Prob. 12.7] and to write the equations

�Fr � m(r̈ � r�̇2) (12.21)
�F� � m(r�̈ � 2ṙ�̇) (12.22)

When the only force acting on a particle P is a force F directed
toward or away from a fixed point O, the particle is said to be mov-
ing under a central force [Sec. 12.9]. Since �MO � 0 at any given
instant, it follows from Eq. (12.19) that ḢO � 0 for all values of t
and, thus, that

HO � constant (12.23)

We concluded that the angular momentum of a particle moving
under a central force is constant, both in magnitude and direction,
and that the particle moves in a plane perpendicular to the 
vector HO.

i j k
x y z

mvx mvy mvz

Angular momentum

Rate of change of angular momentum

Radial and transverse components

Motion under a central force

P

HO

r
O

z

x

y

mv

f

Fig. 12.24
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12-56 Kinetics of Particles: Newton’s Second Law

Newton’s law of universal gravitation

Orbital motion

Fig. 12.25

Fig. 12.26

Fig. 12.27

Recalling Eq. (12.13), we wrote the relation

rmv sin � � r0mv0 sin �0 (12.25)

for the motion of any particle under a central force (Fig. 12.25).
Using polar coordinates and recalling Eq. (12.18), we also had

r2�̇ � h (12.27)

where h is a constant representing the angular momentum per unit
mass, HO�m, of the particle. We observed (Fig. 12.26) that the in-
finitesimal area dA swept by the radius vector OP as it rotates
through d� is equal to �

1
2� r2 d� and, thus, that the left-hand mem-

ber of Eq. (12.27) represents twice the areal velocity dA/dt of the
particle. Therefore, the areal velocity of a particle moving under a
central force is constant.

An important application of the motion under a central force
is provided by the orbital motion of bodies under gravitational at-
traction [Sec. 12.10]. According to Newton’s law of universal grav-
itation, two particles at a distance r from each other and of masses
M and m, respectively, attract each other with equal and opposite
forces F and �F directed along the line joining the particles
(Fig. 12.27). The common magnitude F of the two forces is

F � G (12.28)

where G is the constant of gravitation. In the case of a body of
mass m subjected to the gravitational attraction of the earth, the
product GM, where M is the mass of the earth, can be expressed as

GM � gR2 (12.30)

where g � 9.81 m/s2 � 32.2 ft/s2 and R is the radius of the earth.

It was shown in Sec. 12.11 that a particle moving under a cen-
tral force describes a trajectory defined by the differential equation

� u � (12.37)
F

�
mh2u2

d2u
�
d�2

Mm
�
r2

P

r

O

F
d

r d

dA

q

q

q

O

P

r

mv

mv0

P0r0

0

f

f

r
F

m

–F

M
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where F � 0 corresponds to an attractive force and u � 1�r. In the
case of a particle moving under a force of gravitational attraction
[Sec. 12.12], we substituted for F the expression given in Eq.
(12.28). Measuring � from the axis OA joining the focus O to the
point A of the trajectory closest to O (Fig. 12.28), we found that
the solution to Eq. (12.37) was

� u � � C cos � (12.39)

This is the equation of a conic of eccentricity � � Ch2�GM. The
conic is an ellipse if �  1, a parabola if � � 1, and a hyperbola if
� � 1. The constants C and h can be determined from the initial
conditions; if the particle is projected from point A (� � 0, r � r0)
with an initial velocity v0 perpendicular to OA, we have h � r0v0
[Sample Prob. 12.9].

It was also shown that the values of the initial velocity corre-
sponding, respectively, to a parabolic and a circular trajectory were

vesc � 
� (12.43)

vcirc � 
� (12.44)

and that the first of these values, called the escape velocity, is the
smallest value of v0 for which the particle will not return to its start-
ing point.

The periodic time 	 of a planet or satellite was defined as the
time required by that body to describe its orbit. It was shown that

	 � (12.45)

where h � r0v0 and where a and b represent the semimajor and
semiminor axes of the orbit. It was further shown that these semi-
axes are respectively equal to the arithmetic and geometric means
of the maximum and minimum values of the radius vector r.

The last section of the chapter [Sec. 12.13] presented Kepler’s
laws of planetary motion and showed that these empirical laws, ob-
tained from early astronomical observations, confirm Newton’s laws
of motion as well as his law of gravitation.

2�ab
�

h

GM
�

r0

2GM
�

r0

GM
�
h2

1
�
r

Fig. 12.28
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Review Problems

12.122 The acceleration of a package sliding down section AB of in-
cline ABC is 5 m/s2. Assuming that the coefficient of kinetic friction is the
same for each section, determine the acceleration of the package on section
BC of the incline.

A

B

C

3

3

4

4
A

30 kg

25 kg
B

A

B

C

1 ft

2.5 ft

60 lb

60 lb

35 lb

30°

12.123 The two blocks shown are originally at rest. Neglecting the
masses of the pulleys and the effect of friction in the pulleys and assuming
that the coefficients of friction between block A and the horizontal surface
are �s � 0.25 and �k � 0.20, determine (a) the acceleration of each block,
(b) the tension in the cable.

12.124 The coefficients of friction between package A and the incline
are �s � 0.35 and �k � 0.30. Knowing that the system is initially at rest and
that block B comes to rest on block C, determine (a) the maximum velocity
reached by package A, (b) the distance up the incline through which pack-
age A will travel.

Fig. P12.122

Fig. P12.123

Fig. P12.124
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12-59Review Problems12.125 The masses of blocks A, B, and C are mA � 4 kg, mB � 10 kg,
and mC � 2 kg. Knowing that P � 0 and neglecting the masses of the pul-
leys and the effect of friction, determine (a) the acceleration of each block,
(b) the tension in the cord.

Fig. P12.128

B

A  

C
P

P

BA C

D

A

B

30 lb

12 lb

30°

A B

 = 45 mr

 = 30 mr

12.126 Block A weighs 20 lb, and blocks B and C weigh 10 lb each.
Knowing that the blocks are initially at rest and that B moves through 8 ft in
2 s, determine (a) the magnitude of the force P, (b) the tension in the cord
AD. Neglect the masses of the pulleys and axle friction.

12.127 A 12-lb block B rests as shown on the upper surface of a 30-
lb wedge A. Neglecting friction, determine immediately after the system is
released from rest (a) the acceleration of A, (b) the acceleration of B rela-
tive to A.

12.128 The roller-coaster track shown is contained in a vertical plane.
The portion of track between A and B is straight and horizontal, while the
portions to the left of A and to the right of B have radii of curvature as in-
dicated. A car is traveling at a speed of 72 km/h when the brakes are sud-
denly applied, causing the wheels of the car to slide on the track (�k � 0.25).
Determine the initial deceleration of the car if the brakes are applied as the
car (a) has almost reached A, (b) is traveling between A and B, (c) has just
passed B.

12.129 A satellite is placed into a circular orbit about the planet Sat-
urn at an altitude of 3400 km. The satellite describes its orbit with a veloc-
ity of 24.45 km/s. Knowing that the radius of the orbit about Saturn and the
periodic time of Atlas, one of Saturn’s moons, are 137.64 � 103 km and 0.6019
days, respectively, determine (a) the radius of Saturn, (b) the mass of Saturn.
(The periodic time of a satellite is the time it requires to complete one full
revolution about the planet.)

12.130 The periodic times (see Prob. 12.129) of the planet Uranus’s
moons Juliet and Titania have been observed to be 0.4931 days and 8.706
days, respectively. Knowing that the radius of Juliet’s orbit is 40,000 mi, de-
termine (a) the mass of Uranus, (b) the radius of Titania’s orbit.

Fig. P12.125 Fig. P12.126

Fig. P12.127
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A C

Circular orbit

B

Fig. P12.131

Fig. P12.133

40.3 mi 336 mi

R = 3960 mi

A B

v0

12.131 A space probe is to be placed in a circular orbit of 6420-km
radius about the planet Venus. As the probe approaches Venus, its speed is
decreased so that, as it reaches point A, its speed and altitude above the sur-
face of the planet are 7420 m/s and 288 km, respectively. The path of the
probe from A to B is elliptic, and as the probe approaches B, its speed is in-
creased by �vB � 21.4 m/s to insert it into the elliptic transfer orbit BC. Fi-
nally, as the probe passes through C, its speed is decreased by �vC � �238 m/s
to insert it into the required circular orbit. Knowing that the mass and the
radius of the planet Venus are 4.869 � 1024 kg and 6052 km, respectively,
determine (a) the speed of the probe as it approaches B on the elliptic path,
(b) its altitude above the surface of the planet at B.

12.132 To place a communications satellite into a geosynchronous
orbit (see Prob. 12.79) at an altitude of 22,240 mi above the surface of the
earth, the satellite first is released from a space shuttle, which is in a circu-
lar orbit at an altitude of 185 mi, and then is propelled by an upper-stage
booster to its final altitude. As the satellite passes through A, the booster’s
motor is fired to insert the satellite into an elliptic transfer orbit. The booster
is again fired at B to insert the satellite into a geosynchronous orbit. Know-
ing that the second firing increases the speed of the satellite by 4810 ft/s, de-
termine (a) the speed of the satellite as it approaches B on the elliptic trans-
fer orbit, (b) the increase in speed resulting from the first firing at A.

185 mi

A B
R = 3960 mi

22,240 mi

12.133 At main engine cutoff of its thirteenth flight, the space shut-
tle Discovery was in an elliptic orbit of minimum altitude 40.3 mi and max-
imum altitudes 336 mi above the surface of the earth. Knowing that at point
A the shuttle had a velocity v0 parallel to the surface of the earth and that
the shuttle was transferred to a circular orbit as it passed through point B,
determine (a) the speed �0 of the shuttle at A, (b) the increase in speed re-
quired at B to insert the shuttle into the circular orbit.

Fig. P12.132
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Fig. P4.C1

Computer Problems

12.C1 Block B of weight 18 lb is initially at rest as shown on the uper
surface of a 45-lb wedge A which is supported by a horizontal surface. A 
4-lb block C is connected to block B by a cord, which passes over a pulley
of negligible mass. Using computational software and denoting by � the co-
efficient of friction at all surfaces, calculate the initial acceleration of the
wedge and the initial acceleration of block B relative to the wedge for val-
ues of � � 0. Use 0.01 iincrements for � until the wedge does not move and
then use 0.1 increments until no motion occurs.

A

30°

C

B

Fig. P4.C2

1.5 m

v0

q

12.C2 A small 0.50-kg block is at rest at the top of a cylindrical sur-
face. The block is given an initial velocity v0 to the right of magnitude 3 m/s,
which causes it to slide on the cylindrical surface. Using computational soft-
ware calculate and plot the values of � at which the block leaves the surface
for values of �k, the coefficient of kinetic friction between the block and the
surface, from 0 to 0.4 usiing 0.05 increments.
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12-62 Kinetics of Particles: Newton’s Second Law

12.C6 A 10-lb bag is gently pushed off the top of a wall at point A and
swings in a vertical plane at the end of a rope of length l � 5 ft. Calculate
and plot the speed of the bag and the magnitude of the tension in the rope
as functions of the angle � from 0 to 90°.

Fig. P4.C3

r0

12.C3 A block of mass m is attached to a spring of constant k. The
block is released from rest when the spring is in a horizontal and undeformed
position. Knowing that r0 � 4 ft, use computational software to determine
(a) for k/m � 15 s�2, 20s�2, and 25 s�2, the length of the spring and the
magnitude and direction of the velocity of the block as the block passes di-
rectly under the point of suspension of the spring, (b) the value of k/m for
which that velocity is horizontal.

12.C4 An airplane has a weight of 60,000 lb and its engines develop
a constant thrust of 12,500 lb during take-off. The drag D exerted on the air-
plane has a magnitude D � 0.060v2, where D is expressed in lb and v is the
speed in ft/s. The airplane starts from rest at the end of the runway and be-
comes airborne at a speed of 250 ft/s. Determine and plot the position and
speed of the airplane as functions of time and the speed as a function of po-
sition as the airplane moves down the runway.

12.C5 Two wires AC and BC are tied at point C to a small sphere
which revolves at a constant speed v in the horizontal circle shown. Calcu-
late and plot the tensions in the wires as functions of v. Determine the range
of values of v for which both wires reman taut.

Fig. P4.C5

B

A

C

30°

45°

2 lb

5 ft

Fig. P4.C6

C

B

A

q

l
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12.C7 The two-dimensional motion of particle � is defined by the re-
lations r � t3 � 2t2 and � � t3 � 4t, where r is expressed in mm, t in sec-
onds, and � in radians. Knowing that the particle has a mass of 0.25 kg and
moves in a horizontal plane, calculate and plot the radial and transverse com-
ponents and the magnitude of the force actiing on the particle as functions
of t from 0 to 1.5 s.

Fig. P4.C7

q

O

B A

r

12-63Computer Problems
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