SYMBOLS

- A cross-sectional area; area, in.²
- A_{BM} cross-sectional area of base metal for a welded joint, in.²
- A_I influence area, ft²
- A_{lb} influence area of an interior beam, ft²
- A_{lc} influence area of an interior column, ft²
- A_{Ig} influence area of an interior girder, ft²
- A_R cross-sectional area of a threaded rod based on the nominal diameter of the rod, in.²

 A_T tributary area, ft²

- A_{Tb} tributary area of an interior beam, ft²
- A_{T_c} tributary area of an interior column, ft²
- A_{Tg} tributary area of an interior girder, ft²
- A_b nominal unthreaded body area of bolt or threaded rod, in.²; cross-sectional area based upon the nominal diameter of bolt
- A_c area of the compressive plastic zone, in a fully plastified section
- A_{ce} area of the directly connected elements of a tension member, using transverse welds only, in.²
- A_e effective net area of tension member, in.²; net tensile area of threaded rod, in.²
- A_f gross area of one flange, in.²
- A_{fe} effective area of tension flange, in.²

- A_{fg} gross area of tension flange, in.²
- A_{fn} net area of tension flange, in.²
- A_{g} gross area of a tension member, in.²; gross area of a compression member, in.²
- A_{g1} gross area required to satisfy the limit state of yield on gross area of a tension member, in.²
- A_{p2} gross area required to satisfy the limit state of fracture on net area of a tension member, in.²
- A_{nk} net area along possible failure path k, for a tension member, in.²
- A_{gt} gross area subject to tension limit state of block shear rupture, in.²
- A_{gy} gross area subject to shear limit state of block shear rupture, in.²
- A_h area of cross section lost due to a bolt hole, in.²
- A_n net area of a tension member, in.²
- A_{nt} net area subject to tension limit state of block shear rupture, in.²
- A_{nv} net area subject to shear limit state of block shear rupture, in.²

 A_s stress area of bolt, in.²

- A_{st} cross-sectional area of stiffener or pair of stiffeners, in.²
- A_t area of the tensile plastic zone, in a fully plastified section
- A_v net shear area per shear plane, ft²
- A_w area of beam web, in.²; effective area of weld, in.²
- A_1 area of steel bearing plate (or, base plate), in.²
- A_2 effective concrete support area, below a bearing plate (or, base plate) and within the body of the footing, that is geometrically similar to and concentric with the area A_1 , in.²
- *B* factor for bending stress in tees and double angles; base plate width, in.
- B_d design strength of a bolt, kips

- B_{dv} design shear strength of a bolt, kips
- B_{db} design bearing strength of a bolt, kips
- B_{dbo} design bearing strength of connected plate element for the limit state of ovalization of bolt hole, kips
- B_{dbte} design bearing strength of an end bolt for the limit state of shear tear-out of connected plate element, kips
- B_{dbti} design bearing strength of an interior bolt for the limit state of shear tear-out of connected plate element, kips
- B_{dbe} design bearing strength of an end bolt, kips
- B_{dbi} design bearing strength of an interior bolt, kips
- B_{dt} design tensile strength of a bolt, kips
- B_{dv} design shear strength of a bolt, kips
- B_n nominal strength of a bolt, kips
- B_{nb} nominal bearing strength of a bolt, kips
- B_{nv} nominal shear strength of a bolt in a bearing type joint, kips
- B_{iu} tensile component of applied factored load on a bolt for combined shear and tension loading
- B_{vu} shear component of applied factored load on a bolt for combined shear and tension loading
- B_1, B_2 magnification factors used in determining second-order moment for combined bending and axial compression when first-order analysis is employed
- *BF* beam factor (a factor that can be used to calculate the flexural strength for unbraced length L_b between L_p and L_r)
- *C* width across points of square or hex bolt head or nut

- *C* coefficient for eccentrically loaded bolt and weld groups
- C_a , C_b coefficients used in extended end-plate connection design
- C_b bending coefficient dependent on the shape of moment diagram for lateral-torsional buckling strength of beam segments
- C_d design strength of connectors in a joint, kips
- C_{db} design bearing strength of connectors in a joint, kips
- C_{dv} design shear strength of connectors in a joint, kips
- C_e exposure coefficient
- C_f resultant (force) of the stresses in the compressed flange of a beam
- C_m coefficient applied to bending term in interaction formula for prismatic members and dependent on column curvature caused by applied moments
- C_p external pressure coefficient
- C_{p} , T_{p} compressive and tensile stress resultants of a fully plastified section in bending
- C_{v} , T_{v} compressive and tensile stress resultants of a section in bending at the onset of yielding
- C_t thermal factor
- C_{ν} ratio of critical web stress, according to linear buckling theory, to the shear yield stress of web material
- C_w warping torsional constant of a cross section, in.⁶
- C_1 clearance for tightening of bolts, in.
- C_1 electrode coefficient for relative strength of electrodes where, for E70 electrodes , $C_1 = 1.00$

 C_2 clearance for entering, in.

D dead load; outside diameter of circular hollow section, in.; number of sixteenths of an inch

in the fillet weld size; slip probability factor for bolts

- *E* earthquake load
- E modulus of elasticity or Young's modulus (= 29,000 ksi for steel)
- E_c modulus of elasticity of concrete, ksi
- E_s strain hardening modulus, ksi
- E_t tangent modulus, ksi
- *F* width across flats of bolt head, in.
- *F* clearance for tightening staggered bolts, in.
- F_{BM} nominal strength of the base material to be welded, ksi
- F_{EXX} classification number of weld metal (minimum specified ultimate tensile stress)

$$F_L$$
 smaller of $(F_{yf} - F_r)$ or F_{yw} , ksi

- F_{cr} critical stress, ksi; nominal compressive stress of an axially loaded column, ksi
- F_e elastic buckling stress, ksi
- F_{ex} elastic flexural buckling stress about the major axis, ksi
- F_{ev} elastic flexural buckling stress about the minor axis, ksi
- F_{ez} elastic torsional buckling stress, ksi
- F_n nominal strength per unit area
- F_{nb} nominal bearing strength per unit area, assumed to be uniform over the projected area of the bolt on the connected plate element, ksi
- F_p nominal bearing stress on bolt, ksi
- F_r compressive residual stress in flange (10 ksi for rolled shapes; 16.5 ksi for built-up shapes)
- F_t nominal tensile strength per unit area of bolt shank, ksi

- F_u specified minimum ultimate tensile stress of the type of steel being used, ksi
- F_{ub} ultimate tensile stress of bolt material, ksi
- F_{uBM} ultimate tensile stress of base material, ksi
- F_{up} ultimate tensile stress of connected plate material, ksi
- F_{uv} ultimate shear stress, ksi
- F_{uv} ultimate tensile stress of the weld electrode material, ksi
- F_v nominal shear strength per unit area of bolt shank, ksi
- F_{w} nominal shear strength per unit area of the weld electrode material, ksi
- F_v specified minimum yield stress of the type of steel being used, ksi
- $F_{y}^{\prime\prime\prime\prime}$ The theoretical maximum yield stress (ksi) based on the web depth/thickness ratio (h/t_{w}) above which the web of a column is considered a slender element

Note: In the tables, - indicates $F_{y}^{\prime\prime\prime} > 65$ ksi.

 F_{yb} F_y of a beam

 F_{vBM} yield stress of base material, ksi

 F_{yc} F_y of a column

- F_{vf} specified minimum yield stress of the flange, ksi
- F_{ypl} yield stress of the beam bearing plate or column base plate material, ksi
- F_{vst} specified minimum yield stress of the stiffener material, ksi
- F_{vw} specified minimum yield stress of the web, ksi

 F_{vv} shear yield stress, ksi

- G shear modulus of elasticity (= 11,200 ksi for steel); gust effect factor
- G distance between the lines of bolts or welds connecting tie plates to the components of a

built-up member, in.

G relative stiffness factor (ratio of the total stiffness of columns framing into a joint to that of the stiffening members framing into the same joint)

 G_A , G_B relative stiffness factors at ends A and B of a column

 G_{cni} internal pressure coefficient

- G_e elastic G factor assuming that both columns and girders behave elastically
- G_i inelastic G factor assuming that the girders behave elastically while the columns behave inelastically
- *H* horizontal force, kips; average story height; height of bolt head or nut, in.

$$H_{bt}$$
 height of a braced bent, ft

- *I* impact factor; importance factor; moment of inertia, in.⁴
- I_c moment of inertia of column section about axis perpendicular to plane of buckling (bending), in.⁴
- I_g moment of inertia of girder section about axis perpendicular to plane of buckling (bending), in.⁴

 $I_{g1}, I_{g2}, I_{g3}, I_{g4}$ moments of inertia of girders connected to ends A and B of column AB considered

- I_p polar moment of inertia, in.⁴
- I_{pl} polar moment of inertia of a weld group with the weld treated as a line element, in.³
- I_s importance factor for snow loads
- I_{st} moment of inertia of a stiffener, in.⁴
- I_w importance factor for wind loads

- I_x , I_y moment of inertia of section about x- or y-axis, respectively, in.⁴
- I_{oi} moment of inertia of component, i, about its own center of gravity (parallel axis theorem), in.⁴
- J torsional constant for a section, in.⁴
- *K* effective length factor for a column
- K_{LL} live load element factor
- K_{LLb} live load element factor for an interior beam
- K_{LLc} live load element factor for an interior column
- K_{LLg} live load element factor for an interior girder
- K_{T} theoretical K value for a column
- K_d wind directionality factor
- K_m modified effective length factor of a column to account for the presence of leaning columns in the frame
- K_o effective length factor of a column determined from the nomograph, not accounting for the presence of leaning columns in the frame
- K_{oi} effective length factor of restraining column i obtained from the monograph

 K_x, K_y effective length factor for flexural buckling about x axis and y axis

- $(K_x L_y)_y$ effective length with respect to the minor axis, equivalent in load carrying capacity to the actual effective length about the major axis, ft
- K_z effective length factor for torsional buckling; velocity pressure exposure coefficient that accounts for terrain and height above ground
- K_{zt} topographic factor

- *L* nominal live load due to occupancy (also known as reduced live load, or design live load), psf
- *L* story height or panel spacing; span; span of portal frame; length of tension member, in. or ft, as indicated
- *L* unbraced length of member, in. or ft, as indicated
- L_b laterally unbraced length; length between points which are either braced against lateral displacement of compression flange or braced against twist of the cross section; span of beams
- L_{bt} width of a braced bent, ft
- L_c clear distance for a bolt, in.; unsupported length of a column section
- L_{ce} clear distance for an end bolt, in.
- L_{ci} clear distance for an interior bolt, in.
- L_{con} length of connection in the direction of loading, in.
- L_e end distance of a bolt measured in direction of line of force, in.; edge distance, in.
- L_e effective length of a column, in. or ft, as indicated
- L_{eh} horizontal edge distance, in.
- L_{ev} vertical edge distance, in.
- $L_{e, \text{ full}}$ limiting value of end distance above which limit state of bolt ovalization controls bearing strength, in.
- L_g span length of a girder, ft; unsupported length of a girder or other restraining member, ft; gross length of a fillet weld, in.

 $L_{g1}, L_{g2}, L_{g3}, L_{g4}$ length of girders connected to ends A and B of column AB considered (for

Page 10 of 32

columns in rectangular frames, $L_{g3} = L_{g1}, L_{g4} = L_{g2}$)

- L_{iw} length of a segment of intermittent fillet weld, in.
- L_{lw} length of a longitudinal weld, in.
- L_o basic, or unreduced live load
- L_p limiting laterally unbraced length for full plastic bending capacity, uniform moment case (C_b = 1.0), in.
- L_p^* limiting laterally unbraced length for full plastic flexural strength ($C_b > 1.0$ and $L_p < L_b \le L_r$)
- L_p^{**} limiting laterally unbraced length for full plastic flexural strength ($C_b > 1.0$ and $L_b > L_r$)
- L_{p}' limiting laterally unbraced length for the maximum design flexural strength for noncompact shapes, uniform moment case ($C_{b} = 1.0$)
- L_{p}' limiting laterally unbraced length for the maximum design flexural strength for noncompact shapes, uniform moment case ($C_{b} = 1.0$)

$$L_{pd}$$
 limiting laterally unbraced length for plastic analysis

- L_r limiting laterally unbraced length for inelastic lateral-torsional buckling, in. or ft, as indicated
- L_r roof live load, psf
- L_s side distance of a bolt measured perpendicular to line of force, in.
- L_{st} length of stiffener, in.
- L_{sw} length of slot for a slot weld, in.
- L_t thread length of a bolt, in.
- L_{tp} length of tie plate, measured parallel to the length of the member, in.
- L_{tw} effective length of a transverse weld, in.

 L_w effective length of a fillet weld, in.

 $L_{w.min}$ minimum effective length of a fillet weld, in.

- L_w^* maximum length of end-loaded fillet weld below which the effective length equals the actual length, in.
- *M* number of possible failure paths for a tension member
- *M* bending moment
- $M_{\rm A}$ absolute value of moment at quarter point of the unbraced beam segment, in.-kips
- $M_{\rm B}$ absolute value of moment at centerline of the unbraced beam segment, in.-kips
- $M_{\rm C}$ absolute value of moment at three-quarter point of the unbraced beam segment, in.-kips
- M_T applied torsional moment, in.-kips
- M_{cr} elastic lateral-torsional buckling moment of a beam or a beam segment, in.-kips or ft-kips, as indicated
- M_{cr}^{o} elastic lateral-torsional buckling moment of a beam or a beam segment under uniform moment
- M_d design bending strength of a member
- M_{dI} design bending strength of a beam segment, when $L_p \le L_b \le L_r$
- M_{dE} design bending strength of a beam segment, when $L_b > L_r$
- M_{dI}^{o} design bending strength of a beam segment under uniform moment, when $L_{p} \leq L_{b} \leq L_{r}$
- M_{dE}^{o} design bending strength of a beam segment under uniform moment, when $L_{b} > L_{r}$
- M_{dx} design bending strength about the major axis, in.-kips or ft-kips, as indicated
- M_{dv} design bending strength about the minor axis, in.-kips or ft-kips, as indicated
- M_{ep} resisting moment of a partially plastified section

- M_{ez} resisting moment of the elastic zone of a partially plastified section
- M_{eu} required flexural strength for extended end-plate connection, in.-kips
- M_{lt} maximum first-order factored moment in a beam-column due to lateral frame translation only
- $M_{\rm max}$ maximum bending moment; required bending strength under factored loads
- $M_{\rm max}$ absolute value of maximum moment in the unbraced beam segment (including the end points)
- M_n nominal bending strength of a member

$$M_n'$$
 nominal flexural strength for noncompact shapes, when $L_b \leq L_p$

- M_{nt} maximum first-order factored moment in a beam-column assuming there is no lateral translation of the frame
- M_p plastic bending moment of a section, in.-kips or ft-kips, as indicated
- M_{pc} reduced plastic moment of a section, in the presence of an axial compressive load P

$$M_{pcx}$$
 reduced plastic moment of an I-shape bent about its major axis

- M_{pcy} reduced plastic moment of an I-shape bent about its minor axis
- M_{px} plastic moment of an I-shape bent about its major axis
- M_{pv} plastic moment of an I-shape bent about its minor axis
- M_{pz} resisting moment of the plastic zones of a partially plastified section
- M_r bending moment in a section when the extreme fiber stress reaches $(F_y F_r)$
- M_u required bending strength of a member under factored loads, in.-kips or ft-kips, as indicated
- M_u^* required flexural strength of a beam-column under factored loads, including second-order effects

- M_{uea}^{o} equivalent factored uniform moment capacity for the segment considered
- M_y moment corresponding to onset of yielding at the extreme fiber from an elastic stress distribution (= F_y S for homogeneous sections), in.-kips
- M_1 smaller moment at end of unbraced length of a beam or beam-column segment
- M_2 larger moment at end of unbraced length of a beam or beam-column segment
- *N* number of bolts in a joint
- *N* length of bearing, in.; length of beam bearing plate, in.; length of column base plate, in.;number of bolts in a joint
- N_s number of shear planes in a bearing-type joint; number of slip planes in a slip-critical joint
- *P* axial load on column, kips
- P_E Euler load; elastic buckling load of a pin-ended column, kips
- P_{Ei} Euler load of restraining column *i*
- P_{Ex} , P_{Ey} Euler load for buckling about the x- and y- axis of an I-shape, respectively
- P_{bf} applied factored beam flange force in moment connections, kips
- P_{cr} critical load of a column
- P_d design strength of an axially loaded column, kips
- P_{dx} design strength of an axially loaded column for buckling about its major axis, kips
- P_{dv} design strength of an axially loaded column for buckling about its minor axis, kips
- P_{dp} design bearing load on concrete, kips
- P_{dps} design load on bracket corresponding to the limit state of separation of plates at the top edge
- P_{dsf} design load on bracket corresponding to the limit state of slip
- P_e elastic buckling load of a column, kips

P_{eoi}	elastic flexural buckling load of restraining column <i>i</i> based on the nomograph
P_{ex}	elastic buckling load of a column for buckling about the major axis, kips
P_{ey}	elastic buckling load of a column for buckling about the minor axis, kips
P_{ez}	elastic torsional buckling load of a column, kips
P_{e1}	elastic buckling load used in the determination of magnification factor B_1 , kips
P_{e2}	elastic buckling load used in the determination of magnification factor B_2 , kips
P_{fb}	resistance to flange local bending at a concentrated tensile force centrally applied across the
	flange, kips
P_{max}	maximum strength of an axially loaded column (stability limit load)
P_n	nominal strength of an axially loaded column, kips
P_{np}	nominal bearing load on concrete, kips
P_r	reduced modulus load of a column, kips
P_t	tangent modulus load of a column, kips
$P_{\rm req}$	required axial compressive strength of column, kips
P_u	axial force under factored loads; required axial strength of a column, kips
P_{ueq}	equivalent axial load used in selecting a trial shape for design of a beam column
P_{uf}	factored beam flange force, tensile or compressive, kips
P_{ui}	factored axial load on restraining column <i>i</i>
P_{wb}	resistance to web compression buckling under a pair of compressive concentrated forces,
	applied at both flanges of an I-shaped member at the same location
P_y	yield load of a section (also known as squash load), (= $F_y A_g$), kips

Q concentrated transverse load on a member, kips

- Q' first moment of area in shear flow formula, in.³
- Q_o nominal load effect
- Q_D unfactored dead load, kips
- Q_{Db} dead load transmitted from beams to an interior girder, lbs
- Q_E unfactored earthquake load, kips
- Q_L unfactored live load, kips
- Q_{Lb} live load transmitted from beams to an interior girder, lbs
- Q_s unfactored snow load, kips

 Q_i load effects

- Q_u factored concentrated beam load, kips
- Q_{ug} factored concentrated load transmitted from beams to an interior girder, lbs
- Q_{uj} factored axial load on leaning column j
- *R* rain load; nominal reaction, kips
- *R* earthquake response modification coefficient
- R_d design strength, kips
- R_{dc} design strength of bearing plate corresponding to the limit state of beam web crippling, kips
- R_{dy} design strength of bearing plate corresponding to the limit state of beam web local yielding, kips
- R_{dp} design strength of bearing plate corresponding to the limit state of bearing of plate on concrete or masonry, kips
- R_{df} design strength of bearing plate corresponding to the limit state of plate flexural strength, kips

R_{dw}	design strength of weld corresponding to the limit state of weld metal failure, kips
R_{dBM}	design strength of weld corresponding to the limit state of base material failure, kips
R_{dBM1}	design shear rupture strength of the adjacent base material, kips
R_{dBM2}	design shear yielding strength of the adjacent base material, kips
R_n	nominal strength, kips
$R_{\rm req}$	required strength, kips
R_1	an expression consisting of the first portion of LRFDS Eq. K1-3, kips
R_2	an expression consisting of terms from the second portion of LRFDS Eq. K1-3, kli
R_3	an expression consisting of the first portion of LRFDS Eq. K1-5 <i>a</i> , kips
R_4	an expression consisting of terms from the second portion of LRFDS Eq. K1-5 a , kli
R_5	an expression consisting of the first portion of LRFDS Eq. K1-5b, kips
R_6	an expression consisting of terms from the second portion of LRFDS Eq. K1-5b, kli
S	elastic section modulus, in. ³ ; snow load; in. or ft, as indicated
$S_{\rm s}$	spacing of sag rods, ft
S_{T}	spacing of trusses, ft
S_b	spacing of roof or floor beams, ft
S_{tp}	spacing of tie plates, in. or ft, as indicated
S_x	elastic section modulus about major axis, in. ³
S_{xe}	effective section modulus about major axis, in. ³
S_{xt}, S_{xb}	elastic section modulus referred to tension and compression flanges, respectively, in. ³
S_{xb} , S_{xt}	elastic section modulus referred to bottom and top fibers, respectively, in. ³
SRF	stiffness reduction factor, for use with alignment charts

- T change in temperature, $^{\circ}$ F; distance between web toes of fillets at top and bottom of web, in.; axial load in a tension member, kips
- T unfactored tensile force on slip-critical connections designed at service loads, kips
- $T_{\rm s}$ tension in the top sag rod, kips
- $T_{\rm T}$ tension in tie rod, kips
- T_b, T_m specified pretension load in high-strength bolt, kips
- T_d design strength of a tension member, kips
- T_{dbs} design block shear rupture strength, kips
- T_{d1} design strength of a tension member corresponding to the limit state of yielding in the gross section, kips
- T_{d2} design strength of a tension member corresponding to the limit state of fracture in the net section, kips
- T_{d3} design strength of a tension member corresponding to the limit state of block shear failure, kips
- T_{d4} design strength of a tension member corresponding to the limit state of connector failure, kips
- T_d design strength of a tension rod, kips
- T_{d1} design strength of a tension rod corresponding to the limit state of yielding in the gross section in the unthreaded part (body) of the rod, kips
- T_{d2} design strength of a tension rod corresponding to the limit state of fracture in the net section in the threaded part of the rod, kips

- T_{d3} design strength of a tension rod corresponding to the limit state of the nut stripping the threaded portion of the rod, kips
- T_{d4} design strength of a tension rod corresponding to the limit state of the nut stripping the threaded portion of the nut, kips
- T_{d5} design strength of a tension rod corresponding to the limit state of bearing of the nut on the support, kips
- T_{dR} design strength of a uniform tension rod (i.e., without upset ends), kips
- T_{fnt} tension rupture component limit state of block shear rupture, kips

$$T_{fnv}$$
 shear rupture component – limit state of block shear rupture, kips

$$T_n$$
 nominal strength of a tension member, kips

- T_{n1} nominal strength of a tension member corresponding to the limit state of yielding in the gross section, kips
- T_{n2} nominal strength of a tension member corresponding to the limit state of fracture in the net section, kips
- T_{n3} nominal strength of a tension member corresponding to the limit state of block shear failure, kips
- T_{n4} nominal strength of a tension member corresponding to the limit state of connector failure, kips
- $T_{\rm req}$ required strength of a tension member, kips
- T_u factored tension load, required tensile strength due to factored loads, kips
- T_{ygt} tension yielding component limit state of block shear rupture, kips
- T_{ygv} shear yielding component limit state of block shear rupture, kips

- U reduction coefficient, used in calculating effective net area of a tension member
- *V* shear force, kips; basic wind speed, mph;
- V_d design shear strength, kips
- V_n nominal shear strength, kips
- $V_{\rm reg}$ required shear strength, kips
- V_{u} shear force under factored loads, kips; required shear strength, kips
- *W* wind load; width across flats of nut, in.
- W_d design shear strength of a 1 in. long fillet weld, kli
- W_{tp} width of the plate, measured normal to the length of the member, in.
- X_1, X_2 beam buckling factors defined by LRFDS Eqs. F1-8 and F1-9, respectively
- Z plastic section modulus, in.³
- Z_e effective plastic section modulus, in.³
- $Z_{x rea}$ required plastic section modulus, in.³
- *a* clear distance between transverse stiffeners, in.; coefficient for eccentrically loaded weld group; depth of bracket plate, in.; length of a rectangular plate measured in the direction of main longitudinal stress in the plate, in.;
- *a* distance from bolt centerline to edge of fitting subjected to prying action, but not greater than 1.25*b*, in.
- *b* compression element width perpendicular to load direction, in.; width of a rectangular section, in.; minimum shelf dimension for deposition of fillet weld, in.; width of bracket plate, in.; width of bracket flange plate, in.; distance from bolt centerline to face of fitting subjected to prying action, in.

- b coefficient related to axial compressive strength for beam-column design, (kips)⁻¹
- b_e effective width of the compression block of a bracket flange plate, in.
- b_f flange width of rolled beam or plate girder, in.
- b_s width of extended end-plate, in.
- b_{st} width of transverse or diagonal plate stiffener, in.
- c distance from neutral axis to extreme fiber where flexural stress is computed, in.
- c_b distance from neutral axis to extreme bottom fiber
- c_t distance from neutral axis to extreme top fiber
- *d* nominal diameter of a bolt, in.; overall depth of member, in. ; pin diameter, in.; roller diameter, in.
- $d_{\rm R}$ nominal diameter of a threaded rod, in.
- d_b depth of beam, in.
- d_c depth of column, in.

 $d_{\rm cope}$ depth of cope, in.

- d_{dp} width of doubler plate, in.
- d_e effective width of bolt hole, in.
- d_h diameter of bolt hole (STD or OVS holes), in.
- d_i distance between the center of gravity of an element, *i* of a cross section to the center of gravity of the cross section (for use in parallel axis theorem)
- d_{jp} moment arm between the center lines of flange plates of a flange-plated moment connection, in.
- d_{dp} width of doubler plate, in.

 d_{pw} diameter of plug weld, in.

 $d_{pw, max}$ maximum diameter of hole for a plug weld, in.

 $d_{pw, min}$ minimum diameter of hole for a plug weld, in.

 d_{sw} width of slot for a slot weld, in.

 $d_{sw, max}$ maximum width of hole for a slot weld, in.

 $d_{sw, \min}$ minimum width of hole for a slot weld, in.

e base of natural logarithm = 2.71828...; eccentricity of load; elongation

 e_{o} horizontal distance from the outer edge of channel web to its shear center, in.

 e_v lever arm between the forces C_v and T_v

 e_p lever arm between the forces C_p and T_p

f stress; computed compressive stress; average stress in a stub column test

 f_E Euler stress (elastic buckling stress of a pin-ended column), ksi

 f_a average compressive stress in a plate, ksi

 f_b maximum bending stress, ksi

 f_c ' specified 28-day compressive strength of concrete, ksi

 f_{cr} critical stress of a compressed member or element, ksi

 f_{pl} proportional limit; proportional limit from stub column test

 f_r residual stress

 f_{rc} residual compressive stress

 f_{rt} residual tensile stress

 f_u ultimate stress of a plate, including any post-buckling strength

 f_{v} nominal shear stress, ksi

- g transverse center-to-center spacing (gage) between bolt gage lines, in.; acceleration due to gravity (= 32.2 ft/sec^2)
- g_A gage used in leg A of framing angle, in.
- g_B gage used in leg *B* of framing angle, in.
- g_a, g_b gage distances to lines of bolt holes located in two adjacent elements of a tension member, measured from the heel, in.
- g_a', g_b' gage distances to lines of bolt holes located in two adjacent elements of a tension member, measured along the center line of those elements, in.
- g_{ab} distance between two lines of bolt holes, in two adjacent elements of a tension member, measured along the center line of those elements
- g_j gage for *j*th diagonal segment along possible failure path *k*, for a tension member, in.
- g_1 gage distance in angle leg when only one line of bolts is used in that leg, in.
- g_2, g_3 gage distances in angle leg when two lines of bolts are used in that leg, in.
- *h* clear distance between flanges less the fillet or corner radius for rolled shapes; and for built-up welded sections, the clear distance between flanges, in.
- *h* mean roof height of a building, ft; height of a portal frame, in. or ft, as indicated
- *h* rise of a roof truss or gable, ft
- h_c twice the distance from the centroid to the following: the inside face of the compression flange less the fillet or corner radius, for rolled shapes; the inside face of the compression flange when welds are used, or the nearest line of bolts at the compression flange, for builtup sections, in.

Page 23 of 32

- h_{dp} height of doubler plate, in.
- *k* distance from outer face of flange to web toe of fillet; plate buckling coefficient
- k_c plate buckli9ng coefficient
- k_v web plate buckling coefficient
- k_1 distance from web centerline to flange toe of fillet, in.
- *l* length of the reference segment of weld group considered, in.
- *m* number of floors supported by a column, at a level considered
- *m* coefficient related to strong-axis flexural strength for beam-column design, $(ft-kips)^{-1}$
- *m* cantilever dimension for base plate, used to determine plate thickness, in.
- *n* number of component parts in a built-up section; number of bolts in a vertical row; number of threads per inch on threaded fasteners
- *n* coefficient related to weak-axis flexural strength for beam-column design, $(ft-kips)^{-1}$
- *n* cantilever dimension for base plate, used to determine plate thickness, in.
- n' number of bolts above the neutral axis (in tension)
- n_d number of gage spaces with a diagonal segment along failure path k of a tension member
- n_e number of end bolts in a bolted joint ; number of elements in the cross section of a tension member
- n_i number of interior bolts in a bolted joint
- n_r number of bolts in a horizontal row
- n_t number of threads per inch
- *p* distance center-to-center of two adjacent bolt holes on a given gage line (pitch of bolts), in.;

longitudinal center-to-center spacing (pitch) of intermittent fillet welds, in.

- *p* wind pressure, psf; length of supporting flange parallel to stem or leg of hanger tributary to each bolt in determining prying forces, in.
- p_{Db} dead load per unit area on the tributary area of an interior beam, psf
- p_{Lb} design live load intensity on the tributary area of an interior beam, psf
- p_{Lc} design live load intensity on the tributary area of an interior column, psf
- p_{Lg} design live load intensity on the tributary area of an interior girder, psf
- p_e external wind pressure, psf; effective span used to compute M_{eu} for extended end-plate connections, in.
- p_f distance from centerline of bolt to nearer surface of tension flange in extended end-plate connections, in.
- p_i internal wind pressure, psf
- p_g ground snow load, psf
- p_f flat roof snow load, psf
- p_s sloped-roof snow load, psf
- p_{full} limiting value of pitch above which limit state of bolt ovalization controls bearing strength, in.
- p_{ui} intensity of unbalanced snow load on the leeward side, psf
- p_{uw} intensity of unbalanced snow load on the windward side, psf
- q uniformly distributed transverse load on a member, klf
- q_b self-weight per unit length of an interior beam, plf
- q_c self-weight per unit length of an interior column, plf

- q_{Db} dead load per unit length of an interior beam, plf
- q_g self-weight per unit length of an interior girder, plf
- q_h velocity pressure evaluated at height h
- q_{Lb} live load per unit length of an interior beam, plf
- q_{sv} shear flow, kli
- q_u additional tension per bolt resulting from prying action produced by deformation of the connected parts, kips/bolt
- q_{ub} factored uniformly distributed load on a beam, plf
- q_{ug} factored uniformly distributed load on a girder, plf
- q_z velocity pressure
- *r* radius of gyration, in.; governing radius of gyration about the axis of buckling, in.; radial distance, in.
- r_L live load reduction multiplier
- $r_{L\min}$ minimum value to be used for the live load reduction multiplier, r_L
- r_i minimum radius of gyration of individual component in a built-up member, in.
- r_{ib} radius of gyration of individual component relative to centroidal axis parallel to member axis of buckling, in.
- r_{\min} least radius of gyration, in.
- r_n nominal strength per bolt from LRFDS
- r_x , r_y radius of gyration about x and y axes, respectively, in.
- r_{vc} radius of gyration of a channel with respect to its y-axis, in.
- r_z radius of gyration of an angle with respect to z-axis, in.

- r_o polar radius of gyration about the shear center, in.
- s staggered pitch (or, stagger), in.; bolt spacing, in.; length of stub column
- *s* back-to-back spacing of angles in built-up double angle members, in.
- s_j staggered pitch for the *j*th diagonal segment along possible failure path *k*, for a tension member, in.
- s_{low} longitudinal spacing of plug welds, in.
- s_{tpw} transverse spacing of plug welds, in.
- s_{lsw} longitudinal spacing of slot welds, in.
- s_{tsw} transverse spacing of slot welds, in.
- *t* thickness of element, in.; HSS design wall thickness, in.; thickness of a plate, in.
- *t* thickness of bearing plate, in.; thickness of column base plate, in.
- t_o thickness of the base plate to be ordered, in.
- t_a thickness of framing angle, in.
- t_{dp} thickness of doubler plate, in.
- t_e effective throat thickness of a fillet weld, in.
- t_f flange thickness, in.
- $t_{\rm fin}$ finishing allowance for base plate thickness, in.
- t_i thickness of element Ii of a tension member, in.
- t_j average element thickness corresponding to the *j*th diagonal segment, along failure path *k* of a tension member
- t_p thickness of plate, in.
- t_{p1} thickness of thinner part joined

- t_{p2} thickness of thicker part joined
- t_{tp} thickness of tie plate, in.
- t_w web thickness, in.
- t_{wb} beam web thickness, in.
- t_{wc} column web thickness, in.
- t_{wg} girder web thickness, in.
- t_{wz} panel zone web thickness, in.
- *u* deflection in the major axis plane (bending or buckling about minor axis)
- *v* deflection in the minor axis plane (bending or buckling about major axis)
- *w* leg size of fillet weld, in.; thickness of plug or slot weld, in.; width of plate, in.
- *w* unit weight of concrete, pcf
- w_e effective leg size of fillet weld, in.
- w_{max} maximum size of fillet weld along the edge of a plate element, in.
- \overline{x} x-coordinate of center of gravity; horizontal distance from the outer edge of a channel web to its centroid, in.
- \overline{x}_{con} connection eccentricity, in.
- \overline{y} y-coordinate of center of gravity
- x_o, y_o coordinates of the shear center with respect to the centroid, in.
- *z* height above ground level, ft
- α shape factor; coefficient of expansion, in./in.; column parameter (Eq. 8.4.5)
- α ratio of moment at bolt line to moment at stem line for determining prying action in hanger
 connections

- α_m coefficient for calculating M_{eu} for extended end-plate connections
- β member relative stiffness factor for a portal frame; confinement coefficient for concrete under bearing plate or base plate
- γ load factor
- δ deflection, in.; central deflection of a simple beam; deflection at the free end of a cantilever beam; ratio of net area at bolt line to gross area at face of stem or angle leg used to determine prying action for hanger connections
- δ_{all} allowable deflection, in.
- δ_e percentage elongation
- Δ sway, in.; elongation of a tension member, in.
- Δ_{oh} translation deflection of the story under consideration, in.
- € strain
- $\epsilon_{\rm m}$ strain corresponding to F_u , in./in.
- ϵ_{st} strain at the onset of strain hardening range, in./in.

 ϵ_{u} fracture strain, in./in.

- ϵ_v yield strain (also known as, elastic strain), in./in.
- $\epsilon_x, \epsilon_y, \epsilon_z$ strain in the x-, y-, and z-direction, respectively
- ζ exponent for alternate beam-column interaction equation
- η exponent for alternate beam-column interaction equation
- θ roof slope; inclination of a diagonal brace with the horizontal; inclination of diagonal stiffener with the horizontal; angle of loading measured from the weld longitudinal axis
- λ slenderness parameter

- λ_{c} column slenderness parameter
- λ_{e} equivalent slenderness parameter
- λ_p limiting slenderness parameter for compact element
- λ_{pf} limiting slenderness parameter for the flange of a compact I-shape
- $\lambda_{_{DW}}$ limiting slenderness parameter for the web of a compact I-shape
- λ_r limiting slenderness parameter for noncompact element
- λ_{rf} limiting slenderness parameter for the flange of a noncompact I-shape
- λ_{pv} limiting slenderness of the web below which shear yielding rather than shear buckling controls the design
- λ_{rw} limiting slenderness parameter for the web of a noncompact I-shape
- μ Poisson's ratio (= 0.3 for steel); coefficient of static friction; mean slip coefficient for slipcritical connections
- τ stiffness reduction factor (SRF)
- τ shear stress at a point on a given cross section of a beam, located at a distance y from the ENA
- Φ curvature
- ϕ resistance factor
- ϕ_b resistance factor for flexure (= 0.90)
- ϕ_c resistance factor for compression (= 0.85)
- ϕ_r resistance factor for compression, used in web crippling calculations
- ϕ_t resistance factor for tension
- ϕ_{t1} resistance factor for tension, limit state of yield on gross area (= 0.90)

- ϕ_{i2} resistance factor for tension, limit state of fracture in net area (= 0.75)
- ϕ_{v} resistance factor for shear (= 0.90)
- Ω factor of safety

Subscripts

- *BM* base metal
- C channel
- D direct component
- E elastic domain
- FLB flange local buckling
- I I-shape; instantaneous center of rotation; inelastic domain
- L angle
- LTB lateral torsional buckling
- PC pseudo-channel
- PL plate; pseudo-angle
- PT pseudo-tee
- T T-shape; torsional component
- WLB web local buckling
- WT WT-shape
- *a* axial; average; seat angle
- avg average
- *b* beam; bending; bolt; bearing; bottom
- *c* column; compression; clear; concrete

con	end connection of a tension member
cr	critical
d	design
dp	doubler plate
е	elastic; end; effective
el	elastic limit state
f	flange
l	weld considered as a line element
lt	lateral translation
lw	longitudinal weld
min	minimum
max	maximum
n	nominal
nt	no-translation
р	plastic; polar
pl	plate; plastic limit state
pw	plug weld
r	reinforcement (panel zone); reduced modulus
req	required
st	stiffener; strain hardening

- sw slot weld
- *t* tension; top; tangent modulus

- *tw* transverse weld
- *u* ultimate; under factored load; required
- v shear
- w web; weld
- *x* subscript relating symbol to member strong axis
- y yield
- *y* subscript relating symbol to member weak axis
- *z* subscript relating symbol to member longitudinal axis
- *z* subscript relating symbol to week principal axis of angle
- *z* related to panel zone