
Copyright © McGraw-Hill Companies Inc. Permission required for reproduction or display.

x i v

This book is intended for a course in data structures and algorithms. The imple-
mentation language is C��, and it is assumed that students have taken an
introductory course in which that language was used. That course need not

have been object-oriented, but it should have covered the fundamental statements
and data types, as well as arrays and the basics of file processing.

THE STANDARD TEMPLATE LIBRARY

One of the distinctive features of this text is its reliance on the Standard Template
Library—specifically, the implementation of that library provided by the Hewlett-
Packard Company. There are several advantages to this approach. First, students will
be working with code that has been extensively tested; they need not depend on
modules created by the instructor or textbook author. Second, students will have the
opportunity to study professionals’ code, which is substantially more efficient—and
succinct—than what students have seen before. Third, the library is available for
later courses in the curriculum, and beyond!

For the most part, the library does not prescribe an implementation of these data
structures. This has the advantage that we can initially focus on the services provided
to users rather than on implementation details. For the definitions of these classes, we
turn to the original implementation by Stepanov and others (see Stepanov and Lee,
1994) at Hewlett-Packard Research Labs. This Hewlett-Packard implementation is
the basis for all implementations the author is aware of.

OTHER IMPLEMENTATIONS CONSIDERED

As important as the Hewlett-Packard implementation of the Standard Template
Library is, it cannot be the exclusive focus of such a fundamental course in data
structures and algorithms. Approaches that differ from those in the Hewlett-Packard
implementation also deserve consideration. For example, the implementation of the
list class utilizes a doubly linked list with a header node, so there is a separate sec-
tion on singly linked lists and doubly linked lists with head and tail fields. There is
also a discussion of the trade-offs of one design over the other. Also, there is cover-
age of data structures (such as graphs) and algorithms (such as backtracking) that are
not yet included in the Standard Template Library.

This text also satisfies another essential need of a data structures and algorithms
course: Students practice developing their own data structures. There are program-
ming projects in which data structures are either created “from the ground up” or
extended from examples in the chapters. And there are other projects to develop or
extend applications that use the Standard Template Library.

PREFACE



P r e f a c e x v

Copyright © McGraw-Hill Companies Inc. Permission required for reproduction or display.

STANDARD C��

All the code presented is based on ANSI/ISO Standard C�� and has been tested
both on a Windows platform (C��Builder and Visual C��) and on a Unix plat-
form (G��). The Standard Template Library specifications—but no particular
implementation—are part of ANSI/ISO C��.

PEDAGOGICAL FEATURES
This text offers several features that may improve the teaching environment for
instructors and the learning environment for students. Each chapter starts with a list
of objectives and concludes with at least one major programming assignment. Each
data structure is carefully described, with a precondition and postcondition for each
method. In addition, most of the methods include examples of how to call the
method, and the results of that call.

The details, especially of the Hewlett-Packard implementation of the Standard
Template Library, are carefully investigated in the text and reinforced in a suite of
29 labs. See the “Organization of the Labs” section of this preface for more infor-
mation about these labs. Each chapter has a variety of exercises, and the answers to
all the exercises are available to the instructor.

SUPPORT MATERIAL
The website for all the support material is

www.mhhe.com/collins

That website has links to the following information for students:

■ An overview of the labs and how to access them
■ The source code for all projects developed in the text
■ Applets for projects that have a strong visual component

Additionally, instructors can obtain the following from the website:

■ Instructors’ options with regard to the labs
■ PowerPoint slides for each chapter (approximately 1500 slides)
■ Answers to every chapter exercise, PowerPoint-presentation exercise, and 

lab experiment

SYNOPSES OF THE CHAPTERS
Chapter 1 presents those features of C�� that serve as the foundation for subsequent
chapters. Most of the material reflects an object orientation: classes, inheritance, con-
structors, destructors, and operator overloading. There are lab experiments to review
classes, as well as on inheritance and operator overloading.

Chapter 2 introduces container classes and issues related to the storage of con-
tainers. Pointers are needed both for contiguous and linked storage. As an illustra-
tion of linked storage, a singly-linked-list class is created. This oversimplified



Copyright © McGraw-Hill Companies Inc. Permission required for reproduction or display.

P r e f a c ex v i

Linked class provides a backdrop for presenting several key features of the Standard
Template Library, such as templates, iterators, and generic algorithms. The associ-
ated lab experiments are on pointers, iterators, operator overloading, and generic
algorithms.

Chapter 3, an introduction to software engineering, outlines the four stages of
the software-development life cycle: analysis, design, implementation, and mainte-
nance. The Unified Modeling Language is introduced as a design tool to depict
inheritance, composition, and aggregation. Big-O notation, which pervades subse-
quent chapters, allows environment-independent estimates of the time requirements
for methods. Both run-time validation, with drivers, and timing are discussed, and
for each of those topics there is a follow-up lab.

Chapter 4, on recursion, represents a temporary shift in emphasis from data
structures to algorithms. Backtracking is introduced, as a general technique for prob-
lem solving. And the same BackTrack class is used for searching a maze; placing
eight queens on a chessboard, where none is under attack by another queen; and
illustrating that a knight can traverse every square in a chessboard without landing
on any square more than once. Other applications of recursion, such as for the Tow-
ers of Hanoi game and generating permutations, further highlight the elegance of
recursion, especially when compared to the corresponding iterative methods. Recur-
sion is also encountered in later chapters, notably in the implementation of Quick
Sort and in the definition of binary trees. Moreover, recursion is an indispensable—
even if seldom used—tool for every computing professional.

In Chapter 5, we begin our study of the Standard Template Library with the vector
and deque classes. A vector is a smart array: automatically resizable, and with meth-
ods to handle insertions and deletions at any index. Furthermore, vectors are tem-
plated, so the method to insert an int item into a vector of int items is the same method
used to insert a string item into a vector of string items. The design starts with the
method interface—precondition, postcondition, and method heading—of the most
widely used methods in the vector class. There follows an outline of the Hewlett-
Packard implementation, and further details are available in a lab. The application of
the vector class, high-precision arithmetic, is essential for public-key cryptography.
This application is extended in a lab and in a programming project. A deque is similar
to a vector, at least from a data structures perspective. But the implementation details
are considerably different, and some of these details are investigated in a lab.

Chapter 6 presents the list data structure and class, characterized by linear-time
methods for inserting, removing, or retrieving at an arbitrary position. This property
makes a compelling case for the use of list iterators: objects that traverse a list object
and have constant-time methods for inserting, removing, or retrieving at the “cur-
rent” iterator position. The doubly linked, circular implementation is introduced in
this chapter, and additional details are covered in a lab. The application is a small
line editor, for which list iterators are well suited. This application is extended in a
programming project. There is a lab experiment on iterator categories, and another
to perform a run-time comparison of vectors, deques, and lists.



Copyright © McGraw-Hill Companies Inc. Permission required for reproduction or display.

P r e f a c e x v i i

The queue and stack classes are the subjects of Chapter 7. Both of these classes
are container adaptors: They adapt the method interfaces of some other class. For
both the queue and stack classes, the default “other” class is the deque class. The
resulting method definitions for the stack and queue classes are one-liners. The spe-
cific application of queues—calculating the average waiting time at a car wash—
falls into the general category of computer simulation. There are two applications of
the stack class: the implementation of recursion, and the conversion from infix to
postfix. This latter application is expanded in a lab, and forms the basis for a proj-
ect on evaluating a condition.

Chapter 8 focuses on binary trees in general, and binary search trees in partic-
ular. The essential features of binary trees are presented; these are important for
understanding later material on AVL trees, red-black trees, heaps, Huffman trees,
and decision trees. The binary-search-tree class is a monochromatic version of the
Hewlett-Packard implementation of red-black trees.

In Chapter 9, we look at AVL trees. Rotations are introduced as the mechanism
by which rebalancing is accomplished. With the help of Fibonacci trees, we estab-
lish that the height of an AVL tree is always logarithmic in the number of items in
the tree. The AVLTree class is not part of the Standard Template Library, but
includes several important features, such as function objects; there is a follow-up lab
on this difficult topic. The entire class is implemented, except for the erase method
(Project 9.1). The application of AVL trees is a simple spell-checker.

Red-black trees are investigated in Chapter 10. The algorithms for inserting and
deleting in a red-black tree are carefully studied, and there are associated lab experi-
ments. Red-black trees are not in the Standard Template Library, but they are the
basis for most implementations of four associative-container classes that are in the
Standard Template Library: the set, map, multiset, and multimap classes. In a set, each
item consists of a key only, and duplicate keys are not allowed. A multiset allows
duplicate keys. In a map, each item has a unique key part and also another part. A
multimap allows duplicate keys. There is an application to count the frequency of
each word in a file, and lab experiments on the four associative-container classes.

Chapter 11 introduces the priority_queue class, which is another container adap-
tor. The default is the vector class, but behind the scenes there is a heap, allowing
insertions in constant average time, and removal of the highest-priority element in
logarithmic time, even in the worst case. Implementations that are list-based and set-
based are also considered. The application is in the area of data compression, specif-
ically, Huffman encodings: Given a text file, generate a minimal, prefix-free encod-
ing. The project assignment is to convert the encoding back to the original text file.
The lab experiment incorporates fairness into a priority queue, so that ties for the
highest-priority item are always resolved in favor of the item that was on the prior-
ity queue for the longest time.

Sorting is the topic of Chapter 12. Estimates of the minimum lower bounds for
comparison-based sorts are developed. Four “fast” sorts are investigated: Tree Sort
(for multisets), Heap Sort (for random-access containers), Merge Sort (for lists), and



Copyright © McGraw-Hill Companies Inc. Permission required for reproduction or display.

Quick Sort (for random-access containers). The chapter’s lab experiment compares
these sorts on randomly generated values. The project assignment is to sort a file of
names and social security numbers.

Chapter 13 starts with a review of sequential and binary searching, and then
investigates hashing. Currently there are no hash classes supported by either Stan-
dard C�� or the Hewlett-Packard implementation of the Standard Template
Library. A hash_map class is developed. This class has method interfaces that are
identical to those in the map class, except that the average time for inserting, delet-
ing, or searching is constant instead of logarithmic! Applications include the cre-
ation and maintenance of a symbol table, and a revision of the spell-checker appli-
cation from Chapter 9. There is also a comparison of chained hashing and
open-address hashing; this comparison is further explored in a programming project.
The speed of the hash_map class is the subject of a lab experiment.

The most general data structures—graphs, trees, and networks—are presented
in Chapter 14. There are outlines of the essential algorithms: breadth-first iteration,
depth-first iteration, connectedness, finding a minimum spanning tree, and finding
the shortest path between two vertices. The only class developed is the (directed)
network class, with an adjacency-list implementation. Other classes, such as undi-
rected_graph and undirected_network, can be straightforwardly defined as sub-
classes of the network class. The Traveling Salesperson problem is investigated in a
lab, and there is a programming project to complete an adjacency-matrix version of
the network class. Another backtracking application is presented, with the same
BackTrack class that was introduced in Chapter 4.

With each chapter, there is an associated web page that includes all programs
developed in the chapter, and applets, where appropriate, to animate the concepts
presented.

APPENDICES

Appendix 1 contains the background that will allow students to comprehend the math-
ematical aspects of the chapters. Summation notation and the rudimentary properties
of logarithms are essential, and the material on mathematical induction will lead to a
deeper appreciation of the analysis of binary trees and open-address hashing.

The string class is the subject of Appendix 2. This powerful class is an impor-
tant part of the Standard Template Library and allows students to avoid the drudg-
ery of character arrays.

Polymorphism, the ability of a pointer to refer to different objects in an object
hierarchy, is introduced in Appendix 3. Polymorphism is an essential feature of
object-oriented programming, but has been relegated to appendix status because it is
not a necessary topic in an introduction to data structures and algorithms.

P r e f a c ex v i i i



Copyright © McGraw-Hill Companies Inc. Permission required for reproduction or display.

P r e f a c e x i x

ORGANIZATION OF THE LABS

There are 29 website labs associated with this text. For both students and instruc-
tors, the Uniform Resource Locator (URL) is

www.mhhe.com/collins

The labs do not contain essential material, but provide reinforcement of the text
material. For example, after the vector, deque, and list classes have been investi-
gated, there is a lab to perform some timing experiments on those three classes.

The labs are self-contained, so the instructor has considerable flexibility in
assigning the labs. They can be assigned as

1. Closed labs

2. Open labs

3. Ungraded homework

In addition to the obvious benefit of promoting active learning, these labs also
encourage use of the scientific method. Basically, each lab is set up as an experi-
ment. Students observe some phenomenon, such as the organization of the Standard
Template Library’s list class. They then formulate and submit a hypothesis—with
their own code—about the phenomenon. After testing and, perhaps, revising their
hypothesis, they submit the conclusions they drew from the experiment.

ACKNOWLEDGMENTS

Chun Wai Liew initiated the study of the Standard Template Library at Lafayette
College, and also contributed his general expertise in C��. The following review-
ers made many helpful suggestions:

Moe Bidgoli, Saginaw Valley State University
Scott Cannon, Utah State University
Jiang-Hsing Chu, Southern Illinois University, Carbondale
Karen C. Davis, University of Cincinnati
Matthew Evett, Florida Atlantic University
Eduardo B. Fernandez, Florida Atlantic State University
Sheila Foster, California State University, Long Beach
Mahmood Haghighi, Bradley University
Jack Hodges, San Francisco State University
Robert A. Hogue, Youngstown State University
Christopher Lacher, Florida State University
Gopal Lakhani, Texas Tech University
Tracy Bradley Maples, California State University, Long Beach



Copyright © McGraw-Hill Companies Inc. Permission required for reproduction or display.

Nancy E. Miller, Mississippi State University
G. M. Prabhu, Iowa State University
Zhi-Li Zhang, University of Minnesota

It was a pleasure to work with the McGraw-Hill team: Emily Lupash, Betsy Jones,
Jane Mohr, Lucy Mullins, and Philip Meek.

Several students from Lafayette College made important contributions. Eric
Panchenko created all the applets and many of the driver programs. And Eric, along
with Yi Sun and Xenia Taoubina, developed the overall format of the labs. Finally,
I am indebted to all the students at Lafayette College who participated in the class
testing of the book and endured earlier versions of the labs.

Bill Collins

P r e f a c ex x




