Excerpted from Chapter 14 "Heat-Transfer Equipment - Design and Costs"

EXAMPLE 14-6 Estimation of Heat-Transfer Coefficient and Pressure Drop on the Shell Side of a Shell-and-Tube Exchanger Using the Kern, Bell-Delaware, and Wills-J ohnston Methods

A shell-and-tube exchanger with one shell and one tube pass is being used as a cooler. The cooling medium is water with a flow rate of $11 \mathrm{~kg} / \mathrm{s}$ on the shell side of the exchanger. With an inside diameter of 0.584 m , the shell is packed with a total of 384 tubes in a staggered (triangular) array. The outside diameter of the tubes is 0.019 m with a clearance between tubes of 0.00635 m . Segmental baffles with a 25 percent baffle cut are used on the shell side, and the baffle spacing is set at 0.1524 m . The length of the exchanger is 3.66 m . (Assume a split backing ring, floating heat exchanger.)

The average temperature of the water is $30^{\circ} \mathrm{C}$, and the average temperature of the tube walls on the water side is $40^{\circ} \mathrm{C}$. Under these conditions, estimate the heat-transfer coefficient for the water and the pressure drop on the shell side, using the Kern, Bell-Delaware, and Wills and Johnston methods.

Solution

The procedures for all three methods have been outlined briefly in the shell-and-tube section. Appendix D provides the following data for water:

	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
Physical property data			
Thermal conductivity k, $\mathrm{kJ} / \mathrm{s} \cdot \mathrm{m} \cdot \mathrm{K}$	0.000616	0.000623	0.000632
Heat capacity $C_{p}, \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$	4.179	4.179	4.179
Viscosity μ, Pa•s	0.000803	0.000724	0.000657
Density $\rho, \mathrm{kg} / \mathrm{m}^{3}$	995	995	995
Exchanger configuration			
Shell internal diameter			
Tube outside diameter			
Tube pitch (triangular)			
Number of tubes			
Baffle spacing			
Shell length			
Bundle-to-shell diametral clearance ${ }^{\dagger}$			
Shell-to-baffle diametral clearance ${ }^{\dagger}$			
Tube-to-baffle diametral clearance ${ }^{\dagger}$			
Thickness of baffle ${ }^{\dagger}$			
Sealing strips per cross-flow row ${ }^{\dagger}$		$N_{\text {ss }}$	

${ }^{\dagger}$ Items consistent with recommendations by J. Taborek, in Heat Exchanger Design Handbook, Hemisphere Publishing, Washington, 1983, Sec. 3.3.5.

Kern Method

Determine the flow area at the shell centerline. The gap between tubes P_{D} is given as 0.00635 m . The cross-flow area along the centerline of flow in the shell is given by Eq. (14-32).

$$
S_{s}=\frac{D_{s} P_{D} L_{B}}{P_{T}}=\frac{0.584(0.00635)(0.1524)}{0.0254}=0.02225 \mathrm{~m}^{2}
$$

Determine D_{e} from Eq. (14-33).

$$
D_{e}=\frac{4\left(P_{T}^{2}-\pi D_{o}^{2} / 4\right)}{\pi D_{o}}=\frac{4\left[(0.0254)^{2}-(\pi / 4)(0.019)^{2}\right]}{\pi(0.019)}=0.02423 \mathrm{~m}
$$

The mass flow rate G_{s} is

$$
G_{s}=\frac{\dot{m}_{T}}{S_{s}}=\frac{11}{0.02225}=494.4 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s}
$$

To obtain the heat-transfer coefficient at an average water-film temperature requires evaluation of the Reynolds and Prandtl numbers.

$$
\begin{aligned}
& \operatorname{Re}=\frac{D_{e} G_{s}}{\mu_{f}}=\frac{0.02423(494.4)}{0.000724}=16,550 \\
& \operatorname{Pr}=\left(\frac{C_{p} \mu}{k}\right)_{f}=\frac{4.179(0.000724)}{0.000623}=4.86
\end{aligned}
$$

From Eq. (14-30)

$$
\begin{aligned}
h_{s} & =0.36\left(\frac{k}{D_{e}}\right) \operatorname{Re}^{0.55} \operatorname{Pr}^{0.33}\left(\frac{\mu}{\mu_{w}}\right)^{0.14} \\
& =0.36\left(\frac{0.623}{0.02423}\right)(16,550)^{0.55}(4.86)^{0.33}\left(\frac{0.000803}{0.000657}\right)^{0.14} \\
& =3369 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}
\end{aligned}
$$

Calculate the pressure drop on the shell side, assuming no effect for any type of fluid leakage. The number of baffles on the shell side is obtained from Eq. (14-36).

$$
N_{B}=\frac{L_{s}}{L_{B}+t_{b}}-1=\frac{3.66}{0.1524+0.005}-1=22.2 \text { or } 22
$$

For a shell-side Reynolds number of 16,550 , Fig. 14-44 provides a value of 0.062 for the friction factor. The pressure drop is obtained from Eq. (14-35) as

$$
\begin{aligned}
\Delta p_{s} & =\frac{4 \tilde{f} G_{s}^{2} D_{s}\left(N_{B}+1\right)}{2 \rho D_{e}\left(\mu / \mu_{w}\right)_{s}^{0.14}} \\
& =\frac{4(0.062)(494.4)^{2}(0.584)(22+1)}{2(995)(0.02423)(0.000803 / 0.000657)^{0.14}}=16,420 \mathrm{~Pa}
\end{aligned}
$$

Bell-Delaware Method

The first step in this method is to calculate the ideal cross-flow heat-transfer coefficient. Calculate $V_{\max }$ from Eq. (14-39) and obtain S_{m} from Eq. (14-40) to substitute into Eq. (14-22).

$$
\begin{aligned}
S_{m} & =L_{B}\left[D_{s}-D_{O T L}+\frac{\left(D_{O T L}-D_{o}\right)\left(P_{T}-D_{o}\right)}{P_{T}}\right] \quad \text { where } D_{O T L}=D_{s}-\Delta_{b}=0.549 \\
& =0.1524\left[0.035+\frac{(0.549-0.019)(0.0254-0.019)}{0.0254}\right]=0.0255 \mathrm{~m}^{2} \\
V_{\max } & =\frac{\dot{m}_{T}}{\rho S_{m}}=\frac{11}{995(0.0255)}=0.4335 \mathrm{~m} / \mathrm{s} \\
\operatorname{Re} & =\frac{\rho V_{\max } D_{o}}{\mu}=\frac{995(0.4335)(0.019)}{0.000803}=10,205 \\
\operatorname{Pr} & =\frac{C_{p} \mu}{k}=\frac{4.179(0.000803)}{0.000616}=5.449
\end{aligned}
$$

The ideal heat-transfer coefficient is given by

$$
h_{i}=\frac{k}{D_{o}} a \operatorname{Re}^{m} \operatorname{Pr}^{0.34} F_{1} F_{2}
$$

where constants a and m are obtained from Table 14-1 for a staggered tube array, F_{1} from Eq. (14-22b), and F_{2} from Table 14-2.

$$
\begin{aligned}
h_{i} & =\left(\frac{0.616}{0.019}\right)(0.273)(10,205)^{0.635}(5.449)^{0.34}\left(\frac{5.449}{4.345}\right)^{0.26}(0.99) \\
& =5807 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}
\end{aligned}
$$

The actual shell-side heat-transfer coefficient is obtained from Eq. (14-41). This requires obtaining values for J_{C}, J_{L}, and J_{B} using the appropriate correction factors to account for baffle configuration, leakage, and bypass. Equation (14-42) permits calculation of F_{c}

$$
F_{c}=\frac{1}{\pi}\left[\pi+\frac{2\left(D_{s}-2 L_{c}\right)}{D_{\text {OTL }}} \sin \left(\cos ^{-1} \frac{D_{s}-2 L_{c}}{D_{\text {OTL }}}\right)-2 \cos ^{-1} \frac{D_{s}-2 L_{c}}{D_{\text {OTL }}}\right]
$$

For a baffle cut of 25 percent

$$
\begin{aligned}
L_{c} & =0.25 D_{s}=0.25(0.584)=0.146 \mathrm{~m} \\
\frac{D_{s}-2 L_{c}}{D_{\text {OTL }}} & =\frac{0.584-2(0.146)}{0.549}=0.5318 \\
F_{c} & =\frac{1}{\pi}\left[\pi+2(0.5318) \sin \left(\cos ^{-1} 0.5318\right)-2 \cos ^{-1} 0.5318\right]=0.6437
\end{aligned}
$$

From Fig. 14-45

$$
J_{C}=0.55+0.72 F_{c}=0.55+0.72(0.6437)=1.013
$$

To obtain J_{L}, calculate the leakage areas $S_{s b}$ and $S_{t b}$ from Eqs. (14-43a) and (14-43b), respectively.

$$
\begin{aligned}
S_{s b} & =D_{s}\left(\frac{\Delta_{s b}}{2}\right)\left[\pi-\cos ^{-1}\left(1-\frac{2 L_{c}}{D_{s}}\right)\right] \\
& =(0.584)\left(\frac{0.005}{2}\right)\left\{\pi-\cos ^{-1}\left[1-\frac{2(0.146)}{0.584}\right]\right\}=0.003058 \mathrm{~m}^{2} \\
S_{t b} & =\pi D_{o}\left(\frac{\Delta_{t b}}{2}\right) N_{T} \frac{1+F_{c}}{2} \\
& =\pi(0.019)\left(\frac{0.0008}{2}\right)(384)\left(\frac{1+0.6437}{2}\right)=0.007535 \mathrm{~m}^{2}
\end{aligned}
$$

The correction factor J_{L} is obtained from Fig. 14-46, utilizing $S_{s b}$ and $S_{t b}$.

$$
\begin{aligned}
& \frac{S_{s b}+S_{t b}}{S_{m}}=\frac{0.003058+0.007535}{0.0255}=0.4154 \\
& \frac{S_{s b}}{S_{s b}+S_{t b}}=\frac{0.003058}{0.003058+0.007535}=0.2887
\end{aligned}
$$

Figure 14-46 provides a value of 0.56 for J_{L}.
To obtain the correction factor J_{B} for bypass in the bundle-shell gap, obtain F_{bp}, the fraction of the cross-flow area available for bypass flow, with Eq. (14-44).

$$
F_{\mathrm{bp}}=\frac{L_{B}}{S_{m}}\left(D_{s}-D_{\text {OTL }}\right)=\frac{0.1524}{0.0255}(0.035)=0.2092
$$

Note that $F_{\mathrm{bp}}=S_{b} / S_{m}$, and Fig. 14-47 can be used to obtain a J_{B} value of 0.935 when $N_{\mathrm{ss}} / N_{c}=0.2$. The corrected heat-transfer coefficient from Eq. (14-41) is then

$$
\begin{aligned}
h & =h_{i} J_{c} J_{L} J_{B} \\
& =5807(1.013)(0.56)(0.935)=3080 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}
\end{aligned}
$$

Evaluation of the pressure drop using the Bell-Delaware method is similar to the process for obtaining the heat-transfer coefficient. The ideal cross-flow pressure drop through one baffle space is obtained with the use of Eq. (14-46).

$$
\begin{aligned}
\Delta p_{c} & =\left(K_{a}+N_{c} K_{f}\right)\left(\frac{\rho V_{\max }^{2}}{2}\right) \quad \text { assume } K_{a}=1.5 \\
N_{c} & =\frac{D_{s}}{P_{T P}}\left(1-\frac{2 L_{c}}{D_{s}}\right) \quad P_{T P}=0.866 P_{T}, \text { for triangular array } \\
& =\frac{0.584}{0.866(0.0254)}\left[1-\frac{2(0.146)}{0.584}\right]=13.27
\end{aligned}
$$

A value of 0.495 for K_{f} is obtained by using the following relation given in the footnote of Table 14-10:

$$
\begin{aligned}
K_{f} & =0.245+\frac{0.339 \times 10^{4}}{\operatorname{Re}}-\frac{0.984 \times 10^{7}}{\operatorname{Re}^{2}}+\frac{0.133 \times 10^{11}}{\operatorname{Re}^{3}}-\frac{0.599 \times 10^{13}}{\operatorname{Re}^{4}} \\
\Delta p_{c} & =[1.5+13.27(0.495)](995) \frac{(0.4335)^{2}}{2}=754 \mathrm{~Pa}
\end{aligned}
$$

Calculate the window zone pressure loss from Eq. (14-47b). First, determine the window flow area S_{w} from Eq. (14-49).

$$
S_{w}=\frac{D_{s}^{2}}{4}\left[\cos ^{-1} D_{B}-D_{B}\left(1-D_{B}^{2}\right)^{1 / 2}\right]-\frac{N_{T}}{8}\left(1-F_{c}\right) \pi D_{o}^{2}
$$

where

$$
\begin{aligned}
D_{B} & =\frac{D_{s}-2 L_{c}}{D_{s}}=1-\frac{2 L_{c}}{D_{s}}=1-\frac{2(0.146)}{0.584}=0.5 \\
S_{w} & =\frac{(0.584)^{2}}{4}\left\{\cos ^{-1} 0.5-0.5\left[1-(0.5)^{2}\right]^{1 / 2}\right\}-\left(\frac{384}{8}\right)(1-0.6437) \pi(0.019)^{2} \\
& =0.03298 \mathrm{~m}^{2}
\end{aligned}
$$

Next, calculate the number of effective cross-flow rows in the window zone from Eq. (14-48).

$$
N_{c w}=\frac{0.8 L_{c}}{P_{T P}}=\frac{0.8(0.146)}{0.866(0.0254)}=5.31
$$

Now calculate the window zone pressure drop for $\operatorname{Re}>100$.

$$
\begin{aligned}
\Delta p_{w} & =\frac{\left(2+0.6 N_{c w}\right) \dot{m}_{T}^{2}}{2 S_{m} S_{w} \rho} \\
& =[2+0.6(5.31)] \frac{(11)^{2}}{2(0.0255)(0.03298)(995)}=375 \mathrm{~Pa}
\end{aligned}
$$

Finally, estimate the leakage and bypass correction factors R_{B} and R_{L}. To obtain R_{B}, use the calculated values of F_{bp} and $N_{\mathrm{ss}} / N_{c}=0.2$ with Fig. 14-48. This gives a value of 0.82 for R_{B}. For R_{L} use the area ratio values of $\left(S_{s b}+S_{t b}\right) / S_{m}$ and $S_{s b} /\left(S_{s b}+S_{t b}\right)$ with Fig. 14-49 to obtain a value of 0.365 for R_{L}.

The pressure drop across the shell is given by Eq. (14-51).

$$
\begin{aligned}
\Delta p_{s} & =\left[\left(N_{B}-1\right) \Delta p_{c} R_{B}+N_{B} \Delta p_{w}\right] R_{L}+2 \Delta p_{c} R_{B}\left(1+\frac{N_{c w}}{N_{c}}\right) \\
& =[(22-1)(754)(0.82)+22(375)](0.365)+2(754)(0.82)\left(1+\frac{5.31}{13.27}\right) \\
& =7750+1731=9481 \mathrm{~Pa}
\end{aligned}
$$

Wills and J ohnston Method

The heat-transfer coefficient calculated in this method is similar to that used in the Bell-Delaware method except that the value of the Reynolds number is estimated from $\dot{m}_{c}=F_{c r} \dot{m}_{T}$. To determine $F_{c r}$ requires evaluating the flow stream resistance coefficients in Fig. 14-50 as defined in Eqs. (14-55a) through (14-55c), (14-56), (14-58), (14-60), and (14-61).

Calculate the shell-to-baffle resistance coefficient n_{s}, using Eqs. (14-56) and (14-57).

$$
\begin{aligned}
S_{s} & =\pi\left(D_{s}-\frac{\Delta_{s b}}{2}\right)\left(\frac{\Delta_{s b}}{2}\right)=\pi\left(0.584-\frac{0.005}{2}\right)\left(\frac{0.005}{2}\right)=0.004567 \mathrm{~m}^{2} \\
n_{s} & =\frac{0.036\left(2 t_{b} / \Delta_{s b}\right)+2.3\left(2 t_{b} / \Delta_{s b}\right)^{-0.177}}{2 \rho S_{s}^{2}} \\
& =\frac{0.036(2)(0.005) / 0.005+2.3[2(0.005) / 0.005]^{-0.177}}{2(995)(0.004567)^{2}} \\
& =50.75
\end{aligned}
$$

Calculate the tube-to-baffle clearance resistance coefficient n_{t} from Eqs. (14-58) and (14-59).

$$
\begin{aligned}
S_{t} & =N_{T} \pi\left(D_{o}+\frac{\Delta_{t b}}{2}\right)\left(\frac{\Delta_{t b}}{2}\right) \\
& =384 \pi(0.019+0.0004)(0.0004)=0.00936 \mathrm{~m}^{2} \\
n_{t} & =\frac{0.036\left(2 t_{b} / \Delta_{t b}\right)+2.3\left(2 t_{b} / \Delta_{t b}\right)^{-0.177}}{2 \rho S_{t}^{2}} \\
& =\frac{0.036(2)(0.005 / 0.0008)+2.3[2(0.005 / 0.0008)]^{-0.177}}{2(995)(0.00936)^{2}} \\
& =11.02
\end{aligned}
$$

Calculate the window flow resistance coefficient n_{w} from Eq. (14-60).

$$
n_{w}=\frac{1.9 e^{0.6856 S_{w} / S_{m}}}{2 \rho S_{w}^{2}}
$$

where $S_{m}=0.0255 \mathrm{~m}^{2}$ and $S_{w}=0.03298 \mathrm{~m}^{2}$ from the Bell-Delaware calculations.

$$
n_{w}=\frac{1.9 \exp [0.6856(0.03298 / 0.0255)]}{2(995)(0.03298)^{2}}=2.13
$$

The bypass flow resistance coefficient n_{b} is calculated from Eqs. (14-61) and (14-62).

$$
\begin{aligned}
S_{b} & =\left(\Delta_{b}+\Delta_{p p}\right) L_{B} \quad \text { assume } \Delta_{p p} \cong 0 \\
& =(0.035+0)(0.1524)=0.00533 \mathrm{~m}^{2} \\
N_{\mathrm{ss}} & =N_{c} \frac{N_{\mathrm{ss}}}{N_{c}}=13.27(0.2)=2.65 \cong 3 \\
n_{b} & =\frac{a\left(D_{s}-2 L_{c}\right) / P_{T P}+N_{\mathrm{ss}}}{2 \rho S_{b}^{2}}
\end{aligned}
$$

Since $N_{c}=\left(D_{s} / P_{T P}\right)\left(1-2 L_{c} / D_{s}\right)$, this can be rearranged and simplified to

$$
\begin{aligned}
n_{b} & =\frac{a N_{c}+N_{\mathrm{ss}}}{2 \rho S_{b}^{2}} \quad \text { where } a=0.133 \text { for triangular arrays } \\
& =\frac{0.133(13.27)+3}{2(995)(0.00533)^{2}}=84.2
\end{aligned}
$$

For a first approximation assume that the fraction $F_{c r}$ of the flow that is in cross-flow over the bundle is 0.5 to initiate a calculation for the flow resistance coefficient n_{c}. For an $F_{c r}$ of 0.5

$$
\begin{aligned}
\operatorname{Re} & =\frac{D_{o} \dot{m}_{T} F_{c r}}{S_{m} \mu} \\
& =\frac{0.019(11)(0.5)}{0.0255(0.000803)}=5103
\end{aligned}
$$

The flow resistance coefficient n_{c} is evaluated by using Eq. (14-64) where K_{f} is obtained from the relation given in Table 14-10 for a triangular tube array with $10^{3}<\operatorname{Re}<10^{6}$.

$$
\begin{aligned}
& K_{f}=0.245+\frac{0.339 \times 10^{4}}{\operatorname{Re}}-\frac{0.984 \times 10^{7}}{\operatorname{Re}^{2}}+\frac{0.133 \times 10^{11}}{\mathrm{Re}^{3}}-\frac{0.599 \times 10^{13}}{\mathrm{Re}^{4}} \\
& K_{f}(\operatorname{Re}=5103)=0.6227
\end{aligned}
$$

Calculate $n_{c}, n_{c b}, n_{a}$, and n_{p} to determine a new value for $F_{c r}$.

$$
\begin{aligned}
n_{c} & =\frac{K_{a}+N_{c} K_{f}}{2 \rho S_{m}^{2}} \quad \text { assume } K_{a}=1.5 \\
& =\frac{1.5+13.27(0.6227)}{2(995)(0.0255)^{2}}=7.55 \\
n_{c b} & =\left(n_{c}^{-1 / 2}+n_{b}^{-1 / 2}\right)^{-2} \\
& =\left(7.55^{-1 / 2}+84.2^{-1 / 2}\right)^{-2}=4.47 \\
n_{a} & =n_{w}+n_{c b}=2.13+4.47=6.60 \\
n_{p} & =\left(n_{a}^{-1 / 2}+n_{s}^{-1 / 2}+n_{t}^{-1 / 2}\right)^{-2} \\
& =\left[(6.60)^{-1 / 2}+(50.75)^{-1 / 2}+(11.02)^{-1 / 2}\right]^{-2}=1.47
\end{aligned}
$$

Now calculate a new $F_{c r}$ with Eq. (14-65).

$$
\begin{aligned}
F_{c r} & =\frac{\left(n_{p} / n_{a}\right)^{1 / 2}}{1+\left(n_{c} / n_{b}\right)^{1 / 2}} \\
& =\frac{(1.47 / 6.60)^{1 / 2}}{1+(7.55 / 84.2)^{1 / 2}}=0.363
\end{aligned}
$$

Repeat the above calculations beginning with the Reynolds number evaluation to determine a new value for $F_{c r}$ until a convergence value for $F_{c r}$ is obtained. The iteration results are shown below.

	Iteration attempts			
	$\mathbf{1}$			
$F_{c r}$ (initial)	0.50	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Re	5103	0.363	0.355	0.354
K_{f}	0.6227	3705	3618	3614
n_{c}	7.55	0.6729	0.676	0.676
$n_{c b}$	4.47	8.06	8.09	8.09
n_{a}	6.60	4.70	4.72	4.72
n_{p}	1.47	6.83	6.85	6.85
$F_{c r}$ (calc.)	0.363	1.47	1.474	1.474

The iteration establishes $F_{c r}$ at a value of 0.354 and fixes the Reynolds number for this calculation of the heat-transfer coefficient from Eq. (14-22) with constants a and m listed in Table 14-1, and F_{1} and F_{2} obtained from Eq. (14-22a) and Table 14-2, respectively.

$$
\begin{aligned}
h & =\frac{k}{D_{o}} a \mathrm{Re}^{m} \operatorname{Pr}^{0.34} F_{1} F_{2} \\
& =\frac{0.616}{0.019}(0.273)(3614)^{0.635}(5.449)^{0.34}\left(\frac{5.449}{4.345}\right)^{0.26}(0.99) \\
& =3004 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}
\end{aligned}
$$

For the pressure drop calculation determine the various flow fractions.
Equation (14-66) for shell-to-baffle leakage flow:

$$
F_{s}=\left(\frac{n_{p}}{n_{t}}\right)^{1 / 2}=\left(\frac{1.474}{50.75}\right)^{1 / 2}=0.1704
$$

Equation (14-67) for tube-to-baffle leakage:

$$
F_{t}=\left(\frac{n_{p}}{n_{t}}\right)^{1 / 2}=\left(\frac{1.474}{11.02}\right)^{1 / 2}=0.3657
$$

Equation (14-68) for bypass flow:

$$
\begin{aligned}
F_{b} & =\frac{\left(n_{p} / n_{a}\right)^{1 / 2}}{1+\left(n_{b} / n_{c}\right)^{1 / 2}} \\
& =\frac{(1.474 / 6.85)^{1 / 2}}{1+(84.2 / 8.09)^{1 / 2}}=0.1098
\end{aligned}
$$

Check on the flow fractions that should equal unity.

$$
\begin{aligned}
F_{s}+F_{t}+F_{b}+F_{c r} & \equiv 1.000 \\
0.1704+0.3657+0.1098+0.3540 & =0.9999 \quad \text { good check }
\end{aligned}
$$

Calculate the total pressure drop per baffle on the shell side, using Eq. (14-54b).

$$
\Delta p=n_{p} \dot{m}_{T}^{2}=(1.474)(11)^{2}=178.4 \mathrm{~Pa}
$$

The total shell-side pressure drop is given by

$$
\Delta p_{s}=(N+1) \Delta p=(22+1)(178.4)=4103 \mathrm{~Pa}
$$

A comparison of the results for the shell-side heat-transfer coefficient and shell-side pressure drop from the three methods as well as from a widely used computer program is shown below:

Method	$\boldsymbol{h}, \mathbf{W} / \mathbf{m}^{\mathbf{2}} \cdot \mathbf{K}$	$\boldsymbol{\Delta p}, \mathbf{P a}$
Kern	3,369	16,420
Bell-Delaware	3,080	9,481
Wills-Johnston	3,004	4,103
Computer (CC-Therm)	3,035	4,155

Note that the Kern method provides higher values for the heat-transfer coefficient and pressure drop on the shell side. The Bell-Delaware and Wills-Johnston methods provide similar results for the heattransfer coefficient.

