
55. Suppose that it costs a company C(x) = 0.01x2 + 40x +
3600 dollars to manufacture x units of a product. For this cost

function, the average cost function is C̄(x) = C(x)
x . Find the

value of x that minimizes the average cost.

56. In exercise 55, the cost function can be related to the efficiency
of the production process. Explain why a cost function that is
concave down indicates better efficiency than a cost function
that is concave up.

57. Show that there is an inflection point at (0, 0) for any function
of the form f (x) = x4 + cx3 , where c is a nonzero constant.
What role(s) does c play in the graph of y = f (x)?

58. The following examples show that there is not a perfect match
between inflection points and places where f ′′(x) = 0. First,
for f (x) = x6, show that f ′′(0) = 0, but there is no inflection
point at x = 0. Then, for g(x) = x |x |, show that there is an
inflection point at x = 0, but that g′′(0) does not exist.

59. Give an example of a function showing that the following state-
ment is false. If the graph of y = f (x) is concave down for all
x , the equation f (x) = 0 has at least one solution.

60. Determine if the following statement is true or false. If
f (0) = 1, f ′′(x) exists for all x and the graph of y = f (x) is
concave down for all x , the equation f (x) = 0 has at least one
solution.

61. One basic principle of physics is that light follows the path of
minimum time. Assuming that the speed of light in the earth’s
atmosphere decreases as altitude decreases, argue that the path
that light follows is concave down. Explain why this means
that the setting sun appears higher in the sky than it really is.
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62. Prove Theorem 5.2 (the Second Derivative Test). (Hint: Think
about what the definition of f ′′(c) says when f ′′(c) > 0 or
f ′′(c) < 0.)

63. The linear approximation that we defined in section 3.1 is
the line having the same location and the same slope as

the function being approximated. Since two points determine a
line, two requirements (point, slope) are all that a linear function
can satisfy. However, a quadratic function can satisfy three re-
quirements since three points determine a parabola (and there are
three constants in a general quadratic function ax2 + bx + c).
Suppose we want to define a quadratic approximation to f (x)

at x = a. Building on the linear approximation, the general
form is g(x) = f (a) + f ′(a)(x − a) + c(x − a)2 for some
constant c to be determined. In this way, show that
g(a) = f (a) and g′(a) = f ′(a). That is, g(x) has the right po-
sition and slope at x = a. The third requirement is that g(x)

have the right concavity at x = a, so that g′′(a) = f ′′(a). Find
the constant c that makes this true. Then, find such a quadratic
approximation for each of the functions sin x , cos x and ex at
x = 0. In each case, graph the original function, linear approx-
imation and quadratic approximation and describe how close
the approximations are to the original functions.

64. In this exercise, we explore a basic problem in genetics.
Suppose that a species reproduces according to the fol-

lowing probabilities: p0 is the probability of having no chil-
dren, p1 is the probability of having one offspring, p2 is the
probability of having two offspring, . . . , pn is the probability
of having n offspring and n is the largest number of offspring
possible. Explain why for each i , we have 0 ≤ pi ≤ 1 and
p0 + p1 + p2 + · · · + pn = 1. We define the function
F(x) = p0 + p1 x + p2 x2 + · · · + pn xn . The smallest non-
negative solution of the equation F(x) = x for 0 ≤ x ≤ 1 rep-
resents the probability that the species becomes extinct. Show
graphically that if p0 > 0 and F ′(1) > 1, then there is a solu-
tion of F(x) = x with 0 < x < 1. Thus, there is a positive
probability of survival. However, if p0 > 0 and F ′(1) < 1,
show that there are no solutions of F(x) = x with 0 < x < 1.
(Hint: First show that F is increasing and concave up.)

OVERVIEW OF CURVE SKETCHING

You might be wondering why you need to spend any more time on curve sketching. We
have already drawn numerous graphs over the last three sections. Besides, with a graphing
calculator or computer algebra system at your disposal, why must you even consider draw-
ing graphs by hand?

Of course, graphing calculators or computer algebra systems are powerful tools today
in the study or application of mathematics. As the authors of this text, we admit it. We have

3.6
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made extensive use of several computer algebra systems (Maple and Mathematica) in
preparing the manuscript for this text and even in designing our problems. So then, why
should we condemn you to drawing graphs by hand? We’re certain that late night talk show
hosts would have a list of the top 10 reasons why sadistic mathematics professors would
want to inflict such pain on their students, but there’s really only one reason. For better or
worse, graphing calculators and computer algebra systems do not actually draw graphs.
What they do is plot points (albeit lots of them) and then connect the points with a smooth
curve. Of course, this works exceptionally well for some functions, but leaves something
to be desired for others. The problem boils down to the window in which you draw the
graph and how many points you plot in that window. The only way to know how to choose
the window or how many points to plot in that window is to use the calculus to determine
the properties of the graph that you are interested in seeing. We have already made this
point a number of times. The calculus tells us the properties that a representative graph
should exhibit. We then try to adjust the window and the number of points plotted in order
to produce such a graph.

We begin this section by summarizing the various tests that you should perform on a
function when trying to draw a graph of y = f (x).

� Domain: You should always determine the domain of f first.
� Vertical Asymptotes: For any isolated point not in the domain of f , check the limit-

ing value of the function as x approaches that point, to see if there is a vertical asymp-
tote or a jump or removable discontinuity at that point.

� First Derivative Information: Determine where f is increasing and decreasing and
find any local extrema.

� Vertical Tangent Lines: At any isolated point not in the domain of f ′, but in the do-
main of f , check the limiting values of f ′(x), to determine if there is a vertical tangent
line at that point.

� Second Derivative Information: Determine where the graph is concave up and con-
cave down and locate any inflection points.

� Horizontal Asymptotes: Check the limit of f (x) as x → ∞ and as x → −∞.
� Intercepts: Locate x- and y-intercepts, if any. If this can’t be done exactly, then do so

approximately (e.g., using Newton’s method).

We start with a very simple example.

Draw a graph of f (x) = x4 + 6x3 + 12x2 + 8x + 1 showing all significant features.

Solution Why shouldn’t we simply ask our computer algebra system for a graph?
Computer algebra systems and graphing calculators usually do one of two things to de-
termine the window in which they will display a graph. (Some give the user an option
as to how to set the default method.) One method is to compute a set number of function
values over a given standard range of x-values. The y-range is then chosen so that all of
the calculated points can be displayed. This might result in a graph that looks like the
one in Figure 3.57a, produced using the computer algebra system Maple. Another
method is to draw a graph in a fixed, default window. For instance, most graphing cal-
culators use the default window defined by

−10 ≤ x ≤ 10 and −10 ≤ y ≤ 10.

Using this window, we get the graph shown in Figure 3.57b. Of course, these two graphs
are very different. Without the calculus, it’s difficult to tell which, if either, of these is

Drawing a Graph of a PolynomialExample 6.1
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y = x4 + 6x3 + 12x2 + 8x + 1
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Figure 3.57b

y = x4 + 6x3 + 12x2 + 8x + 1
(standard calculator view).



truly representative of the behavior of f . Some analysis will help to clear up the situa-
tion. First, note that the domain of f is the entire real line. Further, since f (x) is a poly-
nomial, it doesn’t have any vertical or horizontal asymptotes. (Think about this!) Next,
note that

f ′(x) = 4x3 + 18x2 + 24x + 8 = 2(2x + 1)(x + 2)2.

Drawing number lines for the individual factors in f ′(x), we have that

f ′(x)

{
>0, on

(− 1
2 ,−∞)

<0, on (−∞,−2) ∪ (−2,− 1
2

)
.

f increasing.

f decreasing.

This also tells us that there is a local minimum at x = − 1
2 and that there are no local

maxima. Next, we have

f ′′(x) = 12x2 + 36x + 24 = 12(x + 2)(x + 1).

Drawing number lines for the factors of f ′′(x), we have

f ′′(x)

{
>0, on (−∞,−2) ∪ (−1,∞)

<0, on (−2,−1).

Concave up.

Concave down.

From this, we see that there are inflection points at x = −2 and at x = −1. Finally, to
find the x-intercepts, we need to solve f (x) = 0 approximately. Doing this (we leave
the details as an exercise: use Newton’s method or your calculator’s solver), we find that
there are two x-intercepts: x = −1 (exactly) and x ≈ −0.160713. Notice that the sig-
nificant x-values that we have identified are x = −2, x = −1 and x = − 1

2 . Computing
the corresponding y-values from y = f (x), we get the points (−2, 1), (−1, 0) and(− 1

2 ,− 11
16

)
. We summarize the first and second derivative information in the number

lines in the margin. In Figure 3.58, we include all of these important points by setting
the x-range to be −3 ≤ x ≤ 1 and the y-range to be −2 ≤ y ≤ 8.

�

In the following example, we examine a function that has local extrema, inflection
points and both vertical and horizontal asymptotes.

Draw a graph of f (x) = x2 − 3
x3 showing all significant features.

Solution The default graph drawn by our computer algebra system (Maple) ap-
pears in Figure 3.59a. Notice that this doesn’t seem to be a particularly useful graph,
since very little is visible (or at least distinguishable from the axes). The graph drawn
using the most common graphing calculator default window (with a range of
−10 ≤ x ≤ 10 and −10 ≤ y ≤ 10) is seen in Figure 3.59b. This is arguably an
improvement over Figure 3.59a, but does this graph convey all that it could about the
function (e.g., about local extrema, inflection points, etc.)? We can answer this question
only after we do some calculus. We follow the outline given at the beginning of the
section.

First, observe that the domain of f includes all real numbers x �= 0. Since x = 0 is
an isolated point not in the domain of f , we scrutinize the limiting behavior of f as x

Drawing a Graph of a Rational FunctionExample 6.2
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y = x4 + 6x3 + 12x2 + 8x + 1.

f �(x)

�q

0

�2

0 �� �

(x � 2)2

�2

0 ��

(2x � 1)

�q

0 ��

f ��(x)
�2

0

�1

0�� �

(x � 2)
�2

0� �

(x � 1)
�1

0� �

f ��(x)
�1

0

�2

0 �� �

f �(x)
�2

0

�q

0� ��

y

x

�3e�24

�1e�24

3e�24

1e�24

4�4

Figure 3.59a

y = x2 − 3

x3
.



approaches 0. We have
−

lim
x→0+

f (x) = lim
x→0+

x2 − 3

x3
= −∞ (6.1)

+
and −

lim
x→0−

f (x) = lim
x→0−

x2 − 3

x3
= ∞. (6.2)

−

From (6.1) and (6.2), we see that the graph has a vertical asymptote at x = 0. 
Next, we look for whatever information the first derivative will yield. We have

f ′(x) = 2x(x3) − (x2 − 3)(3x2)

(x3)2
Quotient rule.

= x2[2x2 − 3(x2 − 3)]

x6
Factor out an x2.

= 9 − x2

x4
Combine terms.

= (3 − x)(3 + x)

x4
. Factor difference of two squares.

Looking at the individual factors in f ′(x), we have the number lines shown in the margin.
Thus,

f ′(x)

{
>0, on (−3, 0) ∪ (0, 3)

<0, on (−∞,−3) ∪ (3,∞).
f increasing.

f decreasing.
(6.3)

Note that this says that f has a local minimum at x = −3 and a local maximum at x = 3.
Next, we look at

f ′′(x) = −2x(x4) − (9 − x2)(4x3)

(x4)2
Quotient rule.

= −2x3[x2 + (9 − x2)(2)]

x8
Factor out −2x3.

= −2(18 − x2)

x5
Combine terms.

= 2(x − √
18)(x + √

18)

x5
. Factor difference of two squares.

Looking at the individual factors in f ′′(x), we obtain the number lines found in the
margin. Thus, we have

f ′′(x)

{
>0, on (−√

18, 0) ∪ (
√

18,∞)

<0, on (−∞,−√
18) ∪ (0,

√
18).

Concave up.

Concave down.
(6.4)

This says that there are inflection points at x = ±√
18. (Why is there no inflection point

at x = 0?)
To determine the limiting behavior as x → ±∞, we consider

lim
x→∞ f (x) = lim

x→∞
x2 − 3

x3

= lim
x→∞

(
1

x
− 3

x3

)
= 0. (6.5)
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Likewise, we have 

lim
x→−∞ f (x) = 0. (6.6)

So, the line y = 0 is a horizontal asymptote both as x → ∞ and as x → −∞. Finally,
the x-intercepts are where 

0 = f (x) = x2 − 3

x3
,

that is, at x = ±√
3. Notice that there are no y-intercepts, since x = 0 is not in the domain

of the function. We now have all of the information that we need to draw a representative
graph. With some experimentation, you can set the x- and y-ranges so that most of the
significant features of the graph (i.e., vertical and horizontal asymptotes, local extrema,
inflection points, etc.) are displayed, as in Figure 3.60. Notice that the graph in Figure
3.60 is consistent with all of the information that we accumulated on the function in
(6.1)–(6.6). Although the existence of the inflection points is clearly indicated by the
change in concavity, their precise location is as yet a bit fuzzy in this graph. Notice, how-
ever, that both vertical and horizontal asymptotes and the local extrema are clearly indi-
cated, something which cannot be said about either of Figures 3.59a or 3.59b.

�

In the following example, there are multiple vertical asymptotes, only one extremum
and no inflection points.

Draw a graph of f (x) = x2

x2 − 4
showing all significant features.

Solution The default graph produced by our computer algebra system is seen in
Figure 3.61a, while the default graph drawn by most graphing calculators looks like the
graph seen in Figure 3.61b. Notice that the domain of f includes all x except x = ±2
(since the denominator is zero at x = ±2). Figure 3.61b suggests that there are vertical
asymptotes at x = ±2, but let’s establish this carefully. We have 

+

lim
x→2+

x2

x2 − 4
= lim

x→2+

x2

(x − 2)(x + 2)
= ∞. (6.7)

+ +

Similarly, we get

lim
x→2−

x2

x2 − 4
= −∞, lim

x→−2+

x2

x2 − 4
= −∞ (6.8)

and

lim
x→−2−

x2

x2 − 4
= ∞. (6.9)

Thus, there are vertical asymptotes at x = ±2. Next, we have 

f ′(x) = 2x(x2 − 4) − x2(2x)

(x2 − 4)2
= −8x

(x2 − 4)2
.

A Graph with Two Vertical AsymptotesExample 6.3
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Since the denominator is positive for x �= ±2, it is a simple matter to see that 

f ′(x)

{
>0, on (−∞,−2) ∪ (−2, 0)

<0, on (0, 2) ∪ (2,∞).

f increasing.

f decreasing.
(6.10)

In particular, notice that the only critical number is x = 0 (since x = −2, 2 are not in the
domain of f ). Thus, the only local extremum is the local maximum located at x = 0.
Next, we have

f ′′(x) = −8(x2 − 4)2 + (8x)2(x2 − 4)1(2x)

(x2 − 4)4
Quotient rule.

= 8(x2 − 4)[−(x2 − 4) + 4x2]

(x2 − 4)4
Factor out 8(x2 − 4).

= 8(3x2 + 4)

(x2 − 4)3
Combine terms.

= 8(3x2 + 4)

(x − 2)3(x + 2)3
. Factor difference of two squares.

Since the numerator is positive for all x , we need only consider the terms in the denom-
inator, as seen in the margin. We then have 

f ′′(x)

{
>0, on (−∞,−2) ∪ (2,∞)

<0, on (−2, 2).

Concave up.

Concave down. (6.11)

However, since x = 2,−2 are not in the domain of f , there are no inflection points. It
is an easy exercise to verify that

lim
x→∞

x2

x2 − 4
= 1 (6.12)

and 

lim
x→−∞

x2

x2 − 4
= 1. (6.13)

From (6.12) and (6.13), we have that y = 1 is a horizontal asymptote, both as x → ∞
and as x → −∞. Finally, we observe that the only x-intercept is at x = 0. We can now
summarize the information in (6.7)–(6.13) in the graph seen in Figure 3.62.

�

In the following example, we need to use computer-generated graphs, as well as a
rootfinding method to determine the behavior of the function.

Draw a graph of f (x) = 1
x3 + 3x2 + 3x + 3

showing all significant features.

Solution The default graph drawn by most graphing calculators and computer
algebra systems looks something like the one shown in Figure 3.63. This seems to
reveal more about the function than did its counterparts in example 6.3, but we can only
determine all the significant features by doing some calculus.

Since f is a rational function, it is defined for all x , except for where the denomi-
nator is zero, that is, where 

x3 + 3x2 + 3x + 3 = 0.

Graphing Where the Domain and Extrema Must 
be ApproximatedExample 6.4
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If you don’t see how to factor the expression to find the zeros exactly, you must rely on
approximate methods. First, to get an idea of where the zero(s) might be, draw a graph
of the cubic (see Figure 3.64). The graph does not need to be elaborate, merely detailed
enough to get an idea of where and how many zeros there are. In the present case, we see
that there is only one zero, around x = −2. We can verify that this is the only zero, since

d

dx
(x3 + 3x2 + 3x + 3) = 3x2 + 6x + 3 = 3(x + 1)2 ≥ 0.

Since the derivative is never negative, observe that the function cannot decrease to cross
the x-axis a second time. We can obtain an approximation of this zero, as accurate as
needed, using Newton’s method or your calculator’s solver. Here, we get the approxi-
mate zero x = a ≈ −2.25992. Even though we don’t know this zero exactly, we can use
the graph in Figure 3.64 to help us compute the limits 

+

lim
x→a+

f (x) = lim
x→a+

1

x3 + 3x2 + 3x + 3
= ∞ (6.14)

+

and
+

lim
x→a−

f (x) = lim
x→a−

1

x3 + 3x2 + 3x + 3
= −∞. (6.15)

−

From (6.14) and (6.15), f has a vertical asymptote at x = a. Turning to the derivative
information, we have 

f ′(x) = −(x3 + 3x2 + 3x + 3)−2(3x2 + 6x + 3)

= −3

[
(x + 1)2

(x3 + 3x2 + 3x + 3)2

]

= −3

(
x + 1

x3 + 3x2 + 3x + 3

)2

< 0, for x �= a. (6.16)

Thus, f is decreasing for all x �= a. Also, notice that the only critical number is x = −1,
but since f is decreasing everywhere except at x = a, there are no local extrema. Turn-
ing to the second derivative, we get 

f ′′(x) = −6

(
x + 1

x3 + 3x2 + 3x + 3

)
1(x3 + 3x2 + 3x + 3) − (x + 1)(3x2 + 6x + 3)

(x3 + 3x2 + 3x + 3)2

= −6(x + 1)

(x3 + 3x2 + 3x + 3)3
(−2x3 − 6x2 − 6x)

= 12x(x + 1)(x2 + 3x + 3)

(x3 + 3x2 + 3x + 3)3
.
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y = x3 + 3x2 + 3x + 3.



Since (x2 + 3x + 3) > 0 for all x (Why is that?), we need not consider this factor. Con-
sidering the remaining factors, we have the number lines shown at the bottom of the pre-
vious page. Thus, we have that

f ′′(x)

{
>0, on (a,−1) ∪ (0,∞)

<0, on (−∞, a) ∪ (−1, 0)

Concave up.

Concave down.
(6.17)

It now follows that there are inflection points at x = 0 and at x = −1. Notice that in
Figure 3.63, the concavity information is not very clear and the inflection points are dif-
ficult to discern.

We note the obvious fact that the function is never zero and hence, there are no
x-intercepts. Finally, we consider the limits 

lim
x→∞

1

x3 + 3x2 + 3x + 3
= 0 (6.18)

and 

lim
x→−∞

1

x3 + 3x2 + 3x + 3
= 0. (6.19)

Using all of the information in (6.14)–(6.19), we draw the graph seen in Figure 3.65.
Here, we can clearly see the vertical and horizontal asymptotes, the changes in concav-
ity and the fact that the function is decreasing across its entire domain. Since these are
all of the features of the graph that we discovered through the calculus, this graph is rep-
resentative of the major features in the behavior of the function.

�

In the following example, we consider the graph of a transcendental function with a
vertical asymptote.

Draw a graph of f (x) = e1/x showing all significant features.

Solution The default graph produced by our computer algebra system is not par-
ticularly helpful (see Figure 3.66a). The default graph produced by most graphing cal-
culators (see Figure 3.66b) is certainly better, but we can’t be sure if this is adequate
without further analysis. First, notice that the domain of f is (−∞, 0) ∪ (0,∞). Thus,
we consider 

lim
x→0+

e1/x = ∞, (6.20)

since 1/x → ∞ as x → 0+. Also, since 1/x → −∞ as x → 0− (and et → 0, as
t → −∞),

lim
x→0−

e1/x = 0. (6.21)

From (6.20) and (6.21), there is a vertical asymptote at x = 0, but an unusual one, in that
f (x) → ∞ on one side of 0 and f (x) → 0 on the other side. Next, 

f ′(x) = e1/x d

dx

(
1

x

)

= e1/x

(−1

x2

)
< 0, for all x �= 0, (6.22)

Graphing Where Some Features Are Difficult to SeeExample 6.5
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since e1/x > 0, for all x . From (6.22), we have that f is decreasing for all x �= 0. We
also have 

f ′′(x) = e1/x

(−1

x2

)(−1

x2

)
+ e1/x

(
2

x3

)

= e1/x

(
1

x4
+ 2

x3

)
= e1/x

(
1 + 2x

x4

)

×
{

<0, on
(−∞,− 1

2

)
>0, on

(− 1
2 , 0

) ∪ (0,∞).

Concave down.

Concave up.
(6.23)

Since x = 0 is not in the domain of f , the only inflection point is at x = − 1
2 . Next, note

that

lim
x→∞ e1/x = 1, (6.24)

since 1/x → 0 as x → ∞ and et → 1 as t → 0. Likewise, 

lim
x→−∞ e1/x = 1. (6.25)

From (6.24) and (6.25), y = 1 is a horizontal asymptote, both as x → ∞ and as
x → −∞. Finally, since 

e1/x > 0,

for all x �= 0, there are no x-intercepts. It is worthwhile noting that all of these features of
the graph were discernible from Figure 3.66b, except for the inflection point at x = − 1

2 .
Note that in almost any graph you draw, it is difficult to see all of the features of the func-
tion. This happens because the inflection point (− 1

2 , e−2) or (−0.5, 0.135335 . . .) is so
close to the x-axis. Since the horizontal asymptote is the line y = 1, it is difficult to see
both of these features on the same graph (without drawing the graph on a very large piece
of paper). We settle for the graph seen in Figure 3.67, which shows all of the features
except the inflection point and the concavity on the interval (− 1

2 , 0). To clearly see the
behavior near the inflection point, we draw a graph that is zoomed-in on the area of the
inflection point (see Figure 3.68). Here, while we have resolved the problem of the con-
cavity near x = 0 and the inflection point, we have lost the details of the “big picture.’’

�

In our final example, we consider the graph of a function that is the sum of a trigono-
metric function and a polynomial.

Draw a graph of f (x) = cos x − x, showing all significant features.

Solution The default graph provided by our computer algebra system can be seen
in Figure 3.69a. The graph produced by most graphing calculators looks like that in
Figure 3.69b. As always, we will use the calculus to determine the behavior of the

Graphing the Sum of a Polynomial 
and a Trigonometric FunctionExample 6.6
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function more precisely. First, notice that the domain of f is the entire real line. Conse-
quently, there are no vertical asymptotes. Next, we have

f ′(x) = −sin x − 1 ≤ 0, for all x . (6.26)

Further, f ′(x) = 0 if and only if sin x = −1. So, there are critical numbers (here, these
are all locations of horizontal tangent lines), but since f ′(x) does not change sign, there
are no local extrema. Even so, it is still of interest to find the locations of the horizontal
tangent lines. Recall that 

sin x = −1 for x = 3π

2

and more generally, for

x = 3π

2
+ 2nπ,

for any integer n. Next, we see that 

f ′′(x) = − cos x

and on the interval [0, 2π], we have 

cos x




> 0, on

[
0,

π

2

)
∪

(
3π

2
, 2π

]

< 0, on

(
π

2
,

3π

2

) .

So, 

f ′′(x) = −cos x




< 0, on

[
0,

π

2

)
∪

(
3π

2
, 2π

]

> 0, on

(
π

2
,

3π

2

)
.

Concave down.

Concave up.

(6.27)

Outside of [0, 2π], f ′′(x) simply repeats this pattern. In particular, this says that the
graph has infinitely many inflection points, located at odd multiples of π/2.

To determine the behavior as x → ±∞, we examine the limits 

lim
x→∞ (cos x − x) = −∞ (6.28)

and
lim

x→−∞ (cos x − x) = ∞, (6.29)

since −1 ≤ cos x ≤ 1, for all x and since lim
x→∞ x = ∞.

Finally, to determine the x-intercept(s), we need to solve 

f (x) = cos x − x = 0.

This can’t be solved exactly, however. Since f ′(x) ≤ 0 for all x and Figures 3.69a and
3.69b show a zero around x = 1, there is only one zero and we must approximate this
(use Newton’s method or your calculator’s solver). We get x ≈ 0.739085 as an approx-
imation to the only x-intercept. Assembling all of the information in (6.26)–(6.29), we
can draw the graph seen in Figure 3.70. Notice that Figure 3.69b shows the behavior just
as clearly as Figure 3.70, but for a smaller range of x-values. Which of these is more
“representative’’ is open to discussion.

�
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1. We have talked about sketching representative graphs,
but it is often impossible to draw a graph correctly to

scale that shows all of the properties we might be interested in.
For example, try to generate a computer or calculator graph that
shows all three local extrema of x4 − 25x3 − 2x2 + 80x − 3.

When two extrema have y-coordinates of approximately −60
and 50, it takes a very large graph to also show a point with
y = −40,000! If an accurate graph cannot show all the points
of interest, perhaps a freehand sketch like the one shown below
is needed.

There is no scale shown on the graph because we have distorted
different portions of the graph in an attempt to show all of the
interesting points. Discuss the relative merits of an “honest’’
graph with a consistent scale but not showing all the points of
interest versus a caricature graph which distorts the scale but
does show all the points of interest.

2. While studying for a test, a friend of yours says that a
graph is not allowed to intersect an asymptote. While it is

often the case that graphs don’t intersect asymptotes, there is def-
initely not any rule against it. Explain why graphs can intersect a
horizontal asymptote any number of times (Hint: Look at the
graph of e−x sin x) but can’t pass through a vertical asymptote.

3. Explain why polynomials never have vertical or hori-
zontal asymptotes. 

4. Explain how the graph of f (x) = cos x − x in example
6.6 relates to the graphs of y = cos x and y = −x . Based

on this discussion, explain how to sketch the graph of
y = x + sin x .

In exercises 5–44, graph the function and completely discuss the
graph as in example 6.2.

5. f (x) = x3 − 3x2 + 3x 6. f (x) = x3 − 9x + 1

7. f (x) = x4 − 3x2 + 2x 8. f (x) = x4 + 8x − 2

x

y
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9. f (x) = x5 − 2x3 + 1

10. f (x) = x6 − 10x5 − 7x4 + 80x3 + 12x2 − 192x

11. f (x) = x
√

x2 − 4 12. f (x) = x√
x2 − 4

13. f (x) = x + 4

x
14. f (x) = x2 − 1

x

15. f (x) = sin x − cos x 16. f (x) = cos3 x

17. f (x) = e−x 2/4 18. f (x) = xe−4x

19. f (x) = x ln x 20. f (x) = x ln x2

21. f (x) = √
x2 + 1 22. f (x) = √

2x − 1

23. f (x) = x2 + 1

3x2 − 1
24. f (x) = 2x2

x2 + 2

25. f (x) = 2x2

x3 + 1
26. f (x) = x2

x4 + 1

27. f (x) = 4x

x2 − x + 1
28. f (x) = 4x2

x2 − x + 1

29. f (x) = x − 1

x2 − x − 2
30. f (x) = x3

x2 − 2x − 3

31. f (x) = x + sin x 32. f (x) = 2x + sin 2x

33. f (x) = x5 − 5x 34. f (x) = x3 − 3

400
x

35. f (x) = 2x√
x2 + 2

36. f (x) = √
3x4 + x3

37. f (x) = x1/5(x + 1) 38. f (x) = 3
√

x3 + 1

39. f (x) = sin x − 1
2 sin 2x 40. f (x) = sin x + 1

3 sin 3x

41. f (x) = e−2/x 42. f (x) = e1/x 2

43. f (x) = xe−x 2/2 44. f (x) = x10 e−x

In exercises 45–50, the “family of functions’’ contains a parame-
ter c. The value of c affects the properties of the functions. Deter-
mine what differences, if any, there are for c being zero, positive
or negative. Then determine what the graph would look like for
very large positive c’s and for very negative c’s.

45. f (x) = x4 + cx2 46. f (x) = x4 + cx2 + x

47. f (x) = x2

x2 + c2
48. f (x) = e−x 2/c

EXERCISES 3.6



49. f (x) = sin(cx)

50. f (x) = x2
√

c2 − x2

51. In a variety of applications, researchers model a phenomenon
whose graph starts at the origin, rises to a single maximum and
then drops off to a horizontal asymptote of y = 0. For example,
the probability density function of events such as the time from
conception to birth of an animal and the amount of time sur-
viving after contracting a fatal disease might have these prop-
erties. Show that the family of functions xe−bx has these prop-
erties for all positive constants b. What effect does b have on
the location of the maximum? In the case of the time since con-
ception, what would b represent? In the case of survival time,
what would b represent?

52. The “FM’’ in FM radio stands for frequency modulation, a
method of transmitting information encoded in a radio wave by
modulating (or varying) the frequency. A basic example of such
a modulated wave is f (x) = sin(x + cos x). Use computer-
generated graphs of f (x), f ′(x) and f ′′(x) to try to locate all
relative extrema of f (x).

53. A rational function is a function of the form 
p(x)

q(x)
, where p(x)

and q(x) are polynomials. Is it true that all rational functions
have vertical asymptotes? Is it true that all rational functions
have horizontal asymptotes?

54. It can be useful to identify asymptotes other than vertical and
horizontal. For example, the parabola x2 is an asymptote of
f (x) if lim

x→∞
[ f (x) − x2] = 0 and/or lim

x→−∞
[ f (x) − x2] = 0.

Show that x2 is an asymptote of f (x) = x4 − x2 + 1
x2 − 1

. Graph

y = f (x) and zoom out until the graph looks like a parabola.
(Note: the effect of zooming out is to emphasize large values
of x .)

A function f (x) has a slant asymptote y = mx + b (m �= 0) if 
lim [ f (x) − (mx + b)] � 0 and/or lim [ f (x) − (mx + b)] � 0.

x→∞ x→−∞
In exercises 55–60, find the slant asymptote (use long division to
rewrite the function). Then, graph the function and its asymptote
on the same axes.

55. f (x) = 3x2 − 1

x

56. f (x) = 3x2 − 1

x − 1

57. f (x) = x3 − 2x2 + 1

x2

58. f (x) = x3 − 1

x2 − 1
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59. f (x) = x4

x3 + 1
60. f (x) = x4 − 1

x3 + x

In exercises 61–64, find a function whose graph has the given
asymptotes.

61. x = 1, x = 2 and y = 3

62. x = −1, x = 1 and y = 0

63. x = −1, x = 1, y = −2 and y = 2

64. x = 1, y = 2 and x = 3

65. For each function, find a polynomial p(x) such that
lim

x→∞
[ f (x) − p(x)] = 0.

(a)
x4

x + 1
(b)

x5 − 1

x + 1
(c)

x6 − 2

x + 1

Show by zooming out that f (x) and p(x) look similar for large
x . The first term of a polynomial is the term with the highest
power (e.g., x3 is the first term of x3 − 3x + 1). Can you zoom
out enough to make the graph of f (x) look like the first term of
its polynomial asymptote? State a very quick rule enabling you
to look at a rational function and determine the first term of its
polynomial asymptote (if one exists).

66. One of the natural enemies of the balsam fir tree is the
spruce budworm, which attacks the leaves of the fir tree

in devastating outbreaks. Define N (t) to be the number of
worms on a particular tree at time t . A mathematical model of
the population dynamics of the worm must include a term to in-
dicate the worm’s death rate due to its predators (e.g., birds).

The form of this term is often taken to be 
B[N (t)]2

A2 + [N (t)]2
for

positive constants A and B. Graph the functions 
x2

4 + x2
,

2x2

1 + x2
,

x2

9 + x2
and 3x2

1 + x2
for x > 0. Based on these graphs, discuss

why 
B[N (t)]2

A2 + [N (t)]2
is a plausible model for the death rate by

predation. What role do the constants A and B play? The pos-
sible stable population levels for the spruce budworms are
determined by intersections of the graphs y = r(1 − x/k) and
y = x

1 + x2
. Here, x = N/A, r is proportional to the birthrate

of the budworms and k is determined by the amount of food
available to the budworms. Note that y = r(1 − x/k) is a line
with y-intercept r and x-intercept k. How many solutions are
there to the equation r(1 − x/k) = x

1 + x2
? (Hint: The answer

depends on the values of r and k.) One current theory is that
outbreaks are caused in situations where there are three solu-
tions and the population of budworms jumps from a small pop-
ulation to a large population.


