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VII.  BOUNDARY LAYER FLOWS 
 

The previous chapter considered only viscous internal flows. 
 
Viscous internal flows have the following major boundary layer characteristics: 

 
* An entrance region where the boundary layer grows and dP/dx  ≠  constant, 
* A fully developed region where: 

� The boundary layer fills the entire flow area. 
� The velocity profiles, pressure gradient,  and  τw  are  constant;  

i.e. they are not equal to  f(x), 
� The flow is either laminar or turbulent over the entire length of the flow,  

i.e. transition from laminar to turbulent is not considered. 
 

However, viscous flow boundary layer characteristics for external flows are 
significantly different as shown below for flow over a flat plate: 
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Fig. 7.1  Schematic of boundary layer flow over a flat plate 
 

For these conditions, we note the following characteristics: 
� The boundary layer thickness  δ  grows continuously from the start of the 

fluid-surface contact, e.g. the leading edge.  It is a function of x, not a 
constant. 

� Velocity profiles and shear stress  τ   are  f(x,y). 
� The flow will generally be laminar starting from x = 0. 
� The flow will undergo laminar-to-turbulent transition if the streamwise 

dimension is greater than a distance  xcr  corresponding to the location of  
the transition Reynolds number  Recr. 

� Outside of the boundary layer region, free stream conditions exist where 
velocity gradients and therefore viscous effects are typically negligible. 
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As it was for internal flows, the most important fluid flow parameter is the 
local Reynolds number defined as 

 

  
  
Rex = ρU∞x

µ
= U∞x

υ
 

where 

ρ = fluid density µ = fluid dynamic viscosity 
ν = fluid kinematic viscosity U∞  = characteristic flow velocity 
x = characteristic flow dimension 

 
It should be noted at this point that all external flow applications will not use a 
distance from the leading edge  x  as the characteristic flow dimension.  For 
example, for flow over a cylinder, the diameter will be used as the characteristic 
dimension for the Reynolds number. 
 

Transition from laminar to turbulent flow typically occurs at the local transition 
Reynolds number, which for flat plate flows can be in the range of 

 
 500, 000 ≤ Re cr ≤3,000, 00  
 

With xcr = the value of  x  where transition from laminar to turbulent flow occurs, 
the typical value used for steady, incompressible flow over a flat plate is 

 

 Recr =
ρU∞ xcr

µ
= 500, 000

  
 

 
Thus for flat plate flows for which: 

 

 x < xcr the flow is laminar 

 x ≥ xcr the flow is turbulent 
 

The solution to boundary layer flows is obtained from the reduced �Navier � 
Stokes� equations, i.e., Navier-Stokes equations for which boundary layer 
assumptions and approximations have been applied. 



 

VII-3 

Flat Plate Boundary Layer Theory 
Laminar Flow Analysis 

For steady, incompressible flow over a flat plate, the laminar boundary layer 
equations are: 

Conservation of mass: 
    

∂ u
∂x

+ ∂ v
∂ y

= 0 

 

'X' momentum: 
    
u ∂ u

∂ x
+ v ∂ u

∂ y
= − 1

ρ
dp
dx

+ 1
ρ

∂
∂ y

µ ∂ u
∂ y

  
 
  

 
  

 

'Y' momentum: −∂ p
∂ y

= 0 

 
The solution to these equations was obtained in 1908 by Blasius, a student of 
Prandtl's.  He showed that the solution to the velocity profile, shown in the table 
below, could be obtained as a function of a single, non-dimensional variable  η   
defined as 
 
 Table 7.1 the Blasius Velocity Profile 

    
η = y U∞

υ x
 
 
  

 
 

1/2

 

with the resulting ordinary 
differential equation: 

′ ′ ′ f + 1
2

f ′ ′ f = 0
 

and    ′ f η( )= u
U∞

 
 

 
 
Boundary conditions for the differential equation are expressed as follows: 
 
 at y = 0,  v = 0  →  f (0) = 0  ;  y component of velocity is zero at y = 0  
 

 at y = 0 , u = 0  → ′ f 0( )= 0 ; x component of velocity is zero at y = 0 



 

VII-4 

The key result of this solution is written as follows: 
 

∂ 2 f
∂η2

 
  y=0

= 0.332 = τ w

µU∞ U∞ / υ x
 

 
With this result and the definition of the boundary layer thickness, the following 
key results are obtained for the laminar flat plate boundary layer: 
 

Local boundary layer thickness 
    
δ x( )= 5x

Rex
 

Local skin friction coefficient: 
(defined below) 

Cfx
=

0.664
Re x

 

Total drag coefficient for length L ( integration 
of τw dA over the length of the plate, per unit 
area, divided by 0.5 ρ U∞

2 ) 
CD =

1.328
Rex

 

where by definition       Cfx
=

τw x( )
1
2 ρU∞

2      and CD =
FD / A
1
2 ρ U∞

2  

 
With these results, we can determine local boundary layer thickness, local wall 
shear stress, and total drag force for laminar flow over a flat plate. 
 
Example: 
Air flows over a sharp edged flat plate with L = 1 m, a width of 3 m and  
U∞  = 2 m/s .  For one side of the plate, find:  δ(L), Cf (L), τw(L), CD, and FD. 
 Air: ρ = 1.23 kg/m3 ν = 1.46 E-5 m2/s 

First check Re: Re L =
U∞L

υ
=

2m / s* 2.15m
1.46E − 5m2 / s

= 294,520 < 500,000  

Key Point: Therefore, the flow is laminar over the entire length of the plate and 
calculations made for any  x  position from 0 - 1 m must be made using laminar 
flow equations. 
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Boundary layer thickness at x = L:   

δ L( ) = 5 L
ReL

= 5*2.15m
294, 520

= 0.0198m =1.98cm  

 
Local skin friction coefficient at x = L: 

Cf L( ) =
0.664

ReL

=
0.664
294, 520

= 0.00122  

 
Surface shear stress at x = L: 

τ w =1 / 2 ρU∞
2 Cf = 0.5*1.23kg / m3 *22 m 2 / s2 *0.00122 

 τ w = 0.0030 N / m2 Pa( )  
 
Drag coefficient over total plate, 0 � L: 

CD L( ) =
1.328

ReL

=
1.328
294, 520

= 0.00245 

 
Drag force over plate, 0 � L: 

FD =1/ 2ρU∞
2 CD A = 0.5*1.23kg / m3 *22 m2 / s2 *0.00245*2 *2.15m2  

 FD = 0.0259 N  
 
Two key points regarding this analysis: 

1. Each of these calculations can be made for any other location on the plate 
by simply using the appropriate x location for any x L≤≤≤≤ . 

2. Be careful not to confuse the calculation for Cf and CD.   

 Cf is a local calculation at a particular x location (including x =  L) and 
can only be used to calculate local shear stress at a specific x, not drag 
force.   

 CD is an integrated average over a specified length (including any x ≤ L) 
and can only be used to calculate the average shear stress over the entire 
plate and the integrated force over the total length. 
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Turbulent Flow Equations 
While the previous analysis provides an excellent representation of laminar, flat 
plate boundary layer flow, a similar analytical solution is not available for 
turbulent flow due to the complex nature of the turbulent flow structure.   
However, experimental results are available to provide equations for key flow 
field parameters. 
 
A summary of the results for boundary layer thickness and local and average skin 
friction coefficient for a laminar flat plate and a comparison with experimental 
results for a smooth, turbulent flat plate are shown below. 
 
 Laminar Turbulent 
 

 δ x( )= 5x
Rex

 δ x( )=
0.16 x
Re x

1/ 7  

 

 Cfx
= 0.664

Re x

 C fx
=

0.027
Rex

1/7  

 

CD = 1.328
Re L

 CD =
0.031
ReL

1/7  
for turbulent flow over 
entire plate, 0 � L, i.e. 
assumes turbulent flow 
in the laminar region 

 

where 

Cfx
=

τw
1
2 ρU∞

2
 

 

 
local drag coefficient based on local 
wall shear stress (laminar or turbulent 
flow region) 

and 

CD = total drag coefficient 
based on the integrated 
force over the length 0 to L 

CD =
F / A

1
2 ρU∞

2 = 1
2 ρU∞

2 A( )−1
τ w

0

L
∫ x( )w dx  

 
A careful study of these results will show that, in general, boundary layer 
thickness grows faster for turbulent flow, and wall shear and total friction drag are 
greater for turbulent flow than for laminar flow given the same Reynolds number. 
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It is noted that the expressions for turbulent flow are valid only for a flat plate with 
a smooth surface.  Expressions including the effects of surface roughness are 
available in the text. 
 
Combined Laminar and Turbulent Flow 
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Flat plate with both laminar and turbulent flow sections 

 
For conditions (as shown above) where the length of the plate is sufficiently long 
that we have both laminar and turbulent sections: 
 

* Local values for boundary layer thickness and wall shear stress for either 
the laminar or turbulent sections are obtained from the expressions for  δ(x) 
and Cfx for laminar or turbulent flow as appropriate for the given region. 

* The result for average drag coefficient CD  and thus total frictional force 
over the combined laminar and turbulent portions of the plate is given by  
(assuming a transition Re of 500,000) 

 

 CD =
0.031
ReL

1/7 =
0.031

5x106( )1/ 7
 

 
* Calculations assuming only turbulent flow can typically be made for two cases: 

1. when some physical situation (a trip wire) has caused the flow to be 
turbulent from the leading edge or  

2. if the total length  L  of the plate is much greater than the length xcr of 
the laminar section such that the total length of plate can be considered 
turbulent from x = 0 to L.  Note that this will over predict the friction 
drag force since turbulent drag is greater than laminar. 

 
With these results, a detailed analysis can be obtained for laminar and/or turbulent 
flow over flat plates and surfaces that can be approximated as a flat plate. 
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Figure 7.6 in the text shows results for laminar, turbulent and transition regimes. 
Equations 7.48a & b can be used to calculate skin friction and drag results for the 
fully rough regime.   

 cf ≈ 2.87 +1.58log
x
ε

 
 

 
 

−2.5

 (7.48a) 

 

 CD ≈ 1.89 +1.62log
L
ε

 
 

 
 

−2.5

 (7.48b) 

Equations 7.49a & b can be used to calculate total CD for combined laminar and 
turbulent flow for transition Reynolds numbers of 5x105 and 3x106 respectively. 
 

 CD ≈
0.031
ReL

1/7 −
1440
ReL

Re trans = 5x105
 

 

 CD ≈
0.031
ReL

1/7 −
8700
ReL

Re trans = 3x106
 

 
Example: 

Water flows over a sharp flat plate 2.55 m long, 1 m wide, with U∞ = 2 m/s.  
Estimate the error in FD if it is assumed that the entire plate is turbulent. 
 
Water:   ρ  =  1000 kg/m3 ν  =  1.02 E- m2/s 
 

Reynolds number:       ReL = U∞L
υ

= 2m / s*2.55m
1.02E − 6m 2 / s

= 5E 6 > 500, 000  

 
with  Re cr = 500,000 ⇒ xcr = 0.255m   ( or 10% laminar) 
 

a.   Assume that the entire plate is turbulent 
 

CD ≈
0.031
ReL

1/7 =
0.031

5x106( )1/ 7 = 0.003423 
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FD = 0.5ρU∞
2 CD A = 0.5 ⋅1000

kg
m3 ⋅ 22 m2

s2 ⋅ 0.003423⋅ 2.55m2
 

 

FD =17.46N This should be high since we have assumed that 
the entire plate is turbulent and the first 10% is 
actually laminar. 

 
b.  Now consider the actual combined laminar and turbulent flow: 
 

CD ≈ 0.031
ReL

1/7 −1440
ReL

= 0.031

5x106( )1/7 − 1440
5x106 = 0.003135  

 

Note that the CD has decreased when both the laminar and turbulent sections are 
considered. 
 

FD = 0.5ρU∞
2 CD A = 0.5 ⋅1000

kg
m3 ⋅ 22 m2

s2 ⋅ 0.003135 ⋅ 2.55m2
 

 
FD =15.99N { Lower than the fully turbulent value} 
 

Error =
17.46 −15.99

15.99
⋅100 = 9.2% high  

 
Thus, the effect of neglecting the laminar region and assuming the entire plate is 
turbulent is as expected. 

 
 

Question: Since xcr = 0.255 m, what would your answers represent if you had 
calculated the Re, CD, and FD  using  x = xcr = 0.255 m?   

 
Answer: You would have the value of the transition Reynolds number and the 

drag coefficient and drag force over the laminar portion of the plate 
(assuming you used laminar equations).   

 
 If you had used turbulent equations you would have red marks on your 

paper. 



 

VII-10 

Von Karman Integral Momentum Analysis 
 
While the previous results provide an excellent basis for the analysis of flat plate 
flows, complex geometries and boundary conditions make analytical solutions to 
most problems difficult. 
 
An alternative procedure provides the basis for an approximate solution which in 
many cases can provide excellent results. 
 
The key to practical results is to use a reasonable approximation to the boundary 
layer profile, u(x,y).  This is used to obtain the following: 
 

a. Boundary layer mass flow: ydbum ∫=
δ

ρ
0

!  

 where b is the width of the area for which the flow rate is being obtained. 
 

b. Wall shear stress: τ w = µ
d u
d y

 
  y=0

 

 

You will also need the streamwise pressure gradient  
d P
d x

  for many problems. 

The Von Karman integral momentum theory provides the basis for such an 
approximate analysis. The following summarizes this theory. 
 
Displacement thickness: 
 

Consider the problem 
indicated in the adjacent 
figure:   
A uniform flow field with 
velocity  U∞ approaches a 
solid surface.  As a result 
of viscous shear, a 
boundary layer velocity 
profile develops. 

Streamline

δ*

y=h +δ*

 U

y

x
0

h
u

Simulated
effect

U

h

U ∞
∞

∞
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A viscous boundary layer is created when the flow comes in contact with the solid 
surface. 
 
Key Point:  Compared to the uniform velocity profile approaching the solid 

surface, the effect of the viscous boundary layer is to displace 
streamlines of the flow outside the boundary layer away from the 
wall. 

 

With this concept, we define   δ* = displacement thickness 
 

 δ* = distance the solid surface would have to be displaced to maintain the 
same mass flow rate as for non-viscous flow. 

 
From the development in the text, we obtain 
 

δ* = 1 −
u

U∞

 
  

 
  0

δ
∫ dy 

 
Thus, the displacement thickness varies only with the local non-dimensional 
velocity profile.  Therefore, with an expression for u / U∞ , we can obtain δ* = 
f(δ). 
 
Example: 

Given:  
u

U∞
= 2

y
δ

 
 

 
 −

y
δ

 
 

 
 

2

  determine an expression for δ* = f(δ) 

Note that for this assumed form for the velocity profile: 
 

1. At   y  =  0,   u  =  0       correct for no slip condition 
2. At   y  =  δ,   u  =  U∞    correct for edge of boundary layer 
3. The form is quadratic 
 

To simplify the mathematics,  

let  η = y/δ,    at y = 0,  η = 0 ;     at y = δ  ,   η = 1;  dy = δ dη 

Therefore:    
u

U∞
= 2η − η 2 
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Substituting:         δ* = 1 − 2η +η 2( )
0

1
∫ δ dη = δ η −

2η 2

2
+

η 3

3
 
 
 

 
 
 0

1

 

 

which yields        δ* = 1
3 δ  

 
Therefore, for flows for which the assumed quadratic equation approximates the 
velocity profile, streamlines outside of the boundary layer are displaced 
approximately according to the equation 
 

 δ* = 1
3 δ  

 
This closely approximates flow for a flat plate. 
 
Key Point:  When assuming a form for a velocity profile to use in the Von 
Karman analysis, make sure that the resulting equation satisfies both surface and 
free stream boundary conditions as well as has a form that approximates   u(y).   

 
Momentum Thickness: 
 
The second concept used in the Von Karman momentum analysis is that of  
 
 momentum thickness  -  θ 
 
The concept is similar to that of displacement thickness in that  θ  is related to the 
loss of momentum due to viscous effects in the boundary layer. 
 
 
Consider the viscous flow 
regions shown in the 
adjacent figure.     
Define a control volume as 
shown and integrate around 
the control volume to obtain 
the net change in 
momentum for the control 
volume. 

δ*

 U

y

x
0

u

Simulated
effect

U

h

U ∞
∞

∞

D (on fluid)Α

Α�

Β

Β�c.v
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If   D  =  drag force on the plate due to viscous flow,  taking the fluid as the 
control volume, we can write 
 

- D  =  ∑  ( momentum leaving c.v. ) -  ∑  ( momentum entering c.v. ) 
 
Completing an analysis shown in the text, we obtain 
 

 D = ρU∞
2 θ  θ =

u
U∞0

δ
∫ 1 −

u
U∞

 
  

 
  

d y  

 

Using a drag coefficient defined as CD =
D/A

1
2 ρ U∞

2  

 

We can also show that  CD =
2θ L( )

L
 

 
where:   θ(L) is the momentum thickness evaluated over the length  L. 
 
Thus, knowledge of the boundary layer velocity distribution  u = f(y)  also allows 
the drag coefficient to be determined. 
 
 
Momentum integral: 
 
The final step in the Von Karman theory applies the previous control volume 
analysis to a differential length of surface.  Performing an analysis similar to the 
previous analysis for drag D we obtain 
 
 

      
τ w

ρ
=δ* U∞

dU∞

d x
+

d
d x

U∞
2 θ( ) 

This is the momentum integral 
for 2-D, incompressible flow 
and is valid for laminar or 
turbulent flow. 
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where  δ* U∞
dU∞

d x
= −

δ*

ρ
d P
d x

 

 

Therefore, this analysis also accounts for 
the effect of freestream pressure 
gradient. 
For a flat plate with non-accelerating 
flow, we can show that 

 

P = const., U∞ = const.,
dU∞

d x
= 0  

 
Therefore, for a flat plate, non-accelerating flow, the Von Karman momentum 
integral becomes 
 

τ w

ρ
=

d
d x

U∞
2 θ( )= U∞

2 dθ
d x

 

 
From the previous analysis and the assumed velocity distribution of 
 

u
U∞

= 2
y
δ

 
 

 
 − y

δ
 
 

 
 

2
= 2η − η 2 

 
The wall shear stress can be expressed as 
 

 τ w = µ
d u
d y

 
  w

= 2U∞
2
δ

−
2 y
δ2

  
 

  
 y=0

=
2 µU∞

δ
    (A) 

 

Also, with the assumed velocity profile, the momentum thickness  θ   can be 
evaluated as 
 

θ =
u

U∞0

δ
∫ 1 −

u
U∞

  
  

  
  

d y  

or  
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θ = 2η − η 2( )
0

δ
∫ 1 − 2η +η 2( )δ dη =

2δ
15

 

 
We can now write from the previous equation for  τw 

 

τ w = ρ U∞
2 dθ

d x
=

2
15

ρ U∞
2 dδ

d x
 

 
Equating this result to Eqn. A we obtain 
 

τ w =
2

15
ρ U∞

2 dδ
d x

=
2 µU∞

δ
 

or 

 δ dδ =
15µ
ρU∞

d x  which after integration yields   

 

 δ =
30 µ x
ρU∞

 
 
 

 
 
 

1/ 2

 or δ =
5.48
Rex

 

 
Note that this result is within 10% of the exact result from Blasius flat plate 
theory. 
 
Since for a flat plate, we only need to consider friction drag (not pressure drag), 
we can write 
 

Cfx
=

τw x( )
1
2 ρU∞

2 =
2 µU∞

δ
1

1
2 ρ U∞

2  

Substitute for δ to obtain 
 

Cfx
=

2µ U∞

5.48
Re

1
2 ρU∞

2 =
0.73
Rex
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Exact theory has a numerical constant of 0.664 compared with 0.73 for the Von 
Karman integral analysis. 
 
It is seen that the Von Karman integral theory provides the means to determine 
approximate expressions for   

δ, τw, and  Cf 

using only an assumed velocity profile. 
 

Solution summary: 

 

 1. Assume an analytical expression for the velocity profile for 
the problem. 

 2. Use the assumed velocity profile to determine the solution 
for the displacement thickness for the problem. 

 3. Use the assumed velocity profile to determine the solution 
for the momentum thickness for the problem. 

 4. Use the previous results and the Von Karman integral 
momentum equation to determine the solution for the 
drag/wall shear for the problem. 

 
 

 and 7.3 and does not have to be accounted for separately. 


