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VIII.  POTENTIAL FLOW AND COMPUTATIONAL FLUID 
DYNAMICS 

 
 
Review of Velocity-Potential Concepts 
 
This chapter presents examples of problems and their solutions for which the 
assumption of potential flow is appropriate.   
 
For low speed flows where viscous effects are neglected, the flow is irrotational 
and 
 

 ∇ × V = 0  V = ∇ φ u = ∂φ
∂ x

 v = ∂ φ
∂ y

 w = ∂ φ
∂ z

 

 
The continuity equation ,  ∇ ⋅ V = 0  ,  now reduces to 

 

∇ 2 V = ∂ 2 φ
∂ x2 + ∂ 2 φ

∂ y2 + ∂ 2 φ
∂ z2 = 0  

 
The momentum equation reduces to Bernoulli�s equation: 
 
 

∂φ
∂ t

+ P
ρ

+ 1
2

V 2 + gz = const . 

 
 
Review of Stream Function Concepts 
 
For plane incompressible flow in x-y coordinates, a stream function exists such 
that 
 

u = ∂ Ψ
∂ y

and v = − ∂ Ψ
∂ x
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The condition of irrotationality reduces to Laplace�s equation for  Ψ  with 
 

 
∂ 2 Ψ
∂ x2 + ∂ 2 Ψ

∂ y2 = 0   and for a solid surface -  Ψsolid = const. 

 
 
Fig. 8.2  Streamlines and 
potential lines are 
orthogonal and may 
reverse roles if results 
are useful: (a) typical 
inviscid-flow pattern: (b) 
same as (a) with roles 
reversed 

 
 
Plane Polar Coordinates 
 
Equations for plane polar velocity components are given below in term of polar 
coordinates (r, θ) and the polar coordinate velocity potential, φ, and stream 
function, Ψ. 
 
 

vr =
∂ φ
∂ r

=
1
r

∂Ψ
∂ θ

vθ =
1
r

∂φ
∂ θ

= −
∂Ψ
∂ r

 

 
 
Laplace�s equation now has the form in polar coordinates 
 
 

1
r

∂
∂ r

r
∂ φ
∂ r

 
  

 
  

+
1
r 2

∂ 2φ
∂θ2 = 0  
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Elementary Plane-Flow Solutions 
 
Three plane-flow solutions that are very useful in developing more complex 
potential flow solutions are: 
 
Uniform stream, iU, in the x direction: Ψ = U y  φ = U x  
 
Line source or sink: Ψ = mθ  φ = m ln r  
 
Line vortex: Ψ = −K ln r  φ = Kθ  
 
 
In these expressions, the source strength, �m�, and vortex strength, �K�, have the 
dimensions of velocity times length, or [L2/t]. 
 
If the uniform stream is written in plane polar coordinates, we have 
 
Uniform stream, iU: Ψ = U r sinθ  φ = U rcosθ  
 
For a uniform stream moving at an angle, a , relative to the  x-axis, we can write 
 

 u = Ucosα = ∂ Ψ
∂ y

= ∂ φ
∂ x

 v = Usin α = −∂ Ψ
∂ x

= ∂ φ
∂ y

 

 
After integration, we obtain the following expressions for the stream function and 
velocity potential: 
 
 Ψ =U y cosα − xsin α( ) φ =U x cosα + ysinα( ) 
 
 
Circulation 
 
The concept of fluid circulation is very useful in the analysis of certain potential 
flows, in particular those useful in aerodynamics analyses.  Consider Figure 8.3 
shown below: 
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We define the circulation, Γ   , as 
the counterclockwise line integral 
of the arc length, dS times the 
velocity component tangent to the 
closed curve, C, e.g. 
 

Γ = V cosα d s
c
∫ = V ⋅ds

c
∫  

 

Γ = u dx + vdy + wdz( )
c
∫   

For most flows, this line integral around a closed path, starting and stopping at the 
same point, yields  Γ  = 0.  However,  
 

 for a vortex flow for which φ  =  K θ 
 
 the integral yields Γ  =  2 π K 
 
An equivalent calculation can by made by defining a circular path of radius r 
around the vortex center to yield 
 

Γ = vθ
c
∫ d s = K

r0

2π

∫ r dφ = 2π K  

 
 
Key Point:  A source or sink does not produce circulation.  Without the 

presence of vortices, the circulation will be zero for any closed 
path around any number of sources or sinks.   

 
 
Superposition of  Potential Flows 
 
Due to the mathematical character of the equations governing potential flows, the 
principle of superposition can be used to determine the solution for the flow which 
results from summing the velocity potential and stream functions two individual 
potential flow solutions. 
 
This is shown graphically in Fig. 8.4 on the following page. 
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Note that the value of the 
stream function at each 
intersection equals the sum of 
the values of the stream 
functions crossing at the point. 
 
This would also be true for the 
velocity potential at any point 
in a combined flow. 

 
 
 
Several classic examples of superposition of flows are presented as follows: 
 
1. Source  m  at ( -a, 0) added to an equal sink at (+a, 0). 
 

 ψ = −m tan−1 2a y
x 2 + y2 − a2  φ = 1

2
m ln

x + a( )2 + y2

x − a( )2 + y2  

The streamlines and potential lines are two families of orthogonal circles (Fig. 
4.13,, Ch 4, text). 
 
2. Sink  m  plus a vortex  K, both at the origin. 
 
 ψ = mθ − K ln r  φ = m ln r + K θ  
 
The streamlines are logarithmic spirals swirling into the origin (Fig. 4.14, text).  
They resemble a tornado or a bathtub vortex. 
 
3. Uniform  steam i U∞  plus a source m at the origin (Fig. 4.15), the Ranking half 

body.  If the origin contains a source, a plane half-body is formed with its nose 
to the left as shown below.  If the origin contains a sink, m < 0, the half-body 
nose is to the right..   For both cases, the stagnation point is at a position 
a = m / U∞   away from the origin. 
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(a)  a uniform stream plus 
a source yields a half-
body with stagnation 
point at x = -a = -m/U∞. 
(c) a uniform stream plus 
a sink with a stagnation 
point at x = a = m/U∞. 
(b & d) variation of free 
stream velocity and thus 
free stream pressure with 
location. 

 
 

Fig. 8.5  The Rankine half-body 
 
Example 8.1 
 
An offshore power plant cooling water intake has a flow rate of 1500 ft3/s in water 
30 ft deep as in Fig. E8.1.  If the tidal velocity approaching the intake is 0.7 ft/s,  
(a) how far downstream does the intake effect extend and (b) how much width of 
tidal flow is entrained into the intake? 
 
The sink strength is related to the volume flow, 
Q and water depth by 
 

m = Q
2πb

= 1500 ft3 / s
2π30 ft

=7.96 ft2 / s 

 
The length, a,  of the downstream effect:  
 

a = m
U∞

= 7.96 ft 2 / s
0.7 ft / s

= 11.4 ft  

The width, L, of flow entrained into the intake: 
 

L = 2πa = 2π11.4 ft = 71 ft  

 

 


