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Flow Past a Vortex 
 
Consider a uniform stream, U∞  flowing in the x direction past a vortex of strength 
K with the center at the origin.  By superposition the combined stream function is 
 

ψ = ψ stream + ψ vortex = U∞ rsinθ − K ln r  
 
The velocity components of this flow are given by 
 

 vr = 1
r

∂ψ
∂ θ

= U∞ cosθ  vθ = − ∂ψ
∂ r

= −U∞ sinθ + K
r

 

 

Setting  vr   and  vθ   = 0, we find the stagnation point at θ   =  90û, r = a  = K/ U∞  
or  (x,y) = (0,a).  
 
At this point the counterclockwise vortex velocity, K/r, exactly cancels the free 
steam velocity, U∞.  Figure 8.6 in the text shows a plot of the streamlines for this 
flow. 
 
 
An Infinite Row of Vortices 
 
Consider an infinite row of vortices of equal strength K and equal spacing   a  as 
shown in Fig. 8.7a.  A single vortex, i , has a stream function given  by 
Ψi = −K lnri   and the total infinite row has a combined stream function of 
 

Ψ = −K lnri
i=1

∞
∑  

 
This infinite sum can also be expressed as 
 

ψ =− 1
2

K ln 1
2

cosh 2π y
a

− cosh 2πx
a
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Fig. 8.7  Superposition of 
vortices 
 
(a) an infinite row of equal 
strength vortices; 
 
(b) the streamline pattern for part 
a; 
 
(c)  vortex sheet, part a viewed 
from afar. 

 
 
 
The resulting left and right flow above and below the row of vortices is given by 
 

u = ∂ ψ
∂ y y >a

= ± πK
a

 

 
The Vortex Sheet 
 
The flow pattern of Fig. 8.7b when viewed from a long distance will appear as the 
uniform left and right flows shown in Fig. 8.7c.  The vortices are so closely packed 
together that they appear to be a continuous sheet.  The strength of the vortex sheet 
is given by 
 

γ =
2πK

a
 

 
Since, in general, the circulation is related to the strength, γ, by d Γ = γ dx,  the 
strength, γ , of a vortex sheet is equal to the circulation per unit length, d Γ /dx.  
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Plane Flow Past Closed-Body Shapes 
 
Various types of external flows over a closed-body can be constructed by 
superimposing a uniform stream with sources, sinks, and vortices.   
 
Key Point:  The body shape will be closed only if the net source of the outflow 

equals the net sink inflow. Two examples of this are presented below. 
 
The Rankine Oval 
 

A Rankine Oval is a cylindrical 
shape which is long compared to 
its height.  It is formed by a 
source-sink pair aligned parallel to 
a uniform stream.   
The individual flows used to 
produce the final result and the 
combined flow field are shown in 
Fig. 8.9.  The combined stream 
function is given by 
 

ψ = U∞ y − m tan−1 2 a y
x2 + y2 − a2

or 
 

ψ = U∞ rsinθ + m θ1 −θ2( )  
Fig. 8.9  The Rankine Oval 

 
The oval shaped closed body is the streamline, ψ = 0.  Stagnation points occur at 
the front and rear of the oval, x = ± L, y = 0 .  Points of maximum velocity and 
minimum pressure occur at the shoulders, x = 0, y = ± h.  Key geometric and 
flow parameters of the Rankine Oval can be expressed as follows: 

 
h
a

= cot h / a
2m / U∞ a( ) 

L
a

= 1+ 2 m
U∞ a

 
  

 
  
1/ 2
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umax

U∞

=1 +
2m / U∞ a( )
1 + h2 / a2  

 
As the value of the parameter  m / U∞ a( )  is increased from zero, the oval shape 
increases in size and transforms from a flat plate to a circular cylinder at the 
limiting case of  m / U∞ a( )= ∞. 
 
Specific values of these parameters are presented in Table 8.1 for four different 
values of the dimensionless vortex strength, K / U∞ a( ).  
 

Table 8.1  Rankine-Oval Parameters 
m / U∞ a( ) h / a L / a  L / h  umax /U∞  

 0.0 0.0 1.0 ∞  1.0 
 0.01 0.31 1.10  32.79  1.020 
 0.1 0.263 1.095  4.169  1.187 
 1.0 1.307 1.732  1.326  1.739 

 10.0 4.435 4.458  1.033  1.968 
 10.0 14.130 14.177  1.003  1.997 

∞ ∞ ∞  1.000  2.000 
 
 
 
Flow Past a Circular Cylinder with Circulation 
 
It is seen from Table 8.1 that as source strength m becomes large, the Rankine 
Oval becomes a large circle, much greater in diameter than the source-sink spacing 
2a.  Viewed, from the scale of the cylinder, this is equivalent to a uniform stream 
plus a doublet.  To add circulation without changing the shape of the cylinder we 
place a vortex at the doublet center. For these conditions the stream function is 
given by 
 

ψ = U∞ sinθ r −
a2

r
 
  

 
  

− K ln r
a

 

 
Typical resulting flows are shown in Fig. 8.10 for increasing values of non-
dimensional vortex strength  K / U∞ a . 
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Fig. 8.10  Flow past a cylinder with circulation for values of  

K / U∞ a   of (a) 0, (b) 1.0, (c) 2.0, and (d) 3.0 
 
 
Again, the streamline  ψ = 0   is corresponds to the circle  r = a.  As the counter-
clockwise circulation  Γ = 2π K  increases, velocities below the cylinder increase 
and velocities above the cylinder decrease (could this be related to the path of a 
curve ball?).  In polar coordinates, the velocity components are given by 
 

vr =
1
r

∂ψ
∂ θ

= U∞ cosθ 1 −
a2

r2
 
  

  
   

 

 

vθ = − ∂ψ
∂ r

= −U∞ sinθ 1 + a2

r 2
 
  

 
  

+ K
r

 

 
For small K, two stagnation points appear on the surface at angles  θs   or for which 

 

sinθs = K
2U∞ a

 

 
Thus for  K = 0, θs  = 0 and 180o.   For K / U∞ a  = 1,  θs   =  30 and 150o .  Figure 
8.10c is the limiting case for which with  K / U∞ a  = 2,  θs  = 90o  and the two 
stagnation points meet at the top of the cylinder.    
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The Kutta-Joukowski Lift Theorem 
 
The development in the text shows that from inviscid flow theory,   
 

The lift per unit depth of any cylinder of any shape immersed in a 
uniform stream equals to ρU∞ Γ  where Γ  is the total net circulation 
contained within the body shape.  The direction of the lift is 90o from 
the stream direction, rotating opposite to the circulation. 
 

This is the well known Kutta-Joukowski lift theorem. 
 
For the cylindrical flows shown in Fig. 8.10 b to d, there is a downward force, or 
negative lift, proportional to the free stream velocity and vortex strength.  The 
surface pressure distribution is given by 
 

Ps = P∞ + 1
2 ρU∞

2 1− 4sin2 θ + 4βsinθ − β2( ) 

 

where    β = K / (U∞ a)  and  P∞  is the free stream pressure.  For a cylinder of 
width  b into the paper, the drag  D  is given by 
 

D = − Ps − P∞( )0
2π

∫ cosθba dθ  
 
The lift force  L  is normal to the free stream and is equal to the sum of the vertical 
pressure forces (for inviscid flow) and is determined by  
 

L = − Ps − P∞( )0
2π

∫ sinθba dθ  
 

Substituting Ps - P∞ from the previous equation the lift is given by 
 

L = −1
2

ρU∞
2 4K

aU∞
ba sin2

0
2π∫ θdθ = −ρU∞ 2πK( )b  

or 
L
b

= −ρU∞ Γ  

 


