Flow Past a Vortex

Consider a uniform stream, U_{∞} flowing in the x direction past a vortex of strength K with the center at the origin. By superposition the combined stream function is

$$
\psi=\psi_{\text {stream }}+\psi_{\text {vortex }}=U_{\infty} r \sin \theta-K \ln r
$$

The velocity components of this flow are given by

$$
\mathrm{v}_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=U_{\infty} \cos \theta \quad \mathrm{v}_{\theta}=-\frac{\partial \psi}{\partial r}=-U_{\infty} \sin \theta+\frac{K}{r}
$$

Setting v_{r} and $\mathrm{v}_{\theta}=0$, we find the stagnation point at $\theta=90^{\circ}, \mathrm{r}=\mathrm{a}=\mathrm{K} / \mathrm{U}_{\infty}$ or $(\mathrm{x}, \mathrm{y})=(0, \mathrm{a})$.

At this point the counterclockwise vortex velocity, K / r, exactly cancels the free steam velocity, U_{∞}. Figure 8.6 in the text shows a plot of the streamlines for this flow.

An Infinite Row of Vortices

Consider an infinite row of vortices of equal strength K and equal spacing a as shown in Fig. 8.7a. A single vortex, i, has a stream function given by $\Psi_{i}=-\mathrm{K} \ln \mathrm{r}_{\mathrm{i}}$ and the total infinite row has a combined stream function of

$$
\Psi=-\mathrm{K} \sum_{i=1}^{\infty} \ln \mathrm{r}_{\mathrm{i}}
$$

This infinite sum can also be expressed as

$$
\psi=-\frac{1}{2} K \ln \left[\frac{1}{2}\left(\cosh \frac{2 \pi y}{a}-\cosh \frac{2 \pi x}{a}\right)\right]
$$

Fig. 8.7 Superposition of vortices
(a) an infinite row of equal
(1) 5
 strength vortices;
(b) the streamline pattern for part a;
(c) vortex sheet, part a viewed from afar.

The resulting left and right flow above and below the row of vortices is given by

$$
u=\left.\frac{\partial \psi}{\partial y}\right|_{|y|>a}= \pm \frac{\pi K}{a}
$$

The Vortex Sheet

The flow pattern of Fig. 8.7 b when viewed from a long distance will appear as the uniform left and right flows shown in Fig. 8.7c. The vortices are so closely packed together that they appear to be a continuous sheet. The strength of the vortex sheet is given by

$$
\gamma=\frac{2 \pi K}{a}
$$

Since, in general, the circulation is related to the strength, γ, by $\mathrm{d} \Gamma=\gamma \mathrm{dx}$, the strength, γ, of a vortex sheet is equal to the circulation per unit length, $\mathrm{d} \Gamma / \mathrm{dx}$.

Plane Flow Past Closed-Body Shapes

Various types of external flows over a closed-body can be constructed by superimposing a uniform stream with sources, sinks, and vortices.

Key Point: The body shape will be closed only if the net source of the outflow equals the net sink inflow. Two examples of this are presented below.

The Rankine Oval

A Rankine Oval is a cylindrical shape which is long compared to its height. It is formed by a source-sink pair aligned parallel to a uniform stream.

The individual flows used to produce the final result and the combined flow field are shown in Fig. 8.9. The combined stream function is given by

$$
\psi=U_{\infty} y-m \tan ^{-1} \frac{2 a y}{x^{2}+y^{2}-a^{2}}
$$

or

$$
\psi=U_{\infty} r \sin \theta+m\left(\theta_{1}-\theta_{2}\right)
$$

(a)

(b)

Fig. 8.9 The Rankine Oval

The oval shaped closed body is the streamline, $\psi=0$. Stagnation points occur at the front and rear of the oval, $x= \pm L, y=0$. Points of maximum velocity and minimum pressure occur at the shoulders, $x=0, y= \pm h$. Key geometric and flow parameters of the Rankine Oval can be expressed as follows:

$$
\frac{h}{a}=\cot \frac{h / a}{2 m /\left(U_{\infty} a\right)} \quad \frac{L}{a}=\left(1+\frac{2 m}{U_{\infty} a}\right)^{1 / 2}
$$

$$
\frac{u_{\max }}{U_{\infty}}=1+\frac{2 m /\left(U_{\infty} a\right)}{1+h^{2} / a^{2}}
$$

As the value of the parameter $m /\left(U_{\infty} a\right)$ is increased from zero, the oval shape increases in size and transforms from a flat plate to a circular cylinder at the limiting case of $m /\left(U_{\infty} a\right)=\infty$.

Specific values of these parameters are presented in Table 8.1 for four different values of the dimensionless vortex strength, $K /\left(U_{\infty} a\right)$.

Table 8.1 Rankine-Oval Parameters

$m /\left(U_{\infty} a\right)$	h / a	L / a	L / h	$u_{\max } / U_{\infty}$
0.0	0.0	1.0	∞	1.0
0.01	0.31	1.10	32.79	1.020
0.1	0.263	1.095	4.169	1.187
1.0	1.307	1.732	1.326	1.739
10.0	4.435	4.458	1.033	1.968
10.0	14.130	14.177	1.003	1.997
∞	∞	∞	1.000	2.000

Flow Past a Circular Cylinder with Circulation

It is seen from Table 8.1 that as source strength m becomes large, the Rankine Oval becomes a large circle, much greater in diameter than the source-sink spacing 2a. Viewed, from the scale of the cylinder, this is equivalent to a uniform stream plus a doublet. To add circulation without changing the shape of the cylinder we place a vortex at the doublet center. For these conditions the stream function is given by

$$
\psi=U_{\infty} \sin \theta\left(r-\frac{a^{2}}{r}\right)-K \ln \frac{r}{a}
$$

Typical resulting flows are shown in Fig. 8.10 for increasing values of nondimensional vortex strength $K / U_{\infty} a$.

Fig. 8.10 Flow past a cylinder with circulation for values of $K / U_{\infty} a$ of (a) 0, (b) 1.0, (c) 2.0, and (d) 3.0

Again, the streamline $\psi=0$ is corresponds to the circle $\mathrm{r}=\mathrm{a}$. As the counterclockwise circulation $\Gamma=2 \pi K$ increases, velocities below the cylinder increase and velocities above the cylinder decrease (could this be related to the path of a curve ball?). In polar coordinates, the velocity components are given by

$$
\begin{gathered}
\mathrm{v}_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=U_{\infty} \cos \theta\left(1-\frac{a^{2}}{r^{2}}\right) \\
\mathrm{v}_{\theta}=-\frac{\partial \psi}{\partial r}=-U_{\infty} \sin \theta\left(1+\frac{a^{2}}{r^{2}}\right)+\frac{K}{r}
\end{gathered}
$$

For small K , two stagnation points appear on the surface at angles θ_{s} or for which

$$
\sin \theta_{s}=\frac{K}{2 U_{\infty} a}
$$

Thus for $\mathrm{K}=0, \theta_{s}=0$ and 180°. For $K / U_{\infty} a=1, \theta_{s}=30$ and 150°. Figure 8.10 c is the limiting case for which with $K / U_{\infty} a=2, \theta_{s}=90^{\circ}$ and the two stagnation points meet at the top of the cylinder.

The Kutta-Joukowski Lift Theorem

The development in the text shows that from inviscid flow theory,
The lift per unit depth of any cylinder of any shape immersed in a uniform stream equals to $\rho U_{\infty} \Gamma$ where Γ is the total net circulation contained within the body shape. The direction of the lift is 90° from the stream direction, rotating opposite to the circulation.

This is the well known Kutta-Joukowski lift theorem.
For the cylindrical flows shown in Fig. 8.10 b to d , there is a downward force, or negative lift, proportional to the free stream velocity and vortex strength. The surface pressure distribution is given by

$$
P_{s}=P_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}\left(1-4 \sin ^{2} \theta+4 \beta \sin \theta-\beta^{2}\right)
$$

where $\beta=K /\left(U_{\infty} a\right)$ and P_{∞} is the free stream pressure. For a cylinder of width b into the paper, the drag D is given by

$$
\mathrm{D}=-\int_{0}^{2 \pi}\left(\mathrm{P}_{\mathrm{s}}-\mathrm{P}_{\infty}\right) \cos \theta \mathrm{b} \mathrm{a} d \theta
$$

The lift force L is normal to the free stream and is equal to the sum of the vertical pressure forces (for inviscid flow) and is determined by

$$
\mathrm{L}=-\int_{0}^{2 \pi}\left(\mathrm{P}_{\mathrm{s}}-\mathrm{P}_{\infty}\right) \sin \theta \mathrm{ba} d \theta
$$

Substituting $P_{S}-P_{\infty}$ from the previous equation the lift is given by

$$
L=-\frac{1}{2} \rho U_{\infty}^{2} \frac{4 K}{a U_{\infty}} b a \int_{0}^{2 \pi} \sin ^{2} \theta d \theta=-\rho U_{\infty}(2 \pi K) b
$$

or

$$
\frac{L}{b}=-\rho U_{\infty} \Gamma
$$

