TI-83 GRAPHING CALCULATOR
 BASIC OPERATIONS

by

Carolyn Meitler Concordia University Wisconsin

B-1 Getting Started

Press $O N$ to turn on the calculator.
Press 2 nd $\quad+$ to get the MEMORY screen (shown at the right).
Use the down arrow $\boldsymbol{\nabla}$ to choose $\mathfrak{5}:$ Reset... and press ENTER
The display now shows the RESET menu (second screen shown at the right).
Use the down arrow $\boldsymbol{\nabla}$ to choose 2: Defaults... and press ENTER.

A third menu is displayed as shown at the right. Use the down arrow ∇ to choose 2: Reset and press ENTER.

```
MEMORY
1: Check RAM...
2: Delete...
3: Clear Entries
4: ClrAllLists
5: Reset...
```


RESET

1: All Memory...
2: Defaults...

RESET DEFAULTS
1: No
2: Reset

```
Defaults set
```

The screen should now display Defaults set. However, the screen may look blank. This is because the contrast setting was also reset and now needs to be adjusted.
Press 2nd and then hold the \quad down until you see Defaults set in the middle of the screen. Now the contrast will be dark enough for you to see the screen display.

> Press 2 nd Press Prd 2nd ∇ to make the display darker.

To check the battery power, press 2 nd and note the number that will appear in the upper right corner of the screen. If it is an 8 or 9 , you should replace your batteries. The highest number is 9 .

Press CLEAR to clear the screen.
Press 2nd OFF to turn off the calculator.

B-2 Special Keys, Home Screen and Menus

2nd
This key must be pressed to access the operation above and to the left of a key. These operations are a yellow color on the face of the calculator. A flashing up arrow arrow \uparrow is displayed as the cursor on the screen after 2nd key is pressed.

In this document, the functions on the face of the calculator above a key will be referred to in square boxes just as if the function was printed on the key cap. For example, ANS is the function above the (-) key.

ALPHA

This key must be pressed first to access the operation above and to the right of a key. A flashing A is displayed as the cursor on the screen after the ALPHA key is pressed.

A-LOCK

2nd A-LOCK locks the calculator into alpha mode. The calculator will remain in alpha mode until the ALPHA is pressed again.

MODE

Press MODE . The highlighted items are active. Select the item you wish using the arrow keys.
Press ENTER to activate the selection.
Type of notation for display of numbers.
Number of decimal places displayed.
Type of angle measure.
Function or parametric graphing.
Connected/not connected plotted points on graphs.
Graphs functions separately or all at once.
Allows number to be entered in rectangular complex mode or polar comples mode.
Allows a full screen or split screen to be used.

```
Normal Sci Eng
Float 0123456789
Radian Degree
Func Par Pol Seq
Connected Dot
Sequential Simul
Real a+bi re^0l
FullScreen Split
```


Home Screen

The screen on which calculations are done and commands are entered is called the Home Screen.
You can always get to this screen (aborting any calculations in progress) by pressing QUIT
2nd MODE . From here on, this will be referred to as 2nd QUIT in this appendix.

Menus

The TI-82 Graphics calculator uses menus for selection of specific functions. The items on the menus are identified by numbers followed by a colon. There are two ways to choose menu items:

1. Using the arrow keys to highlight the selection and then pressing ENTER .
2. Pressing the number corresponding to the menu item.

In this document the menu items will be referred to using the key to be pressed followed by the meaning of the menu. For example, on the ZOOM menu, 1 :ZBox refers to the first menu item.

B-3 Correcting Errors

It is easy to correct errors on the screen when entering data into the calculator. To do so use the arrow keys, DEL, and INS keys.

4 or \square	Moves the cursor to the left or right one position.
-	Moves the cursor up one line or replays the last executed input.
∇	Moves the cursor down one line.
DEL	Deletes one or more characters at the cursor position.
2nd INS	Inserts one or more characters at the cursor position.

B-4 Calculation

Example 1 Calculate $-8+9^{2}-\left|\frac{3}{\sqrt{2}}-5\right|$.

Turn the calculator on and press 2nd QUIT to return to the Home Screen. Press CLEAR to clear the Home Screen. Now we are ready to do a new calculation.

Numbers and characters are entered in the same order as you would read an expression. Do not press ENTER unless specifically instructed to do so in these examples. Keystrokes are written in a column but you should enter all the keystrokes without pressing the ENTER key until ENTER is displayed in the example.

Solution:

B-5 Evaluation of an Algebraic Expression

Example 1 Evaluate $\frac{x^{4}-3 a}{8 w}$ for $x=\pi, a=\sqrt{3}$, and $w=4$!.
Two different methods can be used to evaluate algebraic expressions:

1. Store the values of the variable, enter the expression, and press ENTER to evaluate the expression for the stored values of the variables.
2. Store the expression and store the values of the variables. Recall the expression and press ENTER to evaluate the expression for the stored values of the variables.

The advantage of the second method is that the expression can be easily evaluated for several different values of the variables.

Solution:

Method 1

Method 2

Example 2 For $f(x)=3 x+5$ and $g(x)=\sqrt{x-\sqrt{x}}$ find $f(2)-g(2)$.
Solution: (Using Method 2 above.)

Keystrokes	Screen Display	Explanation
$\mathrm{Y}=$ CLEAR 33 X,T, $\theta, n \bigcirc$		Clear Y1 and store $f(x)$ as Y1.
5 ENTER CLEAR	$\backslash \mathrm{Y} 1=3 \mathrm{X}+5$	
2nd $\sqrt{\square} \times \mathrm{X}, \mathrm{T}, \theta, n,-$	$\backslash Y 2=\sqrt{ }(X-\sqrt{ }(X))$	Clear Y2 and store $g(x)$ as Y2.
2nd $\sqrt{ }$ X,T, $, n, n$)		
2nd QuIT	$2 \rightarrow X$	Store 2 as X.
2 STO X,T, θ, n ENTER	2	
$\begin{array}{\|l\|l\|l} \hline \text { VARS } \\ 1 & \text { :Function } \\ 1 & : \mathrm{Y} 1 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Y} 1-\mathrm{Y} 2 \\ 10.23463314 \end{array}$	Algebraically form $f(x)-g(x)$ and evaluate at $x=2$.
\square VARS $\triangle 1$:Function 2	10.23463314	
$: \mathrm{Y} 2$ ENTER		

Example 3 Evaluate the function $g(x)=\sqrt{x-\sqrt{x}}$ to three decimal places for $x=1.900,1.990$, $1.999,2.001,2.010$, and 2.100 using a list.

Solution: Store the expression in the calculator as was done in Example 2 above. Store the values of x in a list and simultaneously evaluate the expression for each value of x.

Keystrokes	Screen Display	Explanation
$\mathrm{MODE} \nabla \triangle \triangle \square \square$	$\backslash Y 1=\sqrt{ }(X-\sqrt{ } \mathrm{X})$	Change the mode to three decimal places. Return to the home screen. Clear any existing expressions in the $\mathrm{Y}=$ list by clearing or deselecting them.
ENTER 2nd QUIT		
$\mathrm{Y}=$ CLEAR $\boldsymbol{\nabla}$ CLEAR \ldots		
2nd $\sqrt{\square}$ X, $\mathrm{X}, \theta, n,-$		Store the expression as Y1 and return to the home screen.
2nd $\sqrt{\square}$ X, T, θ, n,		
2nd QuIT	$\begin{aligned} & \{1.9,1.99,1.999, \\ & 2.001,2.01,2.1\} \rightarrow \\ & \text { L1 } \end{aligned}$	Store the values of x in the list L1.
2nd $\{1.9,1.99$,		
$1.999,2.001,2.01$,		
L1 ENTER	$\begin{aligned} & \text { Y1 (L1) } \rightarrow \text { L2 } \\ & \{.722 .761 .765 \ldots \end{aligned}$	Calculate the value of the expression stored as Y2 for the values of x in list L 1 and store in list L2.
VARS 1 :Function		
1 :Y1 2nd L1 ${ }^{\text {(}}$		
STO $>$ 2nd L^{\prime}	$\begin{aligned} & \text { L2 } \\ & \{.722 .761 .765 \ldots \end{aligned}$	To view the results, use the \triangle
ENTER		and \square keys.
2nd L2 EN		To recall L2, press 2nd L2. The results are $0.722,0.761$, $0.765,0.766,0.770$, and 0.807 .
2nd L2 EN		

Example 4

Evaluate the expression $g(x)=\sqrt{x-\sqrt{x}}$ to three decimal places for values of x at each integer from 0 to 1 using a table.

Solution: First store the expression in the $\mathrm{Y}=$ list. Set the table parameters to begin at $x=0$ and to have an increment of 1 . Get the table.

Keystrokes | Explanation |
| :--- |

2nd	TblSet 0	ENTER	TABLE SETUP TblStart=0		
1 ENTER ∇		ENTER	Δ T Indp Depe	$\begin{aligned} & L=1 \\ & E: A \\ & d: A \\ & d: A \end{aligned}$	$\begin{aligned} & \text { Ask } \\ & \text { Ask } \end{aligned}$
2nd	TABLE	$\nabla \ldots$	X	Y1	
			1.000	0.000	
			2.000	. 765	
			3.000	1.126	
			4.000	1.414	
			5.000	1.663	
			6.000	1.884	
			X=0		

Set the table to begin evaluating the expression at $x=0$ with a step size of 1
Set the calculator to automatically display values of x and Y1. Get the table. Arrow down to see more of the table.

The highlighted value will appear at the bottom of the table.

Reset the mode for numbers to Float.

B-6 Testing Inequalities in One Variable

Example 1 Determine whether or not $x^{3}+5<3 x^{4}-x$ is true for $x=-\sqrt{2}$.

Solution:

Set the mode to Float. See Section B-2 of this document.

Keystrokes	Screen Display	Explanation
CLEAR		Clear the Home Screen
$(-) 2 \mathrm{nd} \sqrt{ }$ 2 $)$ STO	$-\sqrt{ } 2 \rightarrow X$	Store the value for x.
X,T, θ, n ENTER	1.414213562	
$\mathrm{X}, \mathrm{T}, \theta, n$ MATH 3 3		Enter the expression.
2nd TEST $5:<3$	$\mathrm{x}^{3}+5<3 \mathrm{X}^{\wedge} 4-X$	The result of 1 indicates the expression is true for this value of x. If a 0 was displayed, the expression would be false.
ENTER		

B-7 Graphing, the ZStandard Graphing Screen, and Style of Graph

Before doing any graphing on the calculator, the statistical graphing commands need to be turned off.

Example 1 Graph $y=x^{2}, y=.5 x^{2}, y=2 x^{2}$, and $y=-1.5 x^{2}$ on the same coordinate axes. Graph the first function with a dotted line, the second function with a thin line, the third function with a thick line, and the fourth function with a thin line.

Solution:

The ZStandard screen automatically sets the graph for $-10<x<10$ and $-10<y<10$. Press WINDOW to see this.

The window dimensions will be denoted as $[-10,10] 1$ by $[-10,10] 1$ in this document.

The graphs will be plotted in order: Y1, then Y2, then Y3, then Y4, etc.
If there is more than one function graphed, the up Δ and down $\boldsymbol{\nabla}$ arrow keys allow you to move between the graphs displayed.

B-8 TRACE, ZOOM, WINDOW, Zero, Intersect and Solver

TRACE allows you to observe both the x and y coordinate of a point on the graph as the cursor moves along the graph of the function. If there is more than one function graphed the up \square and down ∇ arrow keys allow you to move between the graphs displayed.

ZOOM will magnify a graph so the coordinates of a point can be approximated with greater accuracy.

Ways to find the x value of an equation with two variables for a given y value are:

1. Zoom in by changing the WINDOW dimensions.
2. Zoom in by seting the Zoom Factors and using Zoom In from the ZOOM menu.
3. Zoom in by using the Zoom Box feature of the calculator.
4. Use the Zero feature of the calculator.
5. Use the Intersect feature of the calculator.
6. Use the Solver feature of the calculator.

Three methods to zoom in are:

1. Change the WINDOW dimensions.
2. Use the 2 :Zoom In option on the ZOOM menu in conjunction with

ZOOM $\triangle 4$:Set Factors.
3. Use the 1 :ZBox option on the ZOOM menu.

Example 1 Approximate the value of x to two decimal places if $y=-1.58$ for $y=x^{3}-2 x^{2}+\sqrt{x}-8$.

Solution:

Method 1 Change the WINDOW dimensions.
Enter the function in the $\mathrm{Y}=$ list and graph the function using the Standard Graphing Screen (see Section B-7 of this document).

The x coordinate is between 2 and 3. So we set the WINDOW at $2<x<3$ with scale marks every .1 by $-3<y<-1$ with scale marks every.1.

This will be written as $[2,3] .1$ by $[-3,-1] .1$.

Also, set the xRes to 1 . This means that the calculator will calculate a value for y for each value for x for which there is a column of pixels on the graph screen.
Use TRACE again to estimate a new x value. Change the WINDOW appropriately. Repeat using TRACE and changing the WINDOW until the approximation of $(2.67,-1.58)$ has been found. Hence the desired value for x is approximately 2.67.

When using TRACE, the initial position of the cursor is at the midpoint of the x values used for xMin and xMax . Hence, you may need to press the right or left arrow key repeatedly before the cursor becomes visible on a graph.

Occasionally you will see a moving bar in the upper right corner. This means the calculator is working. Wait until the bar disappears before continuing.

Method 2 Use the 2 :Zoom In option on the ZOOM menu.
Enter the function in the $\mathrm{Y}=$ list and graph the function using the ZStandard Graphing Screen (see Section B-7 of this document).

Keystrokes	Screen Display	Explanation
ZOOM 6 :ZStandard		Graph the function using the standard graphing screen.
ZOOM \triangle 4 :Set Factors	ZOOM FACTORS XFact $=5$	Magnification factors need to be set. For this example let us
5 ENTER TRACE		set them at 5 for both horizontal and vertical directions.
		Move the cursor using the arrow keys to the point (2.5531915, -2.795992) which has a y value close to -1.58 .

Use the 2 :Zoom In from the ZOOM menu to get a closer look at the x coordinate. Press TRACE to see the coordinates of a point on the graph.
Repeat this procedure until you get a value for the x coordinate accurate to two decimal places. The point has coordinates $(2.67,-1.58)$. Hence the desired value for x is approximately 2.67 .

Method 3 Use the 1 :Box option on the ZOOM menu.
Graph the function using the ZStandard Graphing Screen. (See Section B-7 of this document).

Explanation
Graph the function using the standard graphing screen. Use the arrow keys until the cursor is a little to the left and above the point we are trying to find, say at (2.1276596, -1.290323). Press ENTER. This anchors the upper left corner of the box.

Now use the arrow keys to locate the lower right corner of the box, say at (3.1914894, -2.580645). Press ENTER to get the new display.

Repeat using trace and zoom box until you get a value for the y coordinate accurate to two decimal places. The point has coordinates $(2.67,-1.58)$. Hence the desired value for x is approximately 2.67.

Method 4 Use the Zero feature of the calculator.

Keystrokes	Screen Display
Explanation Set the expression involving x equal to -1.58, the value of y. Now change the equation so it is equal to zero.	
$x^{3}-2 x^{2}+\sqrt{x}-8=-1.58$	
$x^{3}-2 x^{2}+\sqrt{x}-8+1.58=0$.	
Enter the left side of the	
equation into the function list	
and graph.	

Get the zero feature.
Place the cursor at a point on the graph to the left of the x intercept, say at (2.55..., -1.21...).
Place the cursor at a point on the graph to the right of the x intercept, say at (2.76..., 2.20...).

Place the cursor at a point between the left and right bounds, near to the intercept, for the guess. In this case we can leave the cursor at
(2.76..., 2.20...).

Press ENTER to calculate the x intercept. The x intercept is approximately 2.67 . Hence the desired value for x is approximately 2.67 .

Method 5 Use the Intersect feature of the calculator.
Graph the function using the ZStandard Graphing Screen. (See Section B-7 of this document).

Keystrokes	Screen Display	Explanation
$\mathrm{Y}=\nabla \boldsymbol{\nabla}$		Enter -1.58 as Y2 in the function list.
(-) 1.58 2nd QUIT		Graph the function using the standard graphing screen.
ZOOM 6 :ZStandard		Get the intersect feature.
2nd CALC 5 : intersect		Place the cursor at a point on the first graph near the point of intersection.
4... \triangle ENTER		Place the cursor at a point on the second graph near the intersection point.
4 or ENTER		Move the cursor and press enter for the guess. The intersection point is
4 or \triangle ENTER		(2.67, -1.58). Hence the desired value for x is approximately 2.67 .

Method 6 Use the Solver feature of the calculator


		```Y1=0 X=2.6708734439... bound={-1巴99,1... left-rt=0```	Continue the Solver function. Type 2 as the guess. SOLVE is above the ENTER key.
ENTER	2		
ALPHA	SOLVE		

Hence the desired value for $x$ is approximately 2.67.

Example 2 Approximate the $x$ intercept to two decimal places for $\mathrm{y}=x^{3}-2 x^{2}+\sqrt{x}-8$.
There are several ways to get a closer look at the intercept:

1. Change the WINDOW dimensions.
2. Set the Zoom Factors and zoom in.
3. Use the Zoom Box feature of the calculator.
4. Use the Zero feature of the calculator.
5. Use the Intersect feature of the calculator.
6. Use the Solver feature of the calculator.

Method 1 Change the WINDOW dimensions.
This method is described in Section B-8 Example 1 Method 1 of this document.
Method 2 Set the Zoom Factors and zoom in.
This method is described in Section B-8 Example 1 Method 2 of this document.
Method 3 Use the Zoom Box feature of the calculator.
This method is described in Section B-8 Example 1 Method 3 of this document.
Method 4 Use the Zero feature of the calculator.

Keystrokes	Screen Display	Explanation
ZOOM 6 :ZStandard		Graph the function.
2nd CALC 2 :zero		Get the zero feature.
or ENTER		Place the cursor at a point on the graph to the left of the $x$ intercept.



Place the cursor at a point on the graph to the right of the $x$ intercept.
For the guess.
The $x$ intercept is 2.80 .

Method 5 Use the Intersect feature of the calculator.
This method is described in Section B-8 Example 1 Method 4 of this document
Method 6 Use the Solver feature of the calculator
This method is described in Section B-8 Example 1 Method 5 of this document.

## B-9 Determining the WINDOW Dimensions and Scale Marks

There are several ways to determine the limits of the $x$ and $y$ axes to be used in setting the WINDOW. Three are described below:

1. Graph using the default setting of the calculator and zoom out. The disadvantage of this method is that often the function cannot be seen at either the default settings or the zoomed out settings of the WINDOW.
2. Evaluate the function for several values of $x$. Make a first estimate of the window dimensions based on these values.
3. Analyze the leading coefficient and/or the constant terms.

A good number to use for the scale marks is one that yields about 20 marks across the axis. For example if the WINDOW is $[-30,30]$ for an axis then a good scale value is $(30-(-30)) / 20$ or 3 .

Example 1 Graph the function $\mathrm{f}(x)=.2 x^{2}+\sqrt[3]{x}-32$.

## Solution:

Method 1 Use the default setting and zoom out.

Keystrokes	Screen Display	Explanation
$\mathrm{Y}=$ CLEAR $.2 \times \mathrm{X}, \mathrm{T}, \theta, n \wedge$	E	Nothing is seen on the graph screen because no part of this
$2+\mathrm{MATH} 4: \sqrt[3]{ }$	E E	curve is in this WINDOW.
	E	
:ZStandard	E	



Set the zoom factors.
After pressing ZOOM 3 use the arrow keys to move the cursor to the point you wish to be the center of the new zoom screen. We chose $(0,0)$.
Zooming out shows a parabolic shaped curve.

Method 2 Evaluate the function for several values of $x$. (See Section B-5 on how to evaluate a function at given values of $x$.)

$x$	$\mathrm{f}(x)$
-20	45.3
-10	-14.2
0	-32.0
10	-9.8
20	50.7



Analyzing this table indicates that a good WINDOW to start with is $[-20,20] 2$ by $[-50,50] 5$. Note the scale is chosen so that about 20 scale marks will be displayed along each of the axes. The scale is chosen as 2 for the $x$ axis since $[20-(-20)] / 20=2$ and 5 for the $y$ axis since $[50-(-50)] / 20=5$.

Method 3 Analyze the leading coefficient and constant terms.
Since the leading coefficient is .2 the first term will increase .2 units for each 1 unit $x^{2}$ increases or 2 units for each 10 units $x^{2}$ increases. This means that the first term will increase for every $\sqrt{10}$ (or about 3 units increase) in $x$. A first choice for the $x$ axis limits can be found using:

$$
\frac{10 \times(\text { unit increase in } x)}{(\text { first term increase })}=\frac{10 \times 3}{2}=15
$$

A first choice for the scale on the $x$ axis (having about 20 marks on the axis) can be found using $\frac{X \max -X \min }{20}=\frac{15-(-15)}{20}=1.5$ (round to 2). So the limits on the $x$ axis could be $[-15,15] 2$.

A first choice for the $y$ axis limits could be $\pm$ (constant term). The scale for the $y$ axis can be found using $\frac{\text { Ymax-Ymin }}{20}$ $=\frac{32-(-32)}{20}=3.2$ (round to 4). So a first choice for the $y$ axis limits could be $[-32,32] 4$. Hence a good first setting for the WINDOW is $[-15,15] 2$ by $[-32,32] 4$.

$[-15,15] 2$ by $[-32,32] 4$

```
A good choice for the scale is so that about 20 marks appear along the axis.
This is }\frac{Xmax-Xmin}{20}\mathrm{ (rounded up to the next integer) for the }x\mathrm{ axis and
Ymax-Ymin}\mathrm{ (rounded up to the next integer) for the y axis.
```


## B-10 Piecewise-Defined Functions

There are two methods to graph piecewise-defined functions:

1. Graph each piece of the function separately as an entire function on the same coordinate axes. Use trace and zoom to locate the partition value on each of the graphs.
2. Store each piece of the function separately but include an inequality statement following the expression which will set the WINDOW of values on $x$ for which the function should be graphed. Then graph all pieces on the same coordinate axes.

Example 1 Graph $\mathrm{f}(x)= \begin{cases}x^{2}+1 & x<1 \\ 3 x-5 & x \geq 1\end{cases}$

## Solution:

Method 1


## Explanation

Store the functions. Graph. Both functions will be displayed. Use trace and zoom to find the point on the graphs where $x=1$. When drawing this curve on paper, place an open circle on as the endpoint of the piece of the graph not including $x=1$ and a closed circle as the endpoint of the piece of the graph including $x=1$.

Method 2


## B-11 Solving Equations in One Variable

There are three methods for approximating the solution of an equation:

1. Write the equation as an expression equal to zero. Graph $y=($ the expression). Find the $x$ intercepts. These $x$ values are the solution to the equation. This can be done using TRACE and ZOOM or using the Solver from the MATH menu. See Section B-8 of this document.
2. Graph $y=$ (left side of the equation) and $y=$ (right side of the equation) on the same coordinate axes. The $x$ coordinate of the points of intersection are the solutions to the equation. This can be done using TRACE and ZOOM or using intersect from the CALC menu.

Example 1 Solve $\frac{3 x^{2}}{2}-5=\frac{2(x+3)}{3}$.

## Solution:

Method 1 Using TRACE and ZOOM
Write the equation as $\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right)=0$. Graph $y=\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right)$. Now we want to find the $x$ value where the graph crosses the $x$ axis. This is the $x$ intercept.


Method 1 Using Solver

Keystrokes		Screen Display
MATH 0 Explanation		

## Method 2 Using TRACE and ZOOM

Graph $y=\frac{3 x^{2}}{2}-5$ and $y=\frac{2(x+3)}{3}$ on the same coordinate axes and find the $x$ coordinate of their points of intersection.


Method 2 Using Intersect
Graph $y=\frac{3 x^{2}}{2}-5$ and $y=\frac{2(x+3)}{3}$ on the same coordinate axes and find the $x$ coordinate of their points of intersection.


Hence the approximate solutions to this equation are -1.95 and 2.39 .

## B-12 Solving Inequalities in One Variable

Two methods for approximating the solution of an inequality using graphing are:

1. Write the inequality with zero on one side of the inequality sign. Graph $y=$ (the expression). Find the $x$ intercepts. The solution will be an inequality with the $x$ values ( $x$ intercepts) as the cut off numbers. The points of intersection can be found using TRACE and ZOOM or using the SOLVE( from the MATH menu.
2. Graph $y=$ (left side of the inequality) and $y=$ (right side of the inequality) on the same coordinate axes. The $x$ coordinate of the points of intersection are the solutions to the equation. Identify which side of the $x$ value satisfies the inequality by observing the graphs of the two functions. The points of intersection can be found using TRACE and ZOOM or using intersect from the CALC menu.

Example 1 Approximate the solution to $\frac{3 x^{2}}{2}-5 \leq \frac{2(x+3)}{3}$. Use two decimal place accuracy.

## Solution:

Method 1
Write the equation as $\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right) \leq 0$. Graph $y=\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right)$ and find the $x$ intercepts. This was done in Section B-10 Example 1 Method 1.

The $x$ intercepts are -1.95 and 2.39. The solution to the inequality is the interval on $x$ for which the graph is below the $x$ axis. The solution is $-1.95 \leq x \leq 2.39$.

Method 2 Graph $y=\frac{3 x^{2}}{2}-5$ and $y=\frac{2(x+3)}{3}$ on the same coordinate axes and find the $x$ coordinate of their points of intersection. See Section B-10 Example 1 Method 2. The $x$ coordinate of the points of intersections are -1.95 and 2.39. We see that the parabola is below the $x$ line for $-1.95 \leq x \leq 2.39$. Hence the inequality is satisfied for $-1.95 \leq x \leq 2.39$.

To test this inequality, choose -2 as a test value. Evaluating the original inequality using the calculator yields a 0 which means the inequality is not true for this value of x . (See Section D-6 of this document.) Repeat the testing using 0 and 3. We see that the inequality is true for $x=0$ and not true for $x=3$. Hence the inequality is satisfied for $-1.95 \leq x \leq 2.39$.

## B-13 Storing an Expression That Will Not Graph

Example 1 Store the expression $B^{2}-4 A C$ so that it will not be graphed but so that it can be evaluated at any time. Evaluate this expression for $A=3, B=2.58$, and $C=\sqrt{3}$.

Solution:



$$
\backslash Y 4=B^{\wedge} 2-4 A * C
$$

ALPHA	A	x	ALPHA



3	STO $\triangle$ ALPHA A	ENTER


2.58	STO	ALPHA

## ENTER

2 nd	$\sqrt{ }$	3	STO	ALPHA

C ENTER

## VARS 1 :Function...

4 :Y4 ENTER

## Explanation

Choose Y4 using the arrow
keys. (Any of Y1, Y2, Y3, ... could be used.) Store the expression.
Use the left arrow repeatedly until the cursor is over the $=$ sign. Press ENTER . The highlighting will disappear from the = sign. Now you can still evaluate the expression by recalling it, but it will not graph.

Store the value of the variables.

Recall the function from the function list. The value of the expression is -14.128 rounded to three decimal places.

## B-14 Permutations and Combinations

Example 1 Find (A) $P_{10,3}$ and (B) $C_{12,4}$ or $\binom{12}{4}$.

## Solution (A):

The quantity can be found by using the definition $\frac{10!}{7!}$ or the built-in function $n P r$.

Keystrokes	Screen Display	Explanation
1	10	Enter the first number. Get the
10	MATH NUM HYP PRB	math menu and choose PRB
MATH	1: rand	using the arrow keys. Choose
	$\begin{aligned} & 2: n P r \\ & 3: n C r \end{aligned}$	nPr and press ENTER.
	$4:!$	
2 n :nPr 3 ENTER	10 nPr 3	

Solution (B):
The quantity can be found by using the definition $\frac{12!}{4!8!}$ or using the built-in function nCr .

Keystrokes	Screen Display	Explanation
	12	Enter the first number. Get the
12	MATH NUM HYP PRB	math menu and choose PRB
MATH	1: Rand	using the arrow keys. Choose
	2:nPr	nCr and press ENTER.
$\triangle \square>$	$\begin{aligned} & 3: n C r \\ & 4:! \end{aligned}$	
$3: \mathrm{nCr} 4$ ENTER	12 nCr 4	

## B-15 Matrices

Example 1 Given the matrices
$A=\left[\begin{array}{cc}1 & -2 \\ 3 & 0 \\ 5 & -8\end{array}\right]$
$\mathbf{B}=\left[\begin{array}{rrr}2 & 1 & 5 \\ 3 & 2 & -1 \\ 0 & 8 & -3\end{array}\right]$
$C=\left[\begin{array}{c}1 \\ -5 \\ 10\end{array}\right]$
Find (A) -3BC
(B) $\mathrm{B}^{-1}$
(C) $A^{T}$
(D) $\operatorname{det} \mathrm{B}$

## Solution (A):

Keystrokes	Screen Display	Explanation
MATRX $\triangle$	NAMES MATH EDIT   $1:[A]$	Enter the matrix mode.
	$\begin{aligned} & 2:[\mathrm{B}] \\ & 3:[\mathrm{C}] \\ & 4:[\mathrm{D}] \\ & 5:[\mathrm{E}] \end{aligned}$	Choose EIDITT using the arrow keys.
1 : LA ]	$\begin{array}{cccc} \operatorname{MATRIX}[A] & 3 & \times 2 \\ {[1} & -2 & & ] \\ {[3} & 0 & & ] \\ {[5} & -8 & & ] \end{array}$	Choose the A matrix.
3 ENTER 2 ENTER	$3,2=-8$	Enter the dimensions of the matrix.



## Solution (B):



## Solution (D):

Keystrokes			Screen Display
det [B]		Explanation   MATRX   Choose the determinant option   from the matrix menu.	

$$
\begin{array}{|l|l|l|l|}
\hline \text { MATRX } 2 & \text { ENTER } \\
\end{array}
$$

Example 2 Find the reduced form of matrix $\left[\begin{array}{cccc}2 & 1 & 5 & 1 \\ 3 & 2 & -1 & -5 \\ 0 & 8 & -3 & 10\end{array}\right]$.

## Solution:

There are two methods that can be used:

1. Use the row operations individually.
2. Use rref( from the MATRX MATH menu.

Method 1 Using row operations



| * row $(2,[A], 2)$ | 2 times matrix A row 2. |
| :--- | :--- | :--- |
| $\left[\begin{array}{lllll}{[ } & 1 & .5 & 2.5 & .5\end{array}\right]$ |  |
| $\left[\begin{array}{lllll}1 & -17 & -13\end{array}\right]$ |  |



Continue using row operations to arrive at the reduced form of $\left[\begin{array}{cccc}1 & 0 & 0 & -2.428 \ldots \\ 0 & 1 & 0 & 1.571 \ldots \\ 0 & 0 & 1 & .857 \ldots\end{array}\right]$.
To swap rows of a matrix use ALPHA $\triangle$ :rowSwap( from the MATRX menu.
To swap rows 2 and 3 in matrix [A] use rowSwap([A],2,3).
To add one row to another use ALPHA $D$ :row + ( from the MATRX $\triangle$ menu.
Method 2 Using rref( from the MATRX MATH menu
Enter the elements in the matrix as done in Method 1.


Hence if a system of equations is

$$
\begin{aligned}
2 x_{1}+x_{2}+5 x_{3} & = \\
3 x_{1}+2 x_{2}-x_{3} & =-5 \\
8 x_{2}-3 x_{3} & =10
\end{aligned}
$$

with augmented coefficient matrix

$$
\left[\begin{array}{cccc}
2 & 1 & 5 & 1 \\
3 & 2 & -1 & -5 \\
0 & 8 & -3 & 10
\end{array}\right]
$$

the solution, rounded to two decimal places, of the system of equations is

$$
\begin{aligned}
& x_{1}=-2.43 \\
& x_{2}=1.57 \\
& x_{3}=.86
\end{aligned}
$$

## B-16 Graphing an Inequality

To graph an inequality:

- Change the inequality sign to an equals sign.
- Solve the equation for $y$.
- Enter this expression in the function list on the calculator. This is the boundary curve.
- Determine the half-plane by choosing a test point not on the boundary curve and substituting the test value into the original nequality.
- Graph the boundary curve using the lower shade option on the calculator to get a shaded graph.


## Example 1 Graph $3 x+4 y \leq 12$.

## Solution:

Changing the inequality sign to an equals sign yields $3 x+4 y=12$. Solving this equation for $y$ yields $y=(12-3 x) / 4$. Determine the correct half-plane by substituting the point $(0,0)$ into the original inequality. We have $3(0)+4(0) \leq 12$, which is a true statement. Hence the point $(0,0)$ is in the solution set of the inequality.

$$
\backslash Y 1=(12-3 X) / 4
$$



* $\mathrm{Y} 1=(12-3 \mathrm{X}) / 4$

Explanation
Clear any existing graphs.
Turn all plots off.

Graph $3 x+4 y=12$ by first writing as $y=(12-3 x) / 4$.
Determine the half-plane by choosing the point $(0,0)$ and substituting into the inequality by hand. $3 \cdot 0+4 \cdot 0<12$ is a true statement. The inequality is true for this point. Hence, we want the lower half-plane.
Use the left arrow to move the cursor to the graph style icon. Press enter repeatedly until the lower half is shaded. Graph.

## B-17 Exponential and Hyperbolic Functions

Example 1 Graph $y=10^{0.2 x}$
Solution:


Explanation
Store the function and graph. Note the entire exponent needs to be in parentheses.

Example 2 Graph $y=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$.

## Solution:

Keystrokes	Screen Display	Explanation
$\mathrm{Y}=\text { CLEAR }\left(\begin{array}{ll} 2 \mathrm{nd} & \mathrm{e}^{x} \\ \hline \end{array}\right.$	$\backslash \mathrm{Y} 1=\left(\mathrm{e}^{\wedge} \mathrm{X}-\mathrm{e}^{\wedge}-\mathrm{X}\right) / 2$	Store the function and graph.
$\mathrm{X}, \mathrm{T}, \theta, n-2 \mathrm{nd} \mathrm{e}^{x}$	E	
$(-)$    $\mathrm{X}, \mathrm{T}, \theta, n$ $\square$	-	
	$\backslash Y 2=\sinh (x)$	This is also the hyperbolic sine. So we could use sinh from the catalog list.
$\mathrm{Y}=\boldsymbol{\nabla}$ CLEAR 2 nd		
CATALOG $\boldsymbol{\nabla}$... $\boldsymbol{\nabla}$		
ENTER X,T,,$n \times$		list. Enter X as the variable and graph.
$4 . .4$ ENTER ENTER		Store it as Y2 and use the
ENTER ENTER GRAPH		and you will see the --0 tracing the graph of Y1.

## B-18 Scientific Notation, Significant Digits, and Fixed Number of Decimal Places

Example 1 Calculate $\left(-8.513 \times 10^{-3}\right)\left(1.58235 \times 10^{2}\right)$. Enter numbers in scientific notation.

## Solution:



Example 2 Set the scientific notation to six significant digits and calculate

Solution:


Example 3 Fix the number of decimal places at 2 and calculate the interest earned on \$53,218.00 in two years when invested at $5.21 \%$ simple interest.

## Solution:



Change the number of decimal places back to Float.

## B-19 Angles and Trigonometric Functions

Example 1 Evaluate $f(x)=\sin x$ and $g(x)=\tan ^{-1} x$ at $x=\frac{5 \pi}{8}$.

## Solution:



Example 2 Evaluate $f(x)=\csc x$ at $x=32^{\circ} 5^{\prime} 45^{\prime \prime}$.
Solution:


Example 3 Graph $f(x)=1.5 \sin 2 x$.

## Solution:

Keystrokes	Screen Display	Explanation
$\begin{array}{\|l\|l\|l\|} \hline \text { MODE } & \nabla & \nabla \\ \hline \end{array}$	Normal Sci Eng   Float 0123456789   Radian Degree   Func Par Pol Seq Connected Dot Sequential Simul Real a+bi re^ $\theta i$   Full Horiz G-T	Set MODE to Radian measure.


$\mathrm{Y}=$	$\operatorname{CLEAR}$	1.5	SIN	2	$\backslash \mathrm{Y} 1=1.5 \sin (2 \mathrm{X})$	Store $f(x)$ as Y 1.

X,T, $\theta, n$
ZOOM 7 :Trig


Use the trigonometric option on the ZOOM menu to get tick marks set at radian measures on the horizontal axis since the angle measure is in radians. Press WINDOW to see the WINDOW dimensions are
[-6.15..., 6.15...] $1.57 \ldots$ by $[-4,4] 1$.

Example 4 Graph $g(x)=3 \tan ^{-1}(.2 x)$.

## Solution:



## B-20 Polar Coordinates and Polar Graphs

Example 1 Change the rectangular coordinates $(-\sqrt{3}, 5)$ to polar form with $r \geq 0$ and $0 \leq \theta \leq 2 \pi$.

## Solution:

Keystrokes	Screen Display	Explanation
2nd ANGLE $5: \mathrm{R} \bullet \mathrm{Pr}($		Get the angle menu. Choose rectangular to polar conversion that displays the $r$ value.
	$\begin{array}{r} \mathrm{R} P r\left(\begin{array}{c} -\sqrt{ } 3,5) \\ 5.291502622 \end{array}\right. \end{array}$	Enter the value of $x$ and $y$ coordinates. The displayed value is $r$.
2nd ANGLE $6: \mathrm{R} \bullet \mathrm{P} \theta($		Get the angle menu again. Choose the rectangular to polar conversion that displays the value of $\theta$.
$\begin{aligned} & (-) \text { 2nd } \sqrt{3}, \\ & , 5,5 \text { ENTER } \end{aligned}$	$\begin{aligned} R>P & (-\sqrt{ } 3,5) \\ & 1.904269499 \end{aligned}$	Enter the value of $x$ and $y$ coordinates. The displayed value is $\theta$.

Example 2 Change the polar coordinates $(5, \pi / 7)$ to rectangular coordinates.
Solution:


Example 3 Find the value of $r$ for $r=5-5 \sin \theta$ at $\theta=\frac{\pi}{7}$.

## Solution:




$$
\theta \text { is above the } 3
$$

$$
\begin{aligned}
& 5-5 \sin (\theta) \\
& 2.830581304
\end{aligned}
$$

## Example 4 Graph $r=5-5 \sin \theta$

Polar equations can be graphed by using the polar graphing mode of the calculator.
In general the steps to graph a polar function are:
Step 1 Set the calculator in polar graph mode.
Step 2 Enter the function in the $\mathrm{Y}=$ list (This list now has $\mathrm{r}=$ as the function names.)
Step 3 Set the WINDOW FORMAT to PolarGC
Step 4 Graph using the standard graph setting ZOOM 6 :ZStandard and then the square setting of the calculator ZOOM 5 :ZSquare to get a graph with equal spacing between the scale marks.
Step 5 Zoom in to get a larger graph if you wish.

## Solution:



Screen Display
Normal Sci Eng
Float 0123456789
Radian Degree
Func Par Pol Seq
Connected Dot
Sequential Simul
Real a+bi re^ $\theta i$
Full Horiz G-T

Explanation
Select polar mode.

Return to the Home screen.
2nd QUIT


SIN	$\mathrm{X}, \mathrm{T}, \theta, n$	S



ENTER

ZOOM 6 :Standard

ZOOM 5 :Square


Get the $\mathrm{Y}=$ list and enter the function as r .

RecGC PolargC
Coordon CoordOff
CridOff GridOn
AxesOn AxesOff
LabelOff LabelOn
ExprOn ExprOff



Graph using the standard dimensions for the window. The graph on the standard screen is slightly distorted since the scale marks on the $y$ axis are closer together than the scale marks on the $x$ axis.

The square option on the Zoom Menu makes the scale marks the same distance apart on both axes. Press WINDOW to see how the window dimensions are changed.

