TI-85 GRAPHING CALCULATOR BASIC OPERATIONS

by

Carolyn Meitler
 Concordia University Wisconsin

C-1 Getting Started

Press ON to turn on the calculator.
Press CLEAR to clear the screen.
Press $2 \mathrm{nd} \boxed{+}$ to get the RESET menu. It will be displayed at the bottom of the screen. The menu is shown at the right.

Press F3 :RESET to get the reset menu. The first menu is now displayed in inverse shading on the line above the new menu.

RAM	DELET \mid RESET \mid	

Press F1 :ALL to clear the memory.

You will get another menu with a message as shown at the right.
Press F4 :YES to clear the memory.

The display should now show the message shown at the right.

Press CLEAR to clear the screen.

```
Mem cleared
Defaults set
```

Press 2nd to make the display darker.
Press $2 \mathrm{nd} \boldsymbol{\nabla}$ to make the display lighter.
To check the battery power, press 2 nd and note the number that will appear in the upper right corner of the screen. If it is an 8 or 9 , you should replace your batteries. The highest number is 9 . Press CLEAR to clear the screen.

Press 2nd OFF to turn off the calculator.

C-2 Special Keys, Home Screen and Menus

2nd
The 2nd key must be pressed to access the operation above and to the left of a key. An up arrow \uparrow is displayed as the cursor on the screen after 2 nd key is pressed.

In this document, the functions on the face of the calculator, above a key, will be referred to in boxes, just as if the function was printed on the key cap. For example, ANS is the function above the (-) key.

ALPHA

This key must be pressed to access the operation above and to the right of a key. A flashing A is displayed as the cursor on the screen after the ALPHA key is pressed.

ALPHA ALPHA

ALPHA LOCK is engaged when the ALPHA key is pressed twice in succession. The calculator will remain locked in the alpha mode until the ALPHA key is pressed again. ALPHA LOCK is useful when entering variable names that are more than one character. A variable name can be up to 8 characters in length.

Because of this feature, multiplication of variables need a multiplication symbol between the variables. AB refers to an individual variable. AxB (displayed as $\mathrm{A} * \mathrm{~B}$ on the calculator screen) refers to the variable A multiplied by the variable B.

2nd alpha and 2nd alpha ALPHA

The key combination 2nd alpha will produce lower case letters. Lower case letters are used as variables in expressions. Lower case letters are different from upper case letters in that they have different memory locations. Hence $\mathrm{ab}=2$ and $\mathrm{AB}=5$ are treated as different variables ab and AB , respectively.

MODE

Press 2nd MODE to access the mode screen. The highlighted items are currently active. Select the item you wish using the arrow keys. Press ENTER to activate the selection.

Type of notation for display of numbers.
Number of decimal places displayed.
Type of angle measure.
Display format of complex numbers.
Function, polar, parametric, differential equation graphing.
Decimal, binary, octal or hexadecimal number base.
Rectangular, cylindrical, or spherical vectors.
Exact differentiation or numeric differentiation.

```
Norm Sci Eng
Float 012345678901
Radian Degree
RectC PolarC
Func Pol Param DifEq
Dec Bin Oct Hex
RectV CylV SphereV
dxDer1 dxNDer
```


Home Screen

The blank screen is called the Home Screen. You can always get to this screen (aborting any calculations in progress) by pressing 2nd QUIT. QUIT is the function above the EXIT key.

Menus

The TI-85 graphing calculator uses menus for selection of specific functions. The items on the menus are displayed across the bottom of the screen. Several menus can be displayed at the same time.

Press the function key directly below the item on the menu you wish to choose. In this document the menu items will be referred to using the key to be pressed followed by the meaning of the menu. For example, F2 :RANGE refers to the second item on the GRAPH menu. Press GRAPH to see this menu.

In this document, a menu choice will be noted as the key to press followed by the meaning of the key. For example: F3 :RESET means to press the F3 key to choose RESET.

EXIT

Press this key to exit and remove the menu closest to the bottom of the screen.

C-3 Correcting Errors

It is easy to correct errors when entering data into the calculator by using the arrow keys, INS, and DEL keys. You need to press 2nd INS to insert a character before the cursor position.

4	or \square	Moves the cursor to the left or right one position.
4		Moves the cursor up one line.
∇		Moves the cursor down one line.
DEL		Deletes one character at the cursor position.
2 nd	INS	Inserts one or more characters at the cursor position.
2 nd	ENTRY	Replays the last executed line of input.

C-4 Calculation

Example 1 Calculate $-8+9^{2}-\left|\frac{3}{\sqrt{2}}-5\right|$.
Numbers and characters are entered in the same order as you would read an expression. Do not press ENTER unless specifically instructed to do so in these examples. Keystrokes are written in a column but you should enter all the keystrokes without pressing the ENTER key until ENTER is displayed in the example.

Solution:

Keystrokes	Screen Display	Explanation
2nd QUIT CLEAR		It is a good idea to clear the
$[(-) \sqrt[8]{9} \sqrt{9}-$	$\begin{array}{r} -8+9^{\wedge} 2-\mathrm{abs} \quad(3 / \sqrt{ } 2-5) \\ 70.1213203436 \end{array}$	screen before starting a calculation.
2nd MATH F1 :NUM		expression from left to right.
F5 :abs $3 \bigcirc \rightarrow 2$		
V 2 - 5 ENTER		

C-5 Evaluation of an Algebraic Expression

Example 1 Evaluate $\frac{x^{4}-3 a}{8 w}$ for $x=\pi, a=\sqrt{3}$, and $w=4$!.
Two different methods can be used:

1. Store the values of the variables and then enter the expression. When ENTER is pressed the expression is evaluated for the stored values of the variables.
2. Store the expression and store the values of the variables. Recall the expression.

Press ENTER. The expression is evaluated for the stored values of the variables.
The advantage of the second method is that the expression can be easily evaluated for several different values of the variables.

Solution:

Method 1
Keystrokes
Screen Display

2nd	QUIT	CLEAR

2 nd	π	STO	$\mathrm{x}-\mathrm{VAR}$	ENTER	$\pi \rightarrow \mathrm{x}$

3.14159265359

1.73205080757

4 2nd MATH F2 :PROB F1 :! STOD W ENTER

$$
4!\rightarrow W
$$

In this document the notation F1 :! refers to the menu item listed on the screen above the F1 key.

$\left(X^{\wedge} 4-3 A\right) /(8 W)$
$\square 8$ ALPHA W ENTER
.480275721934

Note that STO automatically puts the calculator in ALPHA mode.

Method 2

Example 2 For $f(x)=3 x+5$ and $g(x)=\sqrt{x-\sqrt{x}}$ find $f(2)-g(2)$.
Solution: (Using Method 2 of Example 1 above.)

Keystrokes	Screen Display	Explanation
2nd QUIT CLEAR		Clear yl and store $f(x)$ as y1.
GRAPH F1 : $\mathrm{y}(\mathrm{x})=$ CLEAR	$y 1=3 x+5$	The calculator automatically uses lower case x in functions.
3 x-VAR +5 ENTER		
$\begin{array}{\|l\|l\|l\|} \hline \text { CLEAR } & \text { 2nd } & \sqrt{2} \\ \hline \end{array}$	$y 2=\sqrt{ }(x-\sqrt{x})$	Clear y2 and store $g(x)$ as y2.
x-VAR -2 nd , $\sqrt{\square}$		
$\mathrm{x}-\mathrm{VAR}$ 2nd QUIT		

Store 2 as x. The 2 nd key is required to store 2 as a lower case x .

Use arrow keys to select yl from the list of variables. Algebraically form $f(x)-g(x)$ and evaluate at $x=2$. Note: The functions y1 and y2 can be selected from the list of variables or entered into the calculator directly. (See Section C-5 Example 1 above.)

C-6 Testing Inequalities in One Variable

Example 1 Determine whether or not $x^{3}+5<3 x^{4}-x$ is true for $x=-\sqrt{2}$.

Solution:

Keystrokes	Screen Display	Explanation
(-) 2 2nd $\sqrt{ }$, 2 STO	$\begin{aligned} -\sqrt{ } & 2 \rightarrow X \\ & -1.41421356237 \end{aligned}$	Store the value for x.
x-VAR ENTER	$x^{\wedge} 3+5<3 x^{\wedge} 4-x$	Enter the expression. The result of 1 indicates that the expression is true for this value of x. If a 0 was displayed, the expression would be false. The expression could have been stored as y1 and then evaluated as in Section C-5 Example 2 Method 2 of this document.
$x-\mathrm{VAR} \wedge \wedge^{3}+5$		
2nd TEST F2 : 53		
$\mathrm{x}-\mathrm{VAR}$ \wedge 4 -		
x-VAR ${ }^{\text {E }}$ ENTER		
x-VAR ENTER		

C-7 Graphing and the ZStandard Graphing Screen

Example 1 Graph $y=x^{2}, y=.5 x^{2}, y=2 x^{2}$, and $y=-1.5 x^{2}$ on the same coordinate axes.

Solution:

Keystrokes	Screen Display	Explanation
CLEAR EXIT		Clear the screen and exit all menus.
GRAPH F1 : $\mathrm{y}(\mathrm{x})=$ CLEAR		Clear the existing function and
$\text { F1 :x } x^{2} \text { ENTER }$	$y 1=x^{2}$	store the first function as yl.
CLEAR	$\mathrm{y}^{2}=.5 \mathrm{x}^{2}$	Clear and store the second function as y 2 .
x-VAR x^{2} ENTER	$\mathrm{y} 3=2 \mathrm{X}^{2}$	Clear and store the third function as y3.
CLEAR $2 \mathrm{x}-\mathrm{VAR}$ x^{2}	$\mathrm{y} 4={ }^{-1} .5 \mathrm{x}^{2}$	Clear and store the fourth function as $y 4$.
$\begin{aligned} & \begin{array}{l\|l\|l\|} \hline \text { ENTER } & \text { CLEAR } & (-) \\ \hline 1.5 & \mathrm{x}-\mathrm{VAR} & \mathrm{x}^{2} \\ \hline \end{array} \end{aligned}$		Choose the Standard option from the ZOOM menu.
EXIT F3 :ZOOM F4 :ZSTD		

The Standard screen automatically sets the graph for $-10<x<10$ and $-10<y<10$.
Press GRAPH F2 :RANGE to see this.

The graphs will be plotted in order: y 1 , then y 2 , then y 3 , etc.

Occasionally you will see a vertical bar of moving dots in the upper right corner. This means the calculator is working. Wait until the dots have stopped before continuing.

There is another method that can be used to graph several functions where a coefficient or constant term has several values. This method uses the LIST feature of the calculator.

Example 2 Repeat Example 1 using LIST.

Solution:

Keystrokes	Screen Display	Explanation
GRAPH F1 y $\mathrm{y}(\mathrm{x})=$ WLEAR		Clear all of the existing functions.
	$y 1=\{1, .5,2,-1.5\} x^{2}$	Store the function as y1 using the LIST feature of the calculator.
$\begin{aligned} & \text { F1 :x } \mathrm{x}^{2} \text { ENTER EXIT F3 } \\ & : \mathrm{ZOOM} \text { F4 :ZSTD } \end{aligned}$		Choose the Standard option from the ZOOM menu.

Occasionally you will see a vertical bar of moving dots in the upper right corner. This means the calculator is working. Wait until the dots have stopped before continuing.

C-8 TRACE, ZOOM, RANGE, ROOT, ISECT, and Solver

TRACE allows you to observe both the x and y coordinate of a point on the graph as the cursor moves along the graph of the function. If there is more than one function graphed the up and down ∇ arrow keys allow you to move between the graphs displayed.

ZOOM will magnify a graph so the coordinates of a point can be approximated with greater accuracy.

Ways to find the x value of an equation with two variables for a given y value are:

1. Zoom in by changing the RANGE dimensions.
2. Zoom in by seting the zoom factors (ZFACT) and zooming in (ZIN) on the ZOOM menu.
3. Zoom in by using the zoom box (BOX) feature on the ZOOM menu.
4. Use the ROOT feature of the calculator on the MATH menu on the GRAPH menu.
5. Use the intersect (ISECT) feature of the calculator on the MATH menu on the GRAPH menu.
6. Use the solver (SOLVER) feature of the calculator.

Three methods to zoom in are:

1. Change the RANGE values.
2. Set zoom factors using F1 :ZFACT on the F3 :ZOOM menu on the GRAPH menu. Then use the F2 :ZIN option on the F3 :ZOOM menu on the GRAPH menu.
3. Use the F1 :BOX option on the F3 :ZOOM menu on the GRAPH menu.

ZOUT means to zoom out. This allows you to see a "bigger picture." (See Section C-9 Example 1 of this document.)

ZIN means to zoom in. This will magnify a graph so the coordinates of a point can be approximated with greater accuracy.

Example 1 Approximate the value of x to two decimal places if $y=-1.58$ for $y=x^{3}-2 x^{2}+\sqrt{x}-8$.

Solution:

Method 1 Change the RANGE values.
Enter the function in the $y=$ list and graph the function using the Standard Graphing Screen (See Section C-7 of this document).

RANGE
$\mathrm{Xmin}=2$
$\mathrm{Xmax}=3$
$\mathrm{Xscl}=.1$
$\mathrm{Ymin}=-2$
$\mathrm{Ymax}=-1$
$\mathrm{Yscl}=.1$

The x coordinate is between 2 and 3. So we set the RANGE at x Min $=2, x M a x=3$, $x \operatorname{Scl}=.1, y \operatorname{Min}=-2, y M a x=-1$, and $\mathrm{yScl}=.1$. This will be written as
$[2,3] .1$ by $[-2,-1] .1$.

F4 :TRACE can be used again to estimate a new x value. Repeat using TRACE and changing the RANGE until the approximation of $(2.67,-1.58)$ has been found.

When using TRACE, the initial position of the cursor is at the midpoint of the x values used for xMin and xMax. Hence, you may need to press the right or left arrow key repeatedly before the cursor becomes visible on a graph.

Occasionally you will see a moving bar in the upper right corner. This means the calculator is working. Wait until the bar disappears before continuing.

Method 2 Use the F2 :ZIN option on the ZOOM menu.
Enter the function in the $\mathrm{y}=$ list and graph the function using the Standard Graphing Screen (See Section C-7 of this document).

Keystrokes		Screen Display					Explanation
GRAPH	F3 :ZOOM	$\mathrm{y}(\mathrm{x})=$	RANGE	Z00M	TRACE	GRAPH	Get the ZOOM option from the GRAPH menu. There is a small right arrow on the
MORE		ZFACT	ZOOMX	ZOOMY	ZINT	ZSTO	
	MORE	WFACT					screen at the right of the
							ZOOM menu options. This means there are more
							options. Press MORE twice
							until ZFACT option is visible.

Use trace to get a new approximation for the coordinates of the point.
Repeat this procedure until you get a value for the x coordinate accurate to two decimal places. The point has coordinates $(2.67,-1.58)$.

Method 3 Use the F1 :BOX option on the ZOOM menu.

Graph the function using the Standard Graphing Screen (See Section C-7 of this document).

Keystrokes	Screen Display				Explanation
ZOOM F4 :ZSTD					Use the arrow keys until the cursor is a little to the left and above the point we are trying to find, say at (2.222222222, -1.290322581) and press ENTER . This anchors the upper left corner of the box. Now use the arrow keys to locate the lower right corner of the box, say at (3.333333333, -2.903225806) and press ENTER to get the new display.
		1			
	$y[x]=$	RAPIGE	20019	TRACE ${ }^{\text {GRPAFH }}$	
	B0\%	ZIN	ZOUT	2STGZPRELT	

Repeat using trace and zoom box until you get a value for the y coordinate accurate to two decimal places. The point has coordinates $(2.67,-1.58)$. Hence the desired value for x is approximately 2.67.

Method 4 Use the ROOT feature of the calculator.

Keystrokes	Screen Display	Explanation
		Set the expression involving x equal to -1.58 , the value of y. Now change the equation so it is equal to zero. $\begin{aligned} & x^{3}-2 x^{2}+\sqrt{x}-8=-1.58 \\ & x^{3}-2 x^{2}+\sqrt{x}-8+1.58=0 \end{aligned}$ Enter the left side of the equation into the function list and graph.
ZOOM F4 :ZSTD		Get the ROOT feature.
EXIT GRAPH MORE		
F1 :MATH F3 :ROOT		
\triangle or \square ENTER		Place the cursor at a point near to the x intercept. In this case we moved the cursor to (2.85... 2.26...).
		Press ENTER to calculate the x intercept. The x intercept is approximately 2.67 .
		Hence the desired value for x is approximately 2.67 .

Method 5 Use the Intersect ISECT feature of the calculator.

Method 6 Use the Solver feature of the calculator

Explanation
Enter the original equation as y 1 in the function list.

Get the EQUATION
SOLVER. Recall yl from the function list.

Continue the Solver function. Type 2 as the guess.
Hence the desired value for x is approximately 2.67 .

C-9 Determining the RANGE

There are several ways to determine the RANGE values that should be used for the limits of the x and y axes for the screen display. Three are described below:

1. Graph using the ZSTD setting of the calculator and zoom out. The disadvantage of this method is that often the function cannot be seen at either the standard settings of $[-10,10] 1$ by $[-10,10] 1$ or the zoomed out settings of the RANGE.
2. Evaluate the function for several values of x. Make a first estimate based on these values.
3. Analyze the leading coefficient and the constant terms.

A good number to use for the scale marks is one that yields about 20 marks across the axis. For example if the RANGE is $[-30,30]$ for the x axis a good scale value is $(30-(-30)) / 20$ or 3 .
Example 1 Graph the function $f(x)=.2 x^{2}+\sqrt[3]{x}-32$.

Solution:

Method 1 Use the default setting and zoom out.

Keystrokes		Screen Display	Explanation
GRAPH $\mathrm{y}(\mathrm{x})=$ CLEAR	...	$\mathrm{y} 1=.2 \mathrm{x}$ ^2+ $\mathrm{x}^{\wedge}(1 / 3)-32$	Clear all functions. Then enter the function.
. $2 \bigcirc \bigcirc$			
$2 \square$ x-VAR \wedge ¢			
$1 \bigcirc 30$			Graph using the standard screen.
- 32 ENTER			Nothing is seen on the graph screen because no part of this
	:ZSTD		

Set the zoom factors to 5 and 5. See Section C-8 Example 1 Method 2 of this document.)

F3 :ZOOM

MORE MORE F1 :ZFACT
$5 \longdiv { \text { ENTER } } 5$

F3 :ZOOM
F3 :ZOUT ENTER

Zooming out shows a parabolic shaped curve. Note the double axis. This indicates that the scale marks are very close together.

Method 2 Evaluate the function for several values of x to one decimal place accuracy. (See Section C-5 of this document on how to evaluate a function at given values of x.)

x	$f(x)$
-20	45.3
-10	-14.2
0	-32.0
10	-9.8
20	-50.7

GRAPH	F2 : RANGE

$(-)$	20	ENTER	20	ENTER	2
	ENTER				

$(-)$	50	ENTER	50	ENTER
5	5	ENTER		

F5 :GRAPH
Analyzing this table indicates that a good RANGE to start with is $[-20,20] 2$ by $[-50,50] 5$. Note the scale is chosen so that about 20 scale marks will be displayed along each of the axes.

Method 3 Analyze the leading coefficient and constant terms. Since the leading coefficient is .2 the first term will increase 2 units for each 10 units x^{2} increases. This is about $\sqrt{10}$ (or about 3) units increase in x. Hence, a first choice for the x-axis limits can be found using:
$\frac{10 \times(\text { unit increase in } x)}{(\text { first term increase })}=\frac{10 \times 3}{2}=15$. So set Xmin $=-15$ and $X \max =15$.
A first choice for the scale on the x axis (having about 20 marks on the axis) can be found using $\frac{\text { Xmax-Xmin }}{20}=\frac{15-(-15)}{20}=1.5$ (round to 2). So the limits on the x axis could be $[-15,15] 2$.

A first choice for the y-axis limits could be \pm (constant term). The scale for the y axis can be
found using $\frac{\text { Ymax-Ymin }}{20}=\frac{32-(-32)}{20}=3.2$ (round to 4). So a first choice for the y-axis limits could be $[-32,32] 4$. Hence a good first setting for the the RANGE if $[-15,15] 2$
 by $[-32,32] 4$.

A good choice for the scale is so that about 20 marks appear along the axis.
This is $\frac{X m a x-X m i n}{20}$ (rounded up to the next integer) for the x axis and
$\frac{\text { Ymax-Ymin }}{20}$ (rounded up to the next integer) for the y axis.

C-10 Piecewise-Defined Functions

Two methods to graph piecewise-defined functions are:

1. Graph each piece of the function separately as an entire function on the same coordinate axes. Use trace and zoom to locate the partition value on each of the graphs.
2. Store each piece of the function separately but include an inequality statement following the expression which will set the RANGE values on x for which the function should be graphed. Then graph all pieces on the same coordinate axes.

Example 1 Graph $f(x)=\left\{\begin{array}{cc}x^{2}+1 & x<1 \\ 3 x-5 & x \geq 1\end{array}\right.$

Solution:

Method 1

Keystrokes	Screen Display	Explanation
GRAPH $\mathrm{y}(\mathrm{x})=$ CLEAR		Clear all existing functions.
\times-VAR \wedge, +1	$\begin{aligned} & y 1=x^{\wedge} 2+1 \\ & y 2=3 \quad x-5 \end{aligned}$	Store the new functions.

ENTER

3 x-VAR
-5 EXIT
F3 :ZOOM F4 :ZSTD
EXIT F4 :TRACE

Graph. Both functions will be displayed. Use trace and zoom to find the point on the graphs where x is close to 1 . The up and down arrow keys will move the cursor between the graphs. The endpoint of the parabolic piece of the graph is not included on the graph since $x<1$. The endpoint of the straight line piece of the graph is included. The graph shown to the left shows the curves with the cursor on the parabolic piece of the graph.

The number of the function being traced appears in the upper right corner of the screen.

Method 2		
Keystrokes	Screen Display	Explanation
GRAPH $\mathrm{y}(\mathrm{x})=$ CLEAR	$\mathrm{y} 1=\left(\mathrm{x}^{\wedge} 2+1\right) /(\mathrm{x}<1)$	Clear all existing functions.
(x-VAR		The logical statement $x<1$ will give a 1 when the value of x is
$2+10 \div 0$		less than 1 and a 0 when the value of x is greater than or
x-VAR 2nd TEST		equal to 1 . Hence the first part of the function is divided by 1
F2 : 1 1 5 ENTER		when $x<1$ and 0 when $x \geq 1$. The function will not graph when it is divided by 0 .
$0 \boxed { 3 } \longdiv { x - V A R } - 5$	$y^{2}=(3 x-5) /(x \geq 1)$	Similarly for the logical statement $x \geq 1$ for the second part of the function. The 1 and 0 are not shown on the screen but are used by the calculator when graphing the functions.
$\square \square \triangle$ x-VAR		
2nd TEST F5 $: \geq$ 1,		
GRAPH		Graph.
F3 :ZOOM		
F4 :ZSTD		

C-11 Solving Equations in One Variable

Methods for approximating the solution of an equation using graphing are:

1. Write the equation as an expression equal to zero. Graph $y=($ the expression). Find where the curve crosses the x axis. The x values (x intercepts) are the solutions to the equation. This can be done using TRACE and ZOOM or using the Solver from the MATH menu. See Section D8 of this document.
2. Graph $y=$ (left side of the equation) and $y=$ (right side of the equation) on the same coordinate axes. The x coordinate of the points of intersection are the solutions to the equation. This can be done using TRACE and ZOOM or using ISECT from the MATH menu from the GRAPH menu.

Example 1 Solve $\frac{3 x^{2}}{2}-5=\frac{2(x+3)}{3}$.

Solution:

Method 1 Using TRACE and ZOOM
Write the equation as $\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right)=0$. Graph
$y=\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right)$ and find the x value where the graph crosses the x axis. This is the x intercept.

Keystrokes	Screen Display	Explanation
	$\mathrm{y} 1=\ldots 2 / 2-5)-(2(\mathrm{x}+3) / 3)$	Store the expression
GRAPH F1 : $\mathrm{y}(\mathrm{x})=$		as Y1. The ... means there is some of the expression not shown on the display. Use the arrow keys to see the rest of the expression.
CLEAR 3		
$x-\mathrm{VAR} \wedge 2 \div 2$		
$\square \boxed{5}) \square-(2$		
		Use ZOOM BOX to find the x intercepts. A typical
(x-VAR +3$)$		
		zoom box is shown on the
$\div 3)$ EXIT		graph at the left.
F3 :ZOOM F4 :ZSTD		The solutions are: $x \approx-1.95$
		and $x \approx 2.39$.

Method 1 Using Solver

Keystrokes	Screen Display	Explanation
2nd SOLVER 0	$\begin{aligned} & \text { eqn : } 0=\left(3 \mathrm{X}^{\wedge} 2 / 2-5\right)- \\ & (2(\mathrm{X}+3) / 3) \end{aligned}$	The keystrokes given require the function to be entered
ALPHA =	$0=\left(3 X^{\wedge} 2.2-5\right)-(2 \ldots$	directly in the Solver command. You could store the
($3 \bigcirc \times 2$	bound=\{-1E99,1E99) left-rt=-5E-13	left and right side of the equation as Y1 and Y2 and put
$5 \boxed{-1} 0$		$\mathrm{Y} 1-\mathrm{Y} 2=0$ as the eqn in the Solver command.
(x-VAR +3 L		The approximate solutions to
$\div 3$ ENTER 2		this equation are -1.95 and 2.39 , rounded to two decimal
F5 : SOLVE		places.

Method 2 Using TRACE and ZOOM
Graph $y=\frac{3 x^{2}}{2}-5$ and $y=\frac{2(x+3)}{3}$ on the same coordinate axes and find the x coordinate of their points of intersection.

Method 2 Using Intersect
Graph $y=\frac{3 x^{2}}{2}-5$ and $y=\frac{2(x+3)}{3}$ on the same coordinate axes and find the x coordinate of their points of intersection.

Keystrokes		Screen Display
GRAPH	F3 : ZOOM	
Explanation		
F4 :ZSTD EXIT MORE	STore the two functions and graph using the standard window dimensions.	

F1 :MATH MORE
F5 :ISECT $\boldsymbol{\Delta} \ldots \square$ ENTER
Select ISECT from the MATH menu from the GRAPH menu. Move the cursor near the point of intersection on y1.

ENTER

Enter the guess of 2 and press enter to find the coordinates of the point of intersection.

The point of intersection is (2.39..., 3.59...) Hence the solution to the equation is approximately 2.39. Repeat for the other intersection point.

Hence the approximate solutions to this equation are -1.95 and 2.39.

C-12 Solving Inequalities in One Variable

Two methods for approximating the solution of an inequality using graphing are:

1. Write the inequality with zero on one side of the inequality sign and the expression on the other side. Graph $y=($ the expression). Find the x intercepts. The solution will be an inequality with the x values (x intercepts) as the cut off numbers. The points of intersection can be found using TRACE and ZOOM or using the SOLVER feature of the calculator.
2. Graph $y=($ left side of the inequality) and $y=$ (right side of the inequality) on the same coordinate axes. The x coordinate of each of the points of intersection is a solution of the equation. Identify which side of the x value satisfies the inequality by observing the graphs of the two functions. The points of intersection can be found using TRACE and ZOOM or using ISECT from the MATH menu from the GRAPH menu.

Example 1 Approximate the solution to $\frac{3 x^{2}}{2}-5 \leq \frac{2(x+3)}{3}$. Use two decimal places.

Solution:

Method 1
Write the equation as $\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right) \leq 0$. Graph $y=\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right)$ and find the x intercept(s). This was done in Method 1 of Example 1 in Section D-11 of this document. The x intercepts are -1.95 and 2.39. The solution to the inequality is the interval on x for which the graph is below the x axis. The solution is $-1.95 \leq x \leq 2.39$.

Method 2 Graph $y=\frac{3 x^{2}}{2}-5$ and $y=\frac{2(x+3)}{3}$ on the same coordinate axes and find the x coordinate of their points of intersection. This was done in Method 2 of Example 1 in Section D-11. The parabola is below the line for $-1.95 \leq x \leq 2.39$. Hence the inequality is satisfied for $-1.95 \leq x \leq 2.39$.

To test this inequality, choose -2 as a test value. Evaluating the original inequality using the calculator yields a 0 which means the inequality is not true for this value of x. (See Section C-6 of this document.) Repeat the testing using 0 and 3 . We see that the inequality is true for $x=0$ and not true for $x=3$. Hence the inequality is satisfied for $-1.95 \leq x \leq 2.39$.

C-13 Storing an Expression That Will Not Graph

Expressions can be stored as a variable. Variable names can be up to eight characters in length. The expressions can then be recalled and graphed using $y(x)=$ on the graph menu.

Example 1 Store the expression $B^{2}-4 \mathrm{AC}$ so that it will not be graphed but so that it can be evaluated at any time. Evaluate this expression for $\mathrm{A}=3, \mathrm{~B}=2.58$, and $\mathrm{C}=\sqrt{3}$.

Solution:

Keystrokes	
2nd QUIT CLEAR	
Rereen Display	
R	

$$
3 \rightarrow A
$$

$2.58 \rightarrow B$
$\sqrt{ } 3 \rightarrow C$
1.73205080757

ENTER

DISC
-14.1282096908

ALPHA	ALPHA	D	I	S

ENTER

Explanation

Return to the HOME screen and clear it.
Pressing ALPHA twice in succession locks the calculator in the ALPHA mode. Pressing ALPHA again releases the lock.
Enter the variable name and the expression. DISC is the variable name. A multiplication sign is needed between A and C so that the calculator knows to multiply
3 these variables instead of defining a new variable AC. 2.58 DISC is automatically stored as a variable on the VARS list.
Store the values for A, B, and C.

Enter the variable name DISC to get the value of the discriminant evaluated at the stored values of the variables.

C-14 Permutations and Combinations

Example 1 Find (A) $\mathrm{P}_{10,3}$ and (B) $\mathrm{C}_{12,4}$
Solution (A):

Solution (B):

Explanation Enter the first number. Get the math menu and choose PROB using the arrow keys. Choose nCr.

C-15 Matrices

Example 1 Given the matrices

$$
A=\left[\begin{array}{rr}
1 & -2 \\
3 & 0 \\
5 & -8
\end{array}\right] \quad B=\left[\begin{array}{rrr}
2 & 1 & 5 \\
3 & 2 & -1 \\
0 & 8 & -3
\end{array}\right] \quad C=\left[\begin{array}{c}
1 \\
-5 \\
10
\end{array}\right]
$$

Find (A) $-3 B C \quad$ (B) $B^{-1} \quad$ (C) $A^{T} \quad$ (D) det B
Solution (A):

Solution (B):

Screen Display
B^{-1}
$\left[\begin{array}{lll}{[.015037593985} & .323 \ldots \\ {[.067669172932} & -.04 \ldots \\ {[.18045112782} & -.12 \ldots\end{array}\right.$

Explanation
Use the arrow keys to see the rest of the matrix.
F1 :B 2nd ${ }^{-1}$ ENTER
The number of decimal places in the display can be set. See Section C-20 of this document.

Solution (C):

Solution (D):

Keystrokes	Screen Display					Explanation
EXIT EXIT 2nd MATRX	NAME	EDIT	MATH	OPS	CPLX	Get the MATRX menu.
	det	T	norm	eigV1	eigVc	
F3 :MATH F1 :det EXIT	det B					Get det from the MATRX menu and recall matrix B
F1 :NAMES F2 :B ENTER	NAME	EDIT	MATH	OPS	CPLX	
F1 .NAMES $\mathrm{F2}$. ${ }^{\text {ENTER }}$	A	B	C			

Example 2 Find the reduced form of matrix $\left[\begin{array}{cccc}2 & 1 & 5 & 1 \\ 3 & 2 & -1 & -5 \\ 0 & 8 & -3 & 10\end{array}\right]$.
Two methods that can be used are:

1. Use the row operations individually.
2. Use rref from the MATRX OPS menu.

Method 1 Using row operations

Solution:

Keystrokes	Screen Display	Explanation
2nd MEM F2		Delete the existing matrices.
MORE F1 :MA		
ENTER ENTER		
ENTER EXIT		

STO A Ans $\rightarrow \mathrm{A}$ Store the result in matrix A.

$$
\left[\begin{array}{llll}
{[1} & .5 & 2.5 & .5
\end{array}\right]
$$

Continue using row operations to arrive at the reduced form of $\left[\begin{array}{cccc}1 & 0 & 0 & -2.428 \ldots \\ 0 & 1 & 0 & 1.571 \ldots \\ 0 & 0 & 1 & .857 \ldots\end{array}\right]$
Method 2 Using rref(from the MATRX OPS menu
Enter the elements in the matrix as done in Method 1.

Hence if a system of equations is

$$
\begin{aligned}
2 x_{1}+x_{2}+5 x_{3} & =1 \\
3 x_{1}+2 x_{2}-x_{3} & =-5 \\
8 x_{2}-3 x_{3} & =10
\end{aligned}
$$

with augmented coefficient matrix

$$
\left[\begin{array}{cccc}
2 & 1 & 5 & 1 \\
3 & 2 & -1 & -5 \\
0 & 8 & -3 & 10
\end{array}\right]
$$

the solution, rounded to two decimal places, of the system of equations is

$$
\begin{aligned}
& x_{1}=-2.43 \\
& x_{2}=1.57 \\
& x_{3}=.86
\end{aligned}
$$

C-16 Graphing an Inequality

To graph an inequality:

- Change the inequality sign to an equals sign.
- Solve the equation for y.
- Enter this expression in the function list on the calculator. This is the boundary curve.
- Determine the half-plane by choosing a test point not on the boundary curve and substituting the test value into the original inequality. If the result is a true statement, then the point is in the desired half-plane and we wish to shade this region. If the statement is not true, then the point is not in the desired half-plane and we wish to shade the other region.
- Graph the boundary curve using the shade option on the calculator to get a shaded graph.

Example 1 Graph $3 x+4 y \leq 12$.

Solution:

REMINDER: Commas are needed between entries in the shade command.

C-17 Exponential and Hyperbolic Functions

Example 1 Graph $y=10^{0.2 x}$

Solution:

Keystrokes	Screen Display	Explanation
GRAPH F1 : $\mathrm{y}(\mathrm{x})=$	y1=10^(.2 x)	Store the function and graph.
		Note the entire exponent needs to be in parentheses
x-VAR EXIT	-	
F3 :ZOOM F4 :ZSTD		

$\underline{\text { Example } 2}$ Graph $y=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$.

Solution:

C-18 Scientific Notation, Significant Digits, and Fixed Number of Decimal Places

Numbers can be entered into the calculator in scientific notation.

Example 1 Calculate $\left(-8.513 \times 10^{-3}\right)\left(1.58235 \times 10^{2}\right)$. Enter numbers in scientific notation.

Solution:

Example 2 Set the scientific notation mode with six significant digits and calculate
(351.892)(5.32815 $\left.\times 10^{-8}\right)$.

Solution:

Example 3 Fix the number of decimal places at 2 and calculate the interest earned on $\$ 53,218.00$ in two years when invested at 5.21% simple interest.

Solution:

ENTER

C-19 Angles and Trigonometric Functions

Example 1 Evaluate $f(x)=\sin x$ and $g(x)=\tan ^{-1} x$ at $x=\frac{5 \pi}{8}$.
Solution:

Keystrokes			Screen Display		Explanation
2nd	MODE $\boldsymbol{\nabla}$ ENTER		Normal Sci Eng Float 012345678901 Radian Degree Rectc PolarC Func Pol Param DifEq Dec Bin Oct Hex RectV CylV dxDer1 dxNDer		Change the mode to Float.
∇ ENTER					Since the angle measure is given in radians, set the calculator for radian measure before starting calculations. Return to the Home screen
2nd	QUIT				
					using 2nd QUIT
			$5 \pi / 8 \rightarrow \mathrm{x}$	1.96349540849	Store $\frac{5 \pi}{8}$ as x.
			$\begin{aligned} & \sin x \\ & \tan ^{-1} \quad x \end{aligned}$. 923879532511	Enter $f(x)$ and evaluate.
				1.09973974852	
STO	x-VAR	ENTER			
SIN					Enter $g(x)$ and evaluate.

2nd TAN^{-1}

Example 2 Evaluate $f(x)=\csc x$ at $x=32^{\circ} 5^{\prime} 45^{\prime \prime}$.

Solution:

Example 3 Graph $f(x)=1.5 \sin 2 x$.

Solution:

Explanation

Set MODE to radian measure. Store $f(x)$ as y1. Use the trigonometric option on the ZOOM menu to get tick marks set at radian measures on the horizontal axis since the angle measure is in radians. Press
F2 :RANGE to see the RANGE
is $[-8.24 \ldots, 8.24 \ldots] 1.57 \ldots$ by
$[-4,4] 1$ on the calculator.

Example 4 Graph $g(x)=3 \tan ^{-1}(.2 x)$.
Solution:

Keystrokes	Screen Display	Explanation
2nd MODE $\nabla \boldsymbol{\nabla}$ ENTER	y1=3tan ${ }^{-1} .2 \mathrm{x}$	Set MODE to radian measure. Store $g(x)$ as yl
GRAPH F1 $\mathrm{y}(\mathrm{x})=$ CLEAR	F	Use the standard RANGE setting
3 2nd TAN ${ }^{-1}$ (2	Eranmem	
x-VAR ${ }^{\text {x }}$	E	

C-20 Polar Coordinates and Polar Graphs

Example 1 Change the rectangular coordinates $(-\sqrt{3}, 5)$ to polar form with $r \geq 0$ and $0 \leq \theta \leq 2 \pi$.

Solution:

Explanation
Set the mode to Radian angle measure and to PolarC. Now when data is entered in rectangular coordinates, the result will be given in polar coordinates.

Return to the home screen.
Enter the data.
The result is in polar coordinates (r, θ). The angle symbol \angle indicates an angle measure will follow. The calculator will interpret the angle measure to be in radians because we set the mode to radian measure.

Example 2 Change the polar coordinates $(5, \pi / 7)$ to rectangular coordinates.

Solution:

Example 3 Evaluate $r=5-5 \sin \theta$ at $\theta=\frac{\pi}{7}$.
Up to 99 polar equations can be defined and graphed at one time.

Solution:

F2 : θ ENTER

$$
\begin{aligned}
& 5-5 \sin \theta \\
& 2.83058130441 \quad \text { Enter } 5-5 \sin \theta \text { and evaluate. }
\end{aligned}
$$

Example 4 Graph $r=5-5 \sin \theta$
Polar equations can be graphed by using the polar graphing mode of the calculator.

In general the steps to graph a polar function are:

Step 1 Set the calculator in polar graph mode.
Step 2 Set the RANGE FORMAT to PolarGC
Step 3 Enter the function in the $\mathrm{y}=$ list (This list now has $\mathrm{r}=$ as the function names.)
Step 4 Graph using the standard graph setting ZOOM F4 :ZSTD and then the square
setting of the calculator F2 :ZSQR to get a graph with equal spacing
between the scale marks.
Step 5 Zoom in to get a larger graph if you wish.

Solution:

ZSQR will square the screen by adjusting the horizontal scale to make the scale marks the same distance apart as on the y axis. Press F2:WIND to see how the window dimensions are changed.

CLEAR will remove the menu from the bottom of the graph screen.

CLEAR will remove the menu from the bottom of the graph screen without removing the graph itself.

