TI-92 GRAPHING CALCULATOR

BASIC OPERATIONS

by
\section*{Carolyn Meitler

Concordia University Wisconsin}

B-1 Getting Started

Press ON to turn on the calculator.

Press 2nd 6 to get the MEMORY screen (shown at the right).

Press F1 :RESET, press 1 :All and press ENTER

The screen now has a toolbar across the top of the screen, two horizontal lines and some words at the bottom of the screen. The cursor should be flashing between the two horizontal lines at the bottom of the screen.

However, the screen may look blank. This is because the contrast setting may also have been reset and now needs to be adjusted.

The contrast may be too light or too dark. Hold down the green diamond in a green square key and press thekey to make the display lighter, or the $+\square$ key to make the display darker.

B-2 Home Screen, Toolbar, Special Keys, and Menus

Home Screen
The screen on which calculations are done and commands are entered is called the Home Screen. The toolbar is across the top of the screen. Access the tool bar by pressing the blue function keys directly to the left of the screen.

You can always get to this screen (aborting any calculations in progress) by pressing QUIT
2nd ESC . From here on, this will be referred to as 2nd QUIT in this manual.

Clear the home screen by pressing F 18 .
Quit any calculations by pressing 2nd QUIT.
Clear the Entry Line by pressing CLEAR.

The line where the cursor is flashing is called the Entry Line.
The words at the bottom of the screen is called the Status Line. This shows the current state of the calculator.

ENTER Keys

There are three ENTER keys. All three keys do the same thing. There are three only for your convenience.

Eight Directional Arrow Key

The large arrow key located on the upper righthand corner of the calculator is an eight-directional arrow key. The up, down, right, and left directions are used for the functions in this document. They will be indicated by:

Moves the cursor to the left or right one position.
Moves the cursor up or down one line.

2nd

This key must be pressed to access the operation above a key printed in yellow. 2nd will appear at the bottom of the screen when this key is pressed.

In this document, the functions on the face of the calculator above a key will be referred to in square boxes just as if the function was printed on the key cap. For example, ANS is the function above the (-) key.

This key must be pressed to access the operation above and to the right of a key. These operations are printed in green on the face of the calculator.

ESC
If the calculator displays a menu, this key allows you to exit the menu.

MODE

Press MODE. The items listed is the current setting. Use the up or down arrow key to select the item you wish to change and press the right arrow key to get a menu. Use the up or down arrow key to select the menu item and press ENTER to activate the selection, or press the number of the selection.

Press $\boxed{F 1}$ or F 2 to see the pages
of this menu. Press ESC to cancel
and exit the menu. Press ENTER
to save the settings.
The settings shown above are the default settings. This manual will assume the calculator has these settings unless the example specifically states to change them with the exception of numbers containing a decimal point being expressed to ten decimal places.

Note that AUTO setting for number presentation will cause numbers having fractions, e, , or square roots to be expressed in symbolic form unless a number has been entered using a decimal point. A decimal point in the entry causes the answer to be expressed using a decimal point. The AUTO setting is on the MODE screen, page 2.

Note, also, that the default setting is floating point (decimal point) form with digits. To get six decimal places, change to FIX 6.

Menus
The TI-92 Graphics calculator uses menus for selection of specific functions. The items on the menus are identified by numbers followed by a colon. There are two ways to choose menu items:

1. Use the arrow keys to highlight the selection and then press ENTER.
2. Press the number corresponding to the menu item.

In this document the menu items will be referred to using the key to be pressed followed by the meaning of the menu. For example, on the \rightarrow GRAPH menu F2 1 :ZoomBox refers to the first item on this menu.

B-3 Correcting Errors

It is easy to correct errors on the screen when entering data into the calculator. To do so use the arrow keys, the \bullet, 2nd INS and/or \bullet DEL.

\square	or
Moves the cursor to the left or right one position.	
Moves the cursor up one line or replays the last executed input.	

B-4 Calculation

Example 1 Calculate $-8+9^{2}-\left|\frac{3}{\sqrt{2}}-5\right|$ to ten decimal place accuracy.

Turn the calculator on and press 2nd QUIT to return to the Home Screen. Press CLEAR to clear the Home Screen. Now we are ready to do a new calculation.

Numbers and characters are entered in the same order as you would read an expression. Do not press ENTER unless specifically instructed to do so in these examples. Keystrokes are written in a column but you should enter all the keystrokes without pressing the ENTER key until ENTER is displayed in the example.

Solution:

B-5 Evaluation of an Algebraic Expression

Example 1 Evaluate $\frac{x^{4}-3 a}{8 w}$ for $x=\pi, a=\sqrt{3}$, and $w=4!$.

Two different methods can be used to evaluate algebraic expressions:

1. Store the values of the variable, enter the expression, and press ENTER to evaluate the expression for the stored values of the variables.
2. Store the expression and store the values of the variables. Recall the expression and press ENTER to evaluate the expression for the stored values of the variables.

The advantage of the second method is that the expression can be easily evaluated for several different sets of values of the variables.

Solution:
Method 1

Method 2

Example 2 For $f(x)=3 x+5$ and $g(x)=\sqrt{x-\sqrt{x}}$ find $f(2)-g(2)$.
Solution: (Using Method 2 above.)

Example 3 Evaluate the function $g(x)=\sqrt{x-\sqrt{x}}$ to three decimal places for $x=1.900,1.990$, 1.999, 2.001, 2.010, and 2.100 using a list.

Solution: Store the expression in the calculator as was done in Example 2 above. Store the values of x in a list and simultaneously evaluate the expression for each value of x as shown below.

ENTER

A ENTER
A ENTER

Store the values of x in the list X .

Calculate the
value of the
expression stored as y 1 for the
values of x in list X and store as A . To view the results, use the

keys.
To recall A, press
A . The results
are $0.722,0.761$,
0.765, 0.766,
0.770 , and 0.807 .

Example 4
Evaluate the expression $g(x)=\sqrt{x-\sqrt{x}}$ to three decimal places for values of x at each integer from 0 to 10 using a table.

Solution: First store the expression in the $Y=$ list. Set the table parameters to begin at $x=0$ and to have an increment of 1 . Get the table.

B-6 Testing Inequalities in One Variable

Example 1 Determine whether or not $x^{3}+5<3 x^{4}-x$ is true for $x=-\sqrt{2}$.

Solution:

Keystrokes	Screen Display	
2 Exd QUIT		Explanation Return to the Home Screen
F1 :Tools	and clear it.	
8	Clear Home	

CLEAR

Set the mode to
FIX 10.
B :FIX 10 ENTER
(-) 2 nd
Store the value
for x.

X ENTER

Enter the expression.

The result of true indicates the expression is true for this value of x.

B-7 Graphing, the ZoomStd Graphing Screen, and Style of Graph

Example 1 Graph $y=x^{2}, y=.5 x^{2}, y=2 x^{2}$, and $y=-1.5 x^{2}$ on the same coordinate axes. Graph the first function with a dotted line, the second function with a thin line, the third function with a thick line, and the fourth function with a thin line.

Solution:

B-8 TRACE, ZOOM, WINDOW, Zero, Intersect and Solver

F3 :Trace allows you to observe both the x and y coordinate of a point on the graph as the cursor moves along the graph of the function. If there is more than one function graphed the up $\boldsymbol{\Delta}$ and down ∇ arrow keys allow you to move between the graphs displayed.

F2 :Zoom will magnify a graph so the coordinates of a point can be approximated with greater accuracy.

Ways to find the x value of an equation with two variables for a given y value are:

1. Zoom in by changing the WINDOW dimensions.
2. Zoom in by setting the Zoom Factors and using Zoom In from the ZOOM menu.
3. Zoom in by using the Zoom Box feature of the calculator.
4. Use the Zero feature of the calculator.
5. Use the Intersect feature of the calculator.
6. Use the Solver feature of the calculator.

Three methods to zoom in are:

1. Change the WINDOW dimensions using \bullet WINDOW .
2. Use the 2 :Zoom In option on the F2 :Zoom menu in conjunction with F2 :Zoom C :Set Factors.
3. Use the 1 :ZoomBox option on the F2 :Zoom menu.

Example 1 Approximate the value of x to two decimal places if $y=-1.58$ for $y=x^{3}-2 x^{2}+\sqrt{x}-8$.

Solution:

Method 1 Change the WINDOW dimensions.

:FIX 2

Explanation
Clear the Home
Screen and
change the number of decimal places to FIX 2.

Return to the Home Screen.

Clear all functions in the $\mathrm{Y}=$ list. Enter the function as y 1 .
Use the up arrow to highlight the function so you can see how it was entered on the Entry Line.

Graph using the standard window.

Get the TRACE function and press the right arrow repeatedly until the new type of cursor gives a y value close to 1.58. The closest point is (2.61, 2.28).

Repeat the process of changing the graphing window dimensions until you get the approximation for x as 2.67 for $y=-1.58$. Hence the desired value for x is approximately 2.67.

When using TRACE, the initial position of the cursor is at the midpoint of the x values used for xMin and xMax . Hence, you may need to press the right or left arrow key repeatedly before the cursor becomes visible on a graph.

Occasionally you will see the word BUSY in the lower righthand corner. This means the calculator is working. Wait until BUSY disappears before continuing.

Method 2 Use the 2 :Zoom In option on the F2 :Zoom menu.

Return to the Home Screen, Clear, enter the function in the $\mathrm{Y}=$ list (see Method 1 of this example).

Method 3 Use the 1 :ZoomBox option on the ZOOM menu.
Return to the Home Screen, clear, enter the function in the $\mathrm{Y}=$ list (see Method 1 of this example).

Method 4 Use the zeros(feature of the calculator.

Method 5 Use the Intersection feature of the calculator.

Return to the Home Screen, clear, enter the function in the $\mathrm{Y}=$ list (see Method 1 of this example).

F2 :Zoom 6
:Zoom Std

:Intersection

ENTER

ENTER

Get the intersect feature.
Place the cursor at a point on the first graph near the point of intersection and press ENTER.

Place the cursor at a point on the second graph near the intersection point and press ENTER.
Move the cursor to a value of x less than the intersection point and press ENTER
for the Lower Bound on x. Move the cursor to a value of x greater than the x coordinate of the intersection point and press ENTER
for the Upper Bound on x.
The intersection point is (2.67, 1.58). Hence the desired value for x is approximately 2.67.

Method 6 Use the solve(feature of the calculator

B-9 Determining the WINDOW Dimensions and Scale Marks

There are several ways to determine the limits of the x and y axes to be used in setting the WINDOW. Three are described below:

1. Graph using the default setting of the calculator and zoom out. The disadvantage of this method is that often the function cannot be seen at either the default settings or the zoomed out settings of the WINDOW.
2. Evaluate the function for several values of x. Make a first estimate of the window dimensions based on these values.
3. Analyze the leading coefficient and/or the constant terms.

A good number to use for the scale marks is one that yields about 20 marks across the axis. For example if the WINDOW is $[-30,30]$ for an axis then a good scale value is $(30-(-30)) / 20$ or 3 .

Example 1 Graph the function $\mathrm{f}(x)=.2 x^{2}+\sqrt[3]{x}-32$.

Solution:

Method 1 Use the default setting and zoom out.

Method 2 Enter the function and evaluate the function for several values of x. (See Section B-5 on how to evaluate a function at given values of x.)

Method 3 Analyze the leading coefficient and constant terms.
Since the leading coefficient is .2 the first term will increase .2 units for each 1 unit x^{2} increases or 2 units for each 10 units x^{2} increases. This means that the first term will increase for every $\sqrt{10}$ (or about 3 units increase) in x. A first choice for the x axis limits can be found using:

$$
\frac{10 \times(\text { unit increase in } x)}{(\text { first term increase })}=\frac{10 \times 3}{2}=15
$$

A first choice for the scale on the x axis (having about 20 marks on the axis) can be found using $\frac{\text { Xmax }- \text { Xmin }}{20}=\frac{15-(-15)}{20}=1.5$ (round to 2). So the limits on the x axis could be $[-15,15] 2$.

A first choice for the y axis limits could be \pm (constant term). The scale for the y axis can be found using $\frac{\mathrm{Ymax}-\mathrm{Ymin}}{20}=\frac{32-(-32)}{20}=3.2$ (round to 4). So a first choice for the y axis limits could be $[-32,32] 4$. Hence a good first setting for the WINDOW is $[-15,15] 2$ by $[-32,32] 4$.

A good choice for the scale is so that about 20 marks appear along the axis. This is $\frac{x m a x-x m i n}{20}$ (rounded up to the next integer) for the x axis and $\frac{y \max -\mathrm{ymin}}{20}$ (rounded up to the next integer) for the y axis.

B-10 Piecewise-Defined Functions and Conditional Statements

There are two methods to graph piecewise-defined functions:

1. Graph each piece of the function separately as an entire function on the same coordinate axes. Use Trace and Zoom to locate the partition value on each of the graphs.
2. Store each piece of the function separately but include a conditional statement following the expression which will restrict the values of x at which the function will be graphed. Then graph all pieces on the same coordinate axes.

Example 1 Graph $\mathrm{f}(x)= \begin{cases}x^{2}+1 & x<1 \\ 3 x-5 & x \geq 1\end{cases}$

Solution:

Method 1

Method 2

B-11 Solving Equations in One Variable

There are four methods for approximating the solution of an equation:

1. Write the equation as an expression equal to zero. Graph $y=($ the expression). Find the x intercepts. These x values are the solution to the equation. This can be done using any of the methods described in Section B-8 of this document. The intersect feature can be used by storing 0 as y 2 . The solve(feature of the calculator is shown below.
2. Write the equation as an expression equal to zero. Graph $y=$ (the expression). Find the x intercepts. These x values are the solution to the equation. This can be done using any of the methods described in Section B-8 of this document. The intersect feature can be used by storing 0 as y 2 . The zeros((x intercept) feature of the calculator is shown below.
3. Graph $y 1=$ (left side of the equation) and $y 2=$ (right side of the equation) on the same coordinate axes. The x coordinate of the points of intersection are the solutions to the equation. The x coordinate of the point of intersection can be done using the solve(.
4. Graph $y=$ (left side of the equation) and $y=$ (right side of the equation) on the same coordinate axes. The x coordinate of the points of intersection are the solutions to the equation. The point of intersection can be done using the intersect feature of the calculator.

Example 1 Solve, to two decimal places, $\frac{3 x^{2}}{2}-5=\frac{2(x+3)}{3}$.

Solution:

Method 1 Using solve(

Keystrokes		Screen Display	Explanation
2nd	QUIT		Clear the Home
2nd	QUIT		Screen and change
F1	Tools		the number of decimal places to 2 .

CLEAR

3 :FIX 2

ENTER

F2 :Algebra 1
:solve(

) ENTER
\rightarrow ENTER

Method 2 Using zeros((x intercept)

Method 3 Using solve(

The approximate solutions to this equation are
-1.95 and 2.39 , rounded to two decimal places.

Method 4 Using Intersection
Graph $y=\frac{3 x^{2}}{2}-5$ and $y=\frac{2(x+3)}{3}$ on the same coordinate axes and find the x coordinate of their points of intersection.

Move the cursor to the left of the intersection point and press
ENTER to
select the Lower Bound for x.

Move the cursor to the right of the intersection point and press
ENTER to
select the Upper
Bound for x and
to get the
 intersection point.

The intersection point is (2.39, 3.60). Hence one solution to the equation is 2.39 .

Repeat to get the other intersection point.

The two solutions to the equation are 2.39 and 1.95. to two decimal place accuracy.

B-12 Solving Inequalities in One Variable

Two methods for approximating the solution of an inequality using graphing are:

1. Write the inequality with zero on one side of the inequality sign. Graph $y=($ the expression). Find the x intercepts. The solution will be an inequality with the x values (x intercepts) as the cut-off numbers. The points of intersection can be found using the solve(or zero(feature of the calculator. See Section B-11 of this document.
2. Graph $y=($ left side of the inequality) and $y=$ (right side of the inequality) on the same coordinate axes. The x coordinate of the points of intersection are the solutions to the equation. Identify which side of the x value satisfies the inequality by observing the graphs of the two functions.
The points of intersection can be found using solve(or using the intersect feature of the calculator.

Example 1 Approximate the solution to $\frac{3 x^{2}}{2}-5 \leq \frac{2(x+3)}{3}$. Use two decimal place accuracy.

Solution:

Method 1

Write the equation as $\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right) \leq 0$. Graph $y=\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right)$ and find the x intercepts. This was done in Section B-11, Example 1, Method 3 using zeros(of this document.

The x intercepts are -1.95 and 2.39. The solution to the inequality is the interval on x for which the graph is below the x axis. The solution is $-1.95 \leq x \leq 2.39$.

Method 2 Graph $y=\frac{3 x^{2}}{2}-5$ and $y=\frac{2(x+3)}{3}$ on the same coordinate axes and find the x coordinate of their points of intersection. See Section B-11, Example 1, Method 2 Using Intersection of this document. The x coordinate of the points of intersections are -1.95 and 2.39 . We see that the parabola is below the line for $-1.95 \leq x \leq 2.39$. Hence the inequality is satisfied for $-1.95 \leq x \leq 2.39$.

To test this inequality, choose -2 as a test value. Evaluating the original inequality using the calculator yields a "false" answer which means the inequality is not true for this value of x . (See Section B-6 of this document.) Repeat the testing using 0 and 3. We see that the inequality is true for $x=0$ and false for $x=3$. Hence the inequality is satisfied for $-1.95 \leq x \leq 2.39$.

B-13 Storing an Expression That Will Not Graph
Example 1 Store the expression $\mathrm{B}^{2}-4 \overline{\mathrm{AC}}$ so that it will not be graphed but so that it can be evaluated at any time. Evaluate, to three decimal places, this expression for $\mathrm{A}=3, \mathrm{~B}=2.58$, and $\mathrm{C}=\sqrt{3}$
Solution:

Keystrokes	
2nd QUIT	
F1 :Tools	
8 :Clear Home	
CLEAR	
MODE ∇	
- 4	4 :FIX

ENTER

A, C

2nd QUIT
CLEAR

Explanation Clear the Home Screen and change the number of decimal places to FIX 3.

Clear all expressions from the $\mathrm{Y}=$ list.

Select y4. Enter the expression.

Return to the Home Screen and clear the Entry Line.

Store the value of the variables.

Recall the function from the function list. The value of the expression is - 14.128 rounded to three decimal places.

B-14 Permutations and Combinations

Example 1 Find (A) $\mathrm{P}_{10,3}$ and (B) $\mathrm{C}_{12,4}$ or $\binom{12}{4}$.
Solution (A) and (B):
The quantity $\mathrm{P}_{10,3}$ can be found by using the definition $\frac{10 \text { ! }}{7!}$ or using the built-in function $\mathrm{nPr}($.
Similarly for $C_{12,4}$ or $\binom{12}{4}$.

B-15 Matrices

Example 1 Given the matrices

$$
A=\left[\begin{array}{rr}
1 & -2 \\
3 & 0 \\
5 & -8
\end{array}\right] \quad B=\left[\begin{array}{rrr}
2 & 1 & 5 \\
3 & 2 & -1 \\
0 & 8 & -3
\end{array}\right] \quad C=\left[\begin{array}{c}
1 \\
-5 \\
10
\end{array}\right]
$$

Find (A) -3BC
(B) B^{-1}
(C) A^{T}
(D) $\operatorname{det} \mathrm{B}$

Use three decimal place accuracy.
Solution (A):

Return to the Home Screen.

Get the matrix menu again and and repeat the procedure to enter matrices B and C.

Return to the home screen to do calculations.

Operations are entered as usual.

Solution (B):

Keystrokes	Screen Display	Explanation
2nd QUIT		Get the Home Screen and clear the Entry Line.
F1 :Tools		
8 :Clear Home	$\left[\frac{2}{135} \frac{43}{133} \quad-\frac{11}{135}\right.$	Notice the way inverses are found. The rest of the matrix can be seen using the right arrow keys. The solution is
CLEAR	- $\mathrm{b}^{-1} \quad \frac{9}{133}-\frac{6}{133} \quad \frac{17}{133}$	
$\triangle \mathrm{B} \triangle(-) \bigcirc 1)$	$\left[\begin{array}{ccc}134 \\ \frac{233}{} & -\frac{16}{133} & \frac{1}{133}\end{array}\right]$	
ENTER		
		The solution is given in pretty print form.
	- $\mathrm{b}^{-1} \quad \frac{9}{133}-\frac{6}{133} \frac{17}{133}$	Override the pretty print to get solution as 3 decimal places.
	$\left.\frac{24}{133}-\frac{16}{133} \frac{1}{133}\right]$	
\checkmark ENTER	$\square \mathrm{n}^{-1} \quad\left[\begin{array}{llll}.015 & .323 & -.083 \\ .068 & -.045 & .128\end{array}\right.$	
	. 180	
	$\mathrm{p}^{\text {A }}(-1)$	

Solution (C):

Solution (D):

The determinant of matrix B is 139.

Example 2 Find the reduced form of matrix $\left[\begin{array}{cccc}2 & 1 & 5 & 1 \\ 3 & 2 & -1 & -5 \\ 0 & 8 & -3 & 10\end{array}\right]$.

Solution:

There are two methods that can be used:

1. Use the row operations individually.
2. Use rref (from the MATH Matrix menu.

Method 1 Using row operations

Continue using row operations to arrive at the reduced form of

$$
\left[\begin{array}{cccc}
1.000 & 0.000 & 0.000 & -2.429 \\
0.000 & 1.000 & 0.000 & 1.571 \\
0.000 & 0.000 & 1.000 & 0.857
\end{array}\right]
$$

Thus the solution, to three decimal places, of the system of equations is $x=-2.429, y=1.571$, and $z=0.857$.

NOTE:

To swap rows of a matrix use 2nd MATH 4 :Matrix | D | :Row ops 1 :rowSwap(. |
| :--- | :--- | :--- | To swap rows 2 and 3 in matrix A use rowSwap(A,2,3).

To add one row to another use 2nd MATH 4 :Matrix	D	:Row ops 2 :rowAdd(.

To add rows 2 and 3 in matrix A and place the result in row 3 use rowAdd(A,2,3).

Method 2 Using rref(from the MATH Matrix menu
Enter the elements in the matrix as done in Method 1.

Explanation
Enter the matrix mode and enter the elements of the matrix.

If you already have a matrix A stored in the calculator, you will get an error message if you choose New. Choose Current instead and change the matrix elements as needed.

Hence if a system of equations is

$$
\begin{aligned}
2 x_{1}+x_{2}+5 x_{3} & =1 \\
3 x_{1}+2 x_{2}-x_{3} & =-5 \\
8 x_{2}-3 x_{3} & =10
\end{aligned}
$$

with augmented coefficient matrix

$$
\left[\begin{array}{cccc}
2 & 1 & 5 & 1 \\
3 & 2 & -1 & -5 \\
0 & 8 & -3 & 10
\end{array}\right]
$$

the solution, rounded to three decimal places, of the system of equations is

$$
\begin{aligned}
& x_{1}=-2.429 \\
& x_{2}=1.571 \\
& x_{3}=.857
\end{aligned}
$$

B-16 Graphing an Inequality

To graph an inequality:

- Change the inequality sign to an equals sign.
- Solve the equation for y.
- Enter this expression in the function list on the calculator. This is the boundary curve.
- Determine the half-plane by choosing a test point not on the boundary curve and substituting the test value into the original inequality. This can be done using paper and pencil.
- Graph the boundary curve using the appropriate shade option on the calculator to get a shaded graph.

Example 1 Graph $3 x+4 y \leq 12$.

Solution:

Changing the inequality sign to an equals sign yields $3 x+4 y=12$.
Solving this equation for y yields $y=(12-3 x) / 4$.
Determine the correct half-plane by substituting the point $(0,0)$ into the original inequality. We have $3(0)+4(0) \leq 12$, which is a true statement. Hence the point $(0,0)$ is in the solution set of the inequality. Since $(0,0)$ is in the lower half plane, the solution set is the lower half-plane plus the line.

F2 :Zoom
6 :ZoomStd

B-17 Exponential and Hyperbolic Functions

Example 1 Graph $y=10^{0.2 x}$

Solution:

Example 2 Graph $y=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$. [NOTE: This is the hyperbolic sine, $\sinh x$.]

Solution:

B-18 Scientific Notation, Significant Digits, and Fixed Number of Decimal Places

Example 1 Calculate, to ten decimal places, $\left(-8.513 \times 10^{-3}\right)\left(1.58235 \times 10^{2}\right)$. Enter numbers in scientific notation. Express your answer in scientific notation.

Solution:

Example 2 Set the scientific notation to six significant digits and calculate (351.892)(5.32815×10 ${ }^{-8}$).

Solution:

Example 3 Fix the number of decimal places at 2 and calculate the interest earned on \$53,218.00 in two years when invested at 5.21% simple interest.

Solution:

Keystrokes	Screen Display	Explanation
2nd QUIT		NORMAL notation with 2 fixed decimal points.
F1 :Tools 8		
:Clear Home		
CLEAR MODE		
$\nabla \square \square$		Return to the Home Screen.
3 :FIX 2		
$\nabla \nabla \square$	$\square 53218 \cdot .0521 \cdot 2$-5545.32	Only two decimal places are shown in the
1 :NORMAL	57218*-0521*2	
ENTER		The interest is \$5545.32.
$53218 \times .0521$		
$\times 2$ ENTER		

B-19 Angles and Trigonometric Functions

Example 1 Evaluate $f(x)=\sin x$ and $g(x)=\tan ^{-1} x$ at $x=\frac{5 \pi}{8}$. Use 10 significant digits.

Solution:

Example 2 Evaluate $f(x)=\csc x$ at $x=32^{\circ} 5^{\prime} 45^{\prime \prime}$. Express answer using 10 significant digits.
Solution:

Keystrokes	Screen Display	Explanation
2nd QUIT		Set the mode to Float 10.
F1 :Tools 8		Since the angle measure is given
:Clear Home		in degrees, set the
CLEAR		calculator for
MODE $\boldsymbol{\nabla} \boldsymbol{\square}$		before starting calculations.
\square		
O :FLOAT 10		
$\nabla \square$		
2 :DEGREE		
		Return to the
1 :NORMAL		Home Screen.
ENTER	$\square \frac{1}{\square}$	
$1 \div \operatorname{SIN} 32$	$\sin \left(32+5 / 60+\frac{45}{3600}\right)$ $\sin \left(\frac{7703}{240}\right)$	Use $\frac{1}{\sin x}$ to
$+ 5 \longdiv { \div }$	$\frac{1}{\sin \left(32+560+\frac{45}{3600}\right)}$ 1.892044822	Change the
$60+45 \div \div$	1/8in $32+5 / 60+45 / 360 日)$	minutes and
3600 ENTER	Wial	
\checkmark ENTER		while entering the angle measure.

Override the pretty print format to get the decimal approximation.

Example 3 Graph $f(x)=1.5 \sin 2 x$.
Solution:
Keystrokes

$\frac{\text { Explanation }}{\text { Set MODE to }}$
RADIAN
measure.

Clear all expressions stored in the $\mathrm{Y}=$
list.
Store $f(x)$ as y1.

Use the trigonometric option on the ZOOM menu to get tick marks set at radian measures on the horizontal axis since the angle measure is in radians.

Press
WINDOW
to see that the WINDOW dimensions are [-15.577..., 15.577...]1.571
by $[-4,4] .5$ with xres=2.

Example 4 Graph $g(x)=3 \tan ^{-1}(.2 x)$.

Solution:

B-20 Polar Coordinates and Polar Graphs

Example 1 Change the rectangular coordinates $(-\sqrt{3}, 5)$ to polar form with $r \geq 0$ and $0 \leq \theta \leq 2 \pi$.

Solution:

Keystrokes	Screen Display	Explanation
2nd QUIT		Return to the Home Screen and
F1 :Tools 8		clear.
:Clear Home		
CLEAR		
2nd MATH		Get the Angle option from the
2 :Angle		MATH menu.
		Get the Angle menu. Choose rectangular to polar conversion that displays the r value.
5 : $\mathrm{R} \bullet \mathrm{Pr}($		
	1: HLmbarr	
	ZEFriale	
	3: ist	
	4: 5 ¢omple	
	g:Totemity	
	E: Hepring ic	
	Finlel	

The polar coordinates, to two decimal places, are $(5.29,1.90)$.

Example 2 Change the polar coordinates $(5, \pi / 7)$ to rectangular coordinates.

Solution:

The rectangular coordinates are $(4.50,2.17)$ to two decimal places.
$\underline{\text { Example } 3}$ Find the value of r for $r=5-5 \sin \theta$ at $\theta=\frac{\pi}{7}$.
Solution:

Example 4 Graph $r=5-5 \sin \theta$
Polar equations can be graphed by using the polar graphing mode of the calculator.
Solution:

:ZoomStd

F2 :Zoom 5 :ZoomSqr

WINDOW

Graph using the ZoomStd window dimensions.

The graph on the standard screen is slightly distorted since the scale marks on the y axis are closer together than the scale marks on the x axis. The ZoomSqr option on the Zoom menu makes the scale marks the same distance apart on both axes.

Press

