Inthis section

- Adding and Subtracting Radicals
- Multiplying Radicals
- Conjugates

9.3 OPERATIONS WITH RADICALS

In this section we will use the ideas of Section 9.1 in performing arithmetic operations with radical expressions.

Adding and Subtracting Radicals

To find the sum of $\sqrt{2}$ and $\sqrt{3}$, we can use a calculator to get $\sqrt{2} \approx 1.414$ and $\sqrt{3} \approx 1.732$. (The symbol \approx means "is approximately equal to.") We can then add the decimal numbers and get

$$
\sqrt{2}+\sqrt{3} \approx 1.414+1.732=3.146
$$

We cannot write an exact decimal form for $\sqrt{2}+\sqrt{3}$; the number 3.146 is an approximation of $\sqrt{2}+\sqrt{3}$. To represent the exact value of $\sqrt{2}+\sqrt{3}$, we just use the form $\sqrt{2}+\sqrt{3}$. This form cannot be simplified any further. However, a sum of like radicals can be simplified. Like radicals are radicals that have the same index and the same radicand.

To simplify the sum $3 \sqrt{2}+5 \sqrt{2}$, we can use the fact that $3 x+5 x=8 x$ is true for any value of x. Substituting $\sqrt{2}$ for x gives us $3 \sqrt{2}+5 \sqrt{2}=8 \sqrt{2}$. So like radicals can be combined just as like terms are combined.

E X A M P L E 1 Adding and subtracting like radicals

Simplify the following expressions. Assume the variables represent positive numbers.
a) $3 \sqrt{5}+4 \sqrt{5}$
b) $\sqrt[4]{w}-6 \sqrt[4]{w}$
c) $\sqrt{3}+\sqrt{5}-4 \sqrt{3}+6 \sqrt{5}$
d) $3 \sqrt[3]{6 x}+2 \sqrt[3]{x}+\sqrt[3]{6 x}+\sqrt[3]{x}$

Solution

a) $3 \sqrt{5}+4 \sqrt{5}=7 \sqrt{5}$
b) $\sqrt[4]{w}-6 \sqrt[4]{w}=-5 \sqrt[4]{w}$
c) $\sqrt{3}+\sqrt{5}-4 \sqrt{3}+6 \sqrt{5}=-3 \sqrt{3}+7 \sqrt{5}$
d) $3 \sqrt[3]{6 x}+2 \sqrt[3]{x}+\sqrt[3]{6 x}+\sqrt[3]{x}=4 \sqrt[3]{6 x}+3 \sqrt[3]{x}$ Only like radicals are combined.

Remember that only radicals with the same index and same radicand can be combined by addition or subtraction. If the radicals are not in simplified form, then they must be simplified before you can determine whether they can be combined.

EXAMPLE2 Simplifying radicals before combining
Perform the indicated operations. Assume the variables represent positive numbers.
a) $\sqrt{8}+\sqrt{18}$
b) $\sqrt{\frac{1}{5}}+\sqrt{20}$
c) $\sqrt{2 x^{3}}-\sqrt{4 x^{2}}+5 \sqrt{18 x^{3}}$
d) $\sqrt[3]{16 x^{4} y^{3}}-\sqrt[3]{54 x^{4} y^{3}}$

Solution

a) $\sqrt{8}+\sqrt{18}=\sqrt{4} \cdot \sqrt{2}+\sqrt{9} \cdot \sqrt{2}$

$$
\begin{array}{ll}
=2 \sqrt{2}+3 \sqrt{2} & \text { Simplify each radical. } \\
=5 \sqrt{2} & \text { Add like radicals. }
\end{array}
$$

Note that $\sqrt{8}+\sqrt{18} \neq \sqrt{26}$.

b) $\sqrt{\frac{1}{5}}+\sqrt{20}=\frac{\sqrt{5}}{5}+2 \sqrt{5} \quad$ Because $\sqrt{\frac{1}{5}}=\frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{5}}{5}$ and $\sqrt{20}=2 \sqrt{5}$ $=\frac{\sqrt{5}}{5}+\frac{10 \sqrt{5}}{5}$ Use the LCD of 5 . $=\frac{11 \sqrt{5}}{5}$
c) $\sqrt{2 x^{3}}-\sqrt{4 x^{2}}+5 \sqrt{18 x^{3}}=\sqrt{x^{2}} \cdot \sqrt{2 x}-2 x+5 \cdot \sqrt{9 x^{2}} \cdot \sqrt{2 x}$

$$
\begin{array}{ll}
=x \sqrt{2 x}-2 x+15 x \sqrt{2 x} & \text { Simplify each radical. } \\
=16 x \sqrt{2 x}-2 x & \text { Add like radicals only. }
\end{array}
$$

d) $\sqrt[3]{16 x^{4} y^{3}}-\sqrt[3]{54 x^{4} y^{3}}=\sqrt[3]{8 x^{3} y^{3}} \cdot \sqrt[3]{2 x}-\sqrt[3]{27 x^{3} y^{3}} \cdot \sqrt[3]{2 x}$

$$
\begin{aligned}
& =2 x y \sqrt[3]{2 x}-3 x y \sqrt[3]{2 x} \quad \text { Simplify each radical. } \\
& =-x y \sqrt[3]{2 x}
\end{aligned}
$$

Multiplying Radicals

We have already multiplied radicals in Section 9.2, when we rationalized denominators. The product rule for radicals, $\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}$, allows multiplication of radicals with the same index, such as

$$
\sqrt{5} \cdot \sqrt{3}=\sqrt{15}, \quad \sqrt[3]{2} \cdot \sqrt[3]{5}=\sqrt[3]{10}, \quad \text { and } \quad \sqrt[5]{x^{2}} \cdot \sqrt[5]{x}=\sqrt[5]{x^{3}}
$$

CAUTION The product rule does not allow multiplication of radicals that have different indices. We cannot use the product rule to multiply $\sqrt{2}$ and $\sqrt[3]{5}$.

EXAMPLE3

helpful/hint

Students often write

$$
\sqrt{15} \cdot \sqrt{15}=\sqrt{225}=15
$$

Although this is correct, you should get used to the idea that

$$
\sqrt{15} \cdot \sqrt{15}=15
$$

Because of the definition of a square root, $\sqrt{a} \cdot \sqrt{a}=a$ for any positive number a.

Multiplying radicals with the same index
Multiply and simplify the following expressions. Assume the variables represent positive numbers.
a) $5 \sqrt{6} \cdot 4 \sqrt{3}$
b) $\sqrt{3 a^{2}} \cdot \sqrt{6 a}$
c) $\sqrt[3]{4} \cdot \sqrt[3]{4}$
d) $\sqrt[4]{\frac{x^{3}}{2}} \cdot \sqrt[4]{\frac{x^{2}}{4}}$

Solution

a) $5 \sqrt{6} \cdot 4 \sqrt{3}=5 \cdot 4 \cdot \sqrt{6} \cdot \sqrt{3}$

$$
\begin{array}{ll}
=20 \sqrt{18} & \text { Product rule for radicals } \\
=20 \cdot 3 \sqrt{2} & \sqrt{18}=\sqrt{9} \cdot \sqrt{2}=3 \sqrt{2} \\
=60 \sqrt{2} &
\end{array}
$$

b) $\sqrt{3 a^{2}} \cdot \sqrt{6 a}=\sqrt{18 a^{3}} \quad$ Product rule for radicals

$$
\begin{aligned}
& =\sqrt{9 a^{2}} \cdot \sqrt{2 a} \\
& =3 a \sqrt{2 a} \quad \text { Simplify }
\end{aligned}
$$

c) $\sqrt[3]{4} \cdot \sqrt[3]{4}=\sqrt[3]{16}$

$$
\begin{aligned}
& =\sqrt[3]{8} \cdot \sqrt[3]{2} \quad \text { Simplify } \\
& =2 \sqrt[3]{2}
\end{aligned}
$$

d) $\sqrt[4]{\frac{x^{3}}{2}} \cdot \sqrt[4]{\frac{x^{2}}{4}}=\sqrt[4]{\frac{x^{5}}{8}} \quad$ Product rule for radicals

$$
\begin{aligned}
& =\frac{\sqrt[4]{x^{4}} \cdot \sqrt[4]{x}}{\sqrt[4]{8}} \quad \text { Simplify } \\
& =\frac{x \sqrt[4]{x}}{\sqrt[4]{8}} \\
& =\frac{x \sqrt[4]{x} \cdot \sqrt[4]{2}}{\sqrt[4]{8} \cdot \sqrt[4]{2}} \quad \text { Rationalize the denominator. } \\
& =\frac{x \sqrt[4]{2 x}}{2} \quad \sqrt[4]{8} \cdot \sqrt[4]{2}=\sqrt[4]{16}=2
\end{aligned}
$$

We find a product such as $3 \sqrt{2}(4 \sqrt{2}-\sqrt{3})$ by using the distributive property as we do when multiplying a monomial and a binomial. A product such as $(2 \sqrt{3}+\sqrt{5})(3 \sqrt{3}-2 \sqrt{5})$ can be found by using FOIL as we do for the product of two binomials.

E X A M P L E 4 Multiplying radicals

Multiply and simplify.
a) $3 \sqrt{2}(4 \sqrt{2}-\sqrt{3})$
b) $\sqrt[3]{a}\left(\sqrt[3]{a}-\sqrt[3]{a^{2}}\right)$
c) $(2 \sqrt{3}+\sqrt{5})(3 \sqrt{3}-2 \sqrt{5})$
d) $(3+\sqrt{x-9})^{2}$

Solution

a) $3 \sqrt{2}(4 \sqrt{2}-\sqrt{3})=3 \sqrt{2} \cdot 4 \sqrt{2}-3 \sqrt{2} \cdot \sqrt{3}$

$$
=12 \cdot 2-3 \sqrt{6} \quad \begin{array}{ll}
\text { Because } \sqrt{2} \cdot \sqrt{2}=2 \\
& \text { and } \sqrt{2} \cdot \sqrt{3}=\sqrt{6}
\end{array}
$$

$$
=24-3 \sqrt{6}
$$

b) $\sqrt[3]{a}\left(\sqrt[3]{a}-\sqrt[3]{a^{2}}\right)=\sqrt[3]{a^{2}}-\sqrt[3]{a^{3}} \quad$ Distributive property

$$
=\sqrt[3]{a^{2}}-a
$$

c) $(2 \sqrt{3}+\sqrt{5})(3 \sqrt{3}-2 \sqrt{5})$

$$
\begin{aligned}
& =\overbrace{2 \sqrt{3} \cdot 3 \sqrt{3}}^{\mathrm{F}}-\overbrace{2 \sqrt{3} \cdot 2 \sqrt{5}}^{\mathrm{O}}+\overbrace{\sqrt{5} \cdot 3 \sqrt{3}}^{\mathrm{I}}-\overbrace{\sqrt{5} \cdot 2 \sqrt{5}}^{\mathrm{L}} \\
& =18-4 \sqrt{15}+3 \sqrt{15}-10 \\
& =8-\sqrt{15} \text { Combine like radicals. }
\end{aligned}
$$

d) To square a sum, we use $(a+b)^{2}=a^{2}+2 a b+b^{2}$:

$$
\begin{aligned}
(3+\sqrt{x-9})^{2} & =3^{2}+2 \cdot 3 \sqrt{x-9}+(\sqrt{x-9})^{2} \\
& =9+6 \sqrt{x-9}+x-9 \\
& =x+6 \sqrt{x-9}
\end{aligned}
$$

In the next example we multiply radicals that have different indices.

EXAMPLE 5

calculator
(v) 4 (5) 6
close-up
Check that
$\sqrt[3]{2} \cdot \sqrt[4]{2}=\sqrt[12]{128}$

helpfulhint
The word "conjugate" is used in many contexts in mathematics. According to the dictionary, conjugate means joined together, especially as in a pair.

Multiplying radicals with different indices
Write each product as a single radical expression.
a) $\sqrt[3]{2} \cdot \sqrt[4]{2}$
b) $\sqrt[3]{2} \cdot \sqrt{3}$

Solution

$$
\begin{aligned}
& \text { a) } \sqrt[3]{2} \cdot \sqrt[4]{2}=2^{1 / 3} \cdot 2^{1 / 4} \quad \text { Write in exponential notation. } \\
& =2^{7 / 12} \quad \text { Product rule for exponents: } \frac{1}{3}+\frac{1}{4}=\frac{7}{12} \\
& =\sqrt[12]{2^{7}} \quad \text { Write in radical notation } \\
& =\sqrt[12]{128} \\
& \text { b) } \sqrt[3]{2} \cdot \sqrt{3}=2^{1 / 3} \cdot 3^{1 / 2} \\
& =2^{2 / 6} \cdot 3^{3 / 6} \quad \text { Write the exponents with the LCD of } 6 \text {. } \\
& =\sqrt[6]{2^{2}} \cdot \sqrt[6]{3^{3}} \quad \text { Write in radical notation. } \\
& =\sqrt[6]{2^{2} \cdot 3^{3}} \quad \text { Product rule for radicals } \\
& =\sqrt[6]{108} \quad 2^{2} \cdot 3^{3}=4 \cdot 27=108
\end{aligned}
$$

CAUTION Because the bases in $2^{1 / 3} \cdot 2^{1 / 4}$ are identical, we can add the exponents [Example 5(a)]. Because the bases in $2^{2 / 6} \cdot 3^{3 / 6}$ are not the same, we cannot add the exponents [Example 5(b)]. Instead, we write each factor as a sixth root and use the product rule for radicals.

Conjugates

Recall the special product rule $(a+b)(a-b)=a^{2}-b^{2}$. The product of the sum $4+\sqrt{3}$ and the difference $4-\sqrt{3}$ can be found by using this rule:

$$
(4+\sqrt{3})(4-\sqrt{3})=4^{2}-(\sqrt{3})^{2}=16-3=13
$$

The product of the irrational number $4+\sqrt{3}$ and the irrational number $4-\sqrt{3}$ is the rational number 13. For this reason the expressions $4+\sqrt{3}$ and $4-\sqrt{3}$ are called conjugates of one another. We will use conjugates in Section 9.4 to rationalize some denominators.

E X A M P L E 6 Multiplying conjugates

Find the products. Assume the variables represent positive real numbers.
a) $(2+3 \sqrt{5})(2-3 \sqrt{5})$
b) $(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})$
c) $(\sqrt{2 x}-\sqrt{y})(\sqrt{2 x}+\sqrt{y})$

Solution

a) $(2+3 \sqrt{5})(2-3 \sqrt{5})=2^{2}-(3 \sqrt{5})^{2} \quad(a+b)(a-b)=a^{2}-b^{2}$

$$
=4-45 \quad(3 \sqrt{5})^{2}=9 \cdot 5=45
$$

$$
=-41
$$

b) $(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})=3-2$

$$
=1
$$

c) $(\sqrt{2 x}-\sqrt{y})(\sqrt{2 x}+\sqrt{y})=2 x-y$

WARM-UPS

True or false? Explain your answer.

1. $\sqrt{3}+\sqrt{3}=\sqrt{6}$
2. $\sqrt{8}+\sqrt{2}=3 \sqrt{2}$
3. $2 \sqrt{3} \cdot 3 \sqrt{3}=6 \sqrt{3}$
4. $\sqrt[3]{2} \cdot \sqrt[3]{2}=2$
5. $2 \sqrt{5} \cdot 3 \sqrt{2}=6 \sqrt{10}$
6. $2 \sqrt{5}+3 \sqrt{5}=5 \sqrt{10}$
7. $\sqrt{2}(\sqrt{3}-\sqrt{2})=\sqrt{6}-2$
8. $\sqrt{12}=2 \sqrt{6}$
9. $(\sqrt{2}+\sqrt{3})^{2}=2+3$
10. $(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})=1$

9.3 EXERCISES

Reading and Writing After reading this section, write out the answers to these questions. Use complete sentences.

1. What are like radicals?
2. How do we combine like radicals?
3. Does the product rule allow multiplication of unlike radicals?
4. How do we multiply radicals of different indices?

All variables in the following exercises represent positive numbers.
Simplify the sums and differences. Give exact answers. See Example 1.
5. $\sqrt{3}-2 \sqrt{3}$
6. $\sqrt{5}-3 \sqrt{5}$
7. $5 \sqrt{7 x}+4 \sqrt{7 x}$
8. $3 \sqrt{6 a}+7 \sqrt{6 a}$
9. $2 \sqrt[3]{2}+3 \sqrt[3]{2}$
10. $\sqrt[3]{4}+4 \sqrt[3]{4}$
11. $\sqrt{3}-\sqrt{5}+3 \sqrt{3}-\sqrt{5}$
12. $\sqrt{2}-5 \sqrt{3}-7 \sqrt{2}+9 \sqrt{3}$
13. $\sqrt[3]{2}+\sqrt[3]{x}-\sqrt[3]{2}+4 \sqrt[3]{x}$
14. $\sqrt[3]{5 y}-4 \sqrt[3]{5 y}+\sqrt[3]{x}+\sqrt[3]{x}$
15. $\sqrt[3]{x}-\sqrt{2 x}+\sqrt[3]{x}$
16. $\sqrt[3]{a b}+\sqrt{a}+5 \sqrt{a}+\sqrt[3]{a b}$

Simplify each expression. Give exact answers. See Example 2.
17. $\sqrt{8}+\sqrt{28}$
18. $\sqrt{12}+\sqrt{24}$
19. $\sqrt{8}+\sqrt{18}$
20. $\sqrt{12}+\sqrt{27}$
21. $\sqrt{45}-\sqrt{20}$
22. $\sqrt{50}-\sqrt{32}$
23. $\sqrt{2}-\sqrt{8}$
24. $\sqrt{20}-\sqrt{125}$
25. $\frac{\sqrt{2}}{2}+\sqrt{2}$
26. $\frac{\sqrt{3}}{3}-\sqrt{3}$
27. $\sqrt{80}+\sqrt{\frac{1}{5}}$
28. $\sqrt{32}+\sqrt{\frac{1}{2}}$
29. $\sqrt{45 x^{3}}-\sqrt{18 x^{2}}+\sqrt{50 x^{2}}-\sqrt{20 x^{3}}$
30. $\sqrt{12 x^{5}}-\sqrt{18 x}-\sqrt{300 x^{5}}+\sqrt{98 x}$
31. $\sqrt[3]{24}+\sqrt[3]{81}$
32. $\sqrt[3]{24}+\sqrt[3]{375}$
33. $\sqrt[4]{48}-\sqrt[4]{243}$
34. $\sqrt[5]{64}+\sqrt[5]{2}$
35. $\sqrt[3]{54 t^{4} y^{3}}-\sqrt[3]{16 t^{4} y^{3}}$
36. $\sqrt[3]{2000 w^{2} z^{5}}-\sqrt[3]{16 w^{2} z^{5}}$

Simplify the products. Give exact answers. See Examples 3 and 4.
37. $\sqrt{3} \cdot \sqrt{5}$
38. $\sqrt{5} \cdot \sqrt{7}$
39. $2 \sqrt{5} \cdot 3 \sqrt{10}$
40. $(3 \sqrt{2})(-4 \sqrt{10})$
41. $2 \sqrt{7 a} \cdot 3 \sqrt{2 a}$
42. $2 \sqrt{5 c} \cdot 5 \sqrt{5}$
43. $\sqrt[4]{9} \cdot \sqrt[4]{27}$
44. $\sqrt[3]{5} \cdot \sqrt[3]{100}$
45. $(2 \sqrt{3})^{2}$
46. $(-4 \sqrt{2})^{2}$
47. $\sqrt[3]{\frac{4 x^{2}}{3}} \cdot \sqrt[3]{\frac{2 x^{2}}{3}}$
48. $\sqrt[4]{\frac{4 x^{2}}{5}} \cdot \sqrt[4]{\frac{4 x^{3}}{25}}$
49. $2 \sqrt{3}(\sqrt{6}+3 \sqrt{3})$
50. $2 \sqrt{5}(\sqrt{3}+3 \sqrt{5})$
51. $\sqrt{5}(\sqrt{10}-2)$
52. $\sqrt{6}(\sqrt{15}-1)$
53. $\sqrt[3]{3 t}\left(\sqrt[3]{9 t}-\sqrt[3]{t^{2}}\right)$
54. $\sqrt[3]{2}(\sqrt[3]{12 x}-\sqrt[3]{2 x})$
55. $(\sqrt{3}+2)(\sqrt{3}-5)$
56. $(\sqrt{5}+2)(\sqrt{5}-6)$
57. $(\sqrt{11}-3)(\sqrt{11}+3)$
58. $(\sqrt{2}+5)(\sqrt{2}+5)$
59. $(2 \sqrt{5}-7)(2 \sqrt{5}+4)$
60. $(2 \sqrt{6}-3)(2 \sqrt{6}+4)$
61. $(2 \sqrt{3}-\sqrt{6})(\sqrt{3}+2 \sqrt{6})$
62. $(3 \sqrt{3}-\sqrt{2})(\sqrt{2}+\sqrt{3})$

Write each product as a single radical expression. See Example 5.
63. $\sqrt[3]{3} \cdot \sqrt{3}$
64. $\sqrt{3} \cdot \sqrt[4]{3}$
65. $\sqrt[3]{5} \cdot \sqrt[4]{5}$
66. $\sqrt[3]{2} \cdot \sqrt[5]{2}$
67. $\sqrt[3]{2} \cdot \sqrt{5}$
68. $\sqrt{6} \cdot \sqrt[3]{2}$
69. $\sqrt[3]{2} \cdot \sqrt[4]{3}$
70. $\sqrt[3]{3} \cdot \sqrt[4]{2}$

Find the product of each pair of conjugates. See Example 6.
71. $(\sqrt{3}-2)(\sqrt{3}+2)$
72. $(7-\sqrt{3})(7+\sqrt{3})$
73. $(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})$
74. $(\sqrt{6}+\sqrt{5})(\sqrt{6}-\sqrt{5})$
75. $(2 \sqrt{5}+1)(2 \sqrt{5}-1)$
76. $(3 \sqrt{2}-4)(3 \sqrt{2}+4)$
77. $(3 \sqrt{2}+\sqrt{5})(3 \sqrt{2}-\sqrt{5})$
78. $(2 \sqrt{3}-\sqrt{7})(2 \sqrt{3}+\sqrt{7})$
79. $(5-3 \sqrt{x})(5+3 \sqrt{x})$
80. $(4 \sqrt{y}+3 \sqrt{z})(4 \sqrt{y}-3 \sqrt{z})$

Simplify each expression.
81. $\sqrt{300}+\sqrt{3}$
82. $\sqrt{50}+\sqrt{2}$
83. $2 \sqrt{5} \cdot 5 \sqrt{6}$
84. $3 \sqrt{6} \cdot 5 \sqrt{10}$
85. $(3+2 \sqrt{7})(\sqrt{7}-2)$
86. $(2+\sqrt{7})(\sqrt{7}-2)$
87. $4 \sqrt{w} \cdot 4 \sqrt{w}$
88. $3 \sqrt{m} \cdot 5 \sqrt{m}$
89. $\sqrt{3 x^{3}} \cdot \sqrt{6 x^{2}}$
90. $\sqrt{2 t^{5}} \cdot \sqrt{10 t^{4}}$
91. $\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{8}}+\frac{1}{\sqrt{18}}$
92. $\frac{1}{\sqrt{3}}+\sqrt{\frac{1}{3}}-\sqrt{3}$
93. $(2 \sqrt{5}+\sqrt{2})(3 \sqrt{5}-\sqrt{2})$
94. $(3 \sqrt{2}-\sqrt{3})(2 \sqrt{2}+3 \sqrt{3})$
95. $\frac{\sqrt{2}}{3}+\frac{\sqrt{2}}{5}$
96. $\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{5}$
97. $(5+2 \sqrt{2})(5-2 \sqrt{2})$
98. $(3-2 \sqrt{7})(3+2 \sqrt{7})$
99. $(3+\sqrt{x})^{2}$
100. $(1-\sqrt{x})^{2}$
101. $(5 \sqrt{x}-3)^{2}$
102. $(3 \sqrt{a}+2)^{2}$
103. $(1+\sqrt{x+2})^{2}$
104. $(\sqrt{x-1}+1)^{2}$
105. $\sqrt{4 w}-\sqrt{9 w}$
106. $10 \sqrt{m}-\sqrt{16 m}$
107. $2 \sqrt{a^{3}}+3 \sqrt{a^{3}}-2 a \sqrt{4 a}$
108. $5 \sqrt{w^{2} y}-7 \sqrt{w^{2} y}+6 \sqrt{w^{2} y}$
109. $\sqrt{x^{5}}+2 x \sqrt{x^{3}}$
110. $\sqrt{8 x^{3}}+\sqrt{50 x^{3}}-x \sqrt{2 x}$
111. $\sqrt[3]{-16 x^{4}}+5 x \sqrt[3]{54 x}$
112. $\sqrt[3]{3 x^{5} y^{7}}-\sqrt[3]{24 x^{5} y^{7}}$
113. $\sqrt[3]{\frac{y^{7}}{4 x}}$
114. $\sqrt[4]{\frac{16}{9 z^{3}}}$
115. $\sqrt[3]{\frac{x}{5}} \cdot \sqrt[3]{\frac{x^{5}}{5}}$
116. $\sqrt[4]{a^{3}}\left(\sqrt[4]{a}-\sqrt[4]{a^{5}}\right)$
117. $\sqrt[3]{2 x} \cdot \sqrt{2 x}$
118. $\sqrt[3]{2 m} \cdot \sqrt[4]{2 n}$

In Exercises 119-122, solve each problem.
119. Area of a rectangle. Find the exact area of a rectangle that has a length of $\sqrt{6}$ feet and a width of $\sqrt{3}$ feet.
120. Volume of a cube. Find the exact volume of a cube with sides of length $\sqrt{3}$ meters.

FIGUREFOREXERCISE 120
121. Area of a trapezoid. Find the exact area of a trapezoid with a height of $\sqrt{6}$ feet and bases of $\sqrt{3}$ feet and $\sqrt{12}$ feet.
122. Area of a triangle. Find the exact area of a triangle

FIGUREFOR EXERCISE 121

FIGURE FOR EXERCISE 122

GETTING MORE INVOLVED

123. Discussion. Is $\sqrt{a}+\sqrt{b}=\sqrt{a+b}$ for all values of a and b ?
124. Discussion. Which of the following equations are
125. Discussion. Which of the follo
identities? Explain your answers.
a) $\sqrt{9 x}=3 \sqrt{x}$
b) $\sqrt{9+x}=3+\sqrt{x}$
c) $\sqrt{x-4}=\sqrt{x}-2$
d) $\sqrt{\frac{x}{4}}=\frac{\sqrt{x}}{2}$

with a base of $\sqrt{30}$ meters and a height of $\sqrt{6}$ meters.

Q. 125. Exploration. Because 3 is the square of $\sqrt{3}$, a binomial such as $y^{2}-3$ is a difference of two squares.
a) Factor $y^{2}-3$ and $2 a^{2}-7$ using radicals.
b) Use factoring with radicals to solve the equations $x^{2}-8=0$ and $3 y^{2}-11=0$.
c) Assuming a and b are positive real numbers, solve the equations $x^{2}-a=0$ and $a x^{2}-b=0$.

9.4 MORE OPERATIONS WITH RADICALS

Inthis

section

- Dividing Radicals
- Rationalizing the Denominator
- Powers of Radical Expressions

In this section you will continue studying operations with radicals. We learn to rationalize some denominators that are different from those rationalized in Section 9.2.

Dividing Radicals

In Section 9.3 you learned how to add, subtract, and multiply radical expressions. To divide two radical expressions, simply write the quotient as a ratio and then simplify, as we did in Section 9.2. In general, we have

$$
\sqrt[n]{a} \div \sqrt[n]{b}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}
$$

provided that all expressions represent real numbers. Note that the quotient rule is applied only to radicals that have the same index.

