TI-83 Plus GRAPHING CALCULATOR BASIC OPERATIONS

Carolyn Meitler
Concordia University Wisconsin

Contents

B-1 Getting Started 1
B-2 Special Keys, Home Screen and Menus 2
B-3 Correcting Errors 4
B-4 Calculation 5
B-5 Evaluation of an Algebraic Expression 6
B-6 Testing Inequalities in One Variable 10
B-7 Graphing, the ZStandard Graphing screen, and Style of Graph 11
B-8 TRACE, ZOOM, WINDOW, Zero, Intersect and Solver 13
B-9 Determining the WINDOW Dimensions and Scale Marks 21
B-10 Piecewise-Defined Functions 23
B-11 Solving Equations in One Variable 24
B-12 Solving Inequalities in One Variable 27
B-13 Storing an Expression That Will Not Graph 28
B-14 Permutations and Combinations 29
B-15 Matrices 30
B-16 Graphing an Inequality 35
B-17 Exponential and Hyperbolic Functions 36
B-18 Scientific Notation, Significant Digits, and Fixed Number of Decimal Places 37
B-19 Angles and Trigonometric Functions 39
B-20 Polar Coordinates and Polar Graphs 41

TI-83 Plus GRAPHING CALCULATOR
 BASIC OPERATIONS

by

Carolyn Meitler Concordia University Wisconsin

B-1 Getting Started

Press O ON to turn on the calculator.
Press 2 nd to get the MEMORY screen (shown at the right).
Use the down arrow ∇ to choose 7 :Reset...
and press ENTER.

The display now shows the RAM menu (second screen shown at the right).
Use the right arrow to select ALL. Press 1 :All Memory... .

A third menu is displayed as shown at the right. Use the down arrow ∇ to choose 2: Reset and press ENTER.

The screen should now indicate that the Mem is cleared.

However, the screen may look blank. This is because the contrast setting may also have been reset and now needs to be adjusted.
Press 2 nd and then hold the $\boldsymbol{u}^{\boldsymbol{n}}$ down until you see Defaults set in the middle of the screen. Now the contrast will be dark enough for you to see the screen display.

Press 2 nd to make the display darker.
Press $2 \mathrm{nd} \boldsymbol{\nabla}$ to make the display lighter.

To check the battery power, press 2 nd and note the number that will appear in the upper right corner of the screen. If it is an 8 or 9 , you should replace your batteries. The highest number is 9 .

Press CLEAR to clear the screen.
Press 2nd OFF to turn off the calculator.

B-2 Special Keys, Home Screen and Menus

2nd

This key must be pressed to access the operation above and to the left of a key. These operations are a yellow color on the face of the calculator. A flashing up arrow arrow \uparrow is displayed as the cursor on the screen after 2 nd key is pressed.

In this document, the functions on the face of the calculator above a key will be referred to in square boxes just as if the function was printed on the key cap. For example, ANS is the function above the (-) key.

ALPHA
This key must be pressed first to access the operation above and to the right of a key. A flashing \mathbb{A} is displayed as the cursor on the screen after the ALPHA key is pressed.

A-LOCK

2nd A-LOCK locks the calculator into alpha mode. The calculator will remain in alpha mode until the ALPHA is pressed again.

MODE

Press MODE. The highlighted items are active. Select the item you wish using the arrow keys.
Press ENTER to activate the selection.

Normal Sci Eng	Type of notation for display of numbers.	Float 0123456789
Number of decimal places displayed.	Type of angle measure.	
Radian Degree		
Func Par Pol Seq	Function or parametric graphing.	
Connected Dot	Connected/not connected plotted points on graphs.	Sequential Simul
Graphs functions separately or all at once.		

Real a+bi re ${ }^{\wedge} \theta \mathrm{i} \quad$ Allows number to be entered in rectangular
complex mode or polar complex mode.
Full Horiz G-T Allows a full screen or split screen to be used.

Home Screen

The screen on which calculations are done and commands are entered is called the Home Screen.
You can always get to this screen (aborting any calculations in progress) by pressing QUIT
2nd MODE . From here on, this will be referred to as 2nd QUIT in this manual.

Menus
The TI-83+ Graphics calculator uses menus for selection of specific functions. The items on the menus are identified by numbers followed by a colon. There are two ways to choose menu items:

1. Using the arrow keys to9n pressing ENTER.
2. Pressing the number corresponding to the menu item.

In this document the menu items will be referred to using the key to be pressed followed by the meaning of the menu. For example, on the ZOOM menu, 1 :ZBox refers to the first menu item.

B-3 Correcting Errors

It is easy to correct errors on the screen when entering data into the calculator. To do so use the arrow keys, DEL, and INS keys.

4 or \square	Moves the cursor to the left or right one position.
-	Moves the cursor up one line or replays the last executed input.
∇	Moves the cursor down one line.
DEL	Deletes one or more characters at the cursor position.
2nd INS	Inserts one or more characters at the cursor position.

B-4 Calculation

Example 1 Calculate $-8+9^{2}-\left|\frac{3}{\sqrt{2}}-5\right|$.
Turn the calculator on and press 2nd QUIT to return to the Home Screen. Press CLEAR to clear the Home Screen. Now we are ready to do a new calculation.

Numbers and characters are entered in the same order as you would read an expression. Do not press ENTER unless specifically instructed to do so in these examples. Keystrokes are written in a column but you should enter all the keystrokes without pressing the ENTER key until ENTER is displayed in the example.

Solution:

Keystrokes	Screen Display	Explanation
2nd QUIT CLEAR $(-)$ 8 +9 \wedge	-8+9*2-	It is a good idea to clear the screen before starting a calculation.
MATH \square		Watch for parentheses that are entered automatically with the operation.
$\begin{aligned} & 1 \text { 1 } \operatorname{abs}(\boxed{3} \div \\ & \text { 2nd } \sqrt{ } \sqrt{2}, \end{aligned}$		
$\square 505$ ENTER	$\left\lvert\, \begin{array}{r} 8-5 \% 2-a b c 3 \sqrt{2} \\ 70.12132034 \end{array}\right.$	

B-5 Evaluation of an Algebraic Expression

Example 1 Evaluate $\frac{x^{4}-3 a}{8 w}$ for $x=\pi, a=\sqrt{3}$, and $w=4$!.
Two different methods can be used to evaluate algebraic expressions:

1. Store the values of the variable, enter the expression, and press ENTER to evaluate the expression for the stored values of the variables.
2. Store the expression and store the values of the variables. Recall the expression and press ENTER to evaluate the expression for the stored values of the variables.

The advantage of the second method is that the expression can be easily evaluated for several different values of the variables.

Solution:

Method 1

Method 2

Example 2 For $f(x)=3 x+5$ and $g(x)=\sqrt{x-\sqrt{x}}$ find $f(2)-g(2)$.
Solution: (Using Method 2 above.)

Keystrokes	Screen Display	Explanation
$\mathrm{Y}=$ CLEAR 3 X, T, $\theta, n,+$		Clear Y1 and store $f(x)$ as Y1. Clear Y2 and store $g(x)$ as Y2.
5 ENTER CLEAR	$y=$ $\sqrt{4}=$	
2nd $\sqrt{ }$ (X,T, $\theta, n,-$	$\begin{array}{r} Y_{5}= \\ y_{i}= \\ y_{0} \end{array}$	
2nd $\sqrt{ }$ X,T, $, n, \square$	$2+\mathrm{K}$	
2nd QUIT	$\mathrm{Yi}^{1-Y z} 10.2346 .3314$	Store 2 as X .
2 STO X,T, θ, n ENTER		Algebraically form $f(x)-g(x)$ and evaluate at $x=2$.
VARS $\triangle 1$:Function 1 :Y1		
- VARS \triangle		
1 :Function 2 :Y2		

ENTER

Example 3 Evaluate the function $g(x)=\sqrt{x-\sqrt{x}}$ to three decimal places for $x=1.900,1.990$, 1.999, 2.001, 2.010, and 2.100 using a list.

Solution: Store the expression in the calculator as was done in Example 2 above. Store the values of x in a list and simultaneously evaluate the expression for each value of x as shown below.

2nd QUIT

2nd	L2

Calculate the value of the expression stored as Y2 for the values of x in list L1 and store in list L2.

To view the results, use the
and \square keys.
To recall L2, press 2 nd L2 .
The results are $0.722,0.761$, $0.765,0.766,0.770$, and 0.807 .

Example 4

Evaluate the expression $g(x)=\sqrt{x-\sqrt{x}}$ to three decimal places for values of x at each integer from 0 to 10 using a table.

Solution: First store the expression in the $\mathrm{Y}=$ list. Set the table parameters to begin at $x=0$ and to have an increment of 1 . Get the table.

MODE $\boldsymbol{\nabla}$ ENTER
When finished viewing the table, set the mode for numbers to Float.

B-6 Testing Inequalities in One Variable

Example 1 Determine whether or not $x^{3}+5<3 x^{4}-x$ is true for $x=-\sqrt{2}$.

Solution:

Set the mode to Float. See Section B-2 of this document.

B-7 Graphing, the ZStandard Graphing Screen, and Style of Graph

Before doing any graphing on the calculator, the statistical graphing commands need to be turned off.

Example 1 Graph $y=x^{2}, y=.5 x^{2}, y=2 x^{2}$, and $y=-1.5 x^{2}$ on the same coordinate axes. Graph the first function with a dotted line, the second function with a thin line, the third function with a thick line, and the fourth function with a thin line.

Solution:

The ZStandard screen automatically sets the graph for $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$. Press WINDOW to see this.

These window dimensions will be denoted as $[-10,10] 1$ by $[-10,10] 1$ in this document.

The graphs will be plotted in order: Y1, then Y2, then Y3, then Y4, etc.
If there is more than one function graphed, the up $\boldsymbol{\Delta}$ and down $\boldsymbol{\nabla}$ arrow keys allow you to move between the graphs displayed.

B-8 TRACE, ZOOM, WINDOW, Zero, Intersect and Solver

TRACE allows you to observe both the x and y coordinate of a point on the graph as the cursor moves along the graph of the function. If there is more than one function graphed the up and down ∇ arrow keys allow you to move between the graphs displayed.

ZOOM will magnify a graph so the coordinates of a point can be approximated with greater accuracy.

Ways to find the x value of an equation with two variables for a given y value are:

1. Zoom in by changing the WINDOW dimensions.
2. Zoom in by seting the Zoom Factors and using Zoom In from the ZOOM menu.
3. Zoom in by using the Zoom Box feature of the calculator.
4. Use the Zero feature of the calculator.
5. Use the Intersect feature of the calculator.
6. Use the Solver feature of the calculator.

Three methods to zoom in are:

1. Change the WINDOW dimensions.
2. Use the 2 :Zoom In option on the ZOOM menu in conjunction with | ZOOM | |
| :--- | :--- |
| 4 | :Set Factors. |
3. Use the 1 :ZBox option on the ZOOM menu.

Example 1 Approximate the value of x to two decimal places if $y=-1.58$ for $y=x^{3}-2 x^{2}+\sqrt{x}-8$.

Solution:

Method 1 Change the WINDOW dimensions.
Enter the function in the $\mathrm{Y}=$ list and graph the function using the Standard Graphing Screen (see Section B-7 of this document).

Keystrokes	Screen Display	Explanation
$\mathrm{Y}=$ CLEAR $\mathrm{X}, \mathrm{T}, \theta, n$		Enter the function as Y1.
2nd $\sqrt{\text { a }}$ X,T, $\theta, n \bigcirc \bigcirc$		
ENTER		Get the TRACE function
	1	and press the right arrow repeatedly until the new type
TRACE $\quad . . \square$		of cursor gives a y value as close to -1.58 . The closest point is (2.7659575, -.47691).
WINDOW 2		The x coordinate is between 2 and 3. So we set the
$\begin{array}{\|l\|l\|l\|l\|} \hline \text { ENTER } & 3 & \text { ENTER } & .1 \\ \hline \end{array}$		WINDOW at $2<x<3$ with
ENTER (-) 3 ENTER		scale marks every . 1 by -$3<y<-1$ with scale marks
		every .1. This will be written as $[2,3] .1$ by $[-3,-1] .1$.
GRAPH		Also, set the xRes to 1 . This means that the calculator will calculate a value for y for each value for x for which there is a column of pixels on the graph screen. Use
TRACE $\quad . . \square$		
		TRACE again to estimate a
		new x value.

Change the WINDOW appropriately. Repeat using TRACE and changing the WINDOW until the approximation of $(2.67,-1.58)$ has been found. Hence the desired value for x is approximately 2.67 .

When using TRACE, the initial position of the cursor is at the midpoint of the x values used for xMin and xMax . Hence, you may need to press the right or left arrow key repeatedly before the cursor becomes visible on a graph.

Occasionally you will see a moving bar in the upper right corner. This means the calculator is working. Wait until the bar disappears before continuing.

Method 2 Use the 2 :Zoom In option on the ZOOM menu.

Enter the function in the $\mathrm{Y}=$ list and graph the function using the ZStandard Graphing Screen (see Method 1 of this example).

Method 3 Use the 1 :Box option on the ZOOM menu.

Graph the function using the ZStandard Graphing Screen. (See Section B-7 of this document).

Explanation
Graph the function using the standard graphing screen.

Get the ZOOM BOX feature.
Use the arrow keys until the cursor is a little to the left and above the point we are trying to find, say at (2.1276596, -1.290323).

Press ENTER. This anchors the upper left corner of the box.

Now use the arrow keys to locate the lower right corner of the box, say at (3.1914894, -2.580645).

Press ENTER to get the new display.

Use TRACE to see the coordinates of the point on the graph where y is closest to -1.58 .

Repeat the ZOOM BOX procedure to get the x value of 2.67.

Repeat using trace and zoom box until you get a value for the y coordinate accurate to two decimal places. The point has coordinates $(2.67,-1.58)$. Hence the desired value for x is approximately 2.67.

Method 4 Use the Zero feature of the calculator.

| Keystrokes | Explanation
 Algebraically set the expression
 involving x equal to -1.58, the
 value of y. |
| :--- | :--- | :--- |
| $x^{3}-2 x^{2}+\sqrt{x}-8=-1.58$ | |

Method 5 Use the Intersect feature of the calculator.
Graph the function using the ZStandard Graphing Screen. (See Section B-7 of this document).

Method 6 Use the Solver feature of the calculator

Keystrokes	Screen Display	Explanation
		Write the function as $x^{3}-2 x^{2}+\sqrt{x}-8-(-1.58)$ Enter this as Y1 in the function list. Get the EQUATION SOLVER. Recall Y1 from the function list.
MATH 0 :Solver...		
	EDDHTDF SDLDER	
ENTER ENTER 2		Continue with the Solver function. Type 2 as the guess.
ALPHA SOLVE		SOLVE is above the ENTER key.
		Hence the desired value for x is approximately 2.67 .

Example 2 Approximate the x intercept to two decimal places for $\mathrm{y}=x^{3}-2 x^{2}+\sqrt{x}-8$.
There are several ways to get a closer look at the intercept:

1. Change the WINDOW dimensions.
2. Set the Zoom Factors and zoom in.
3. Use the Zoom Box feature of the calculator.
4. Use the Zero feature of the calculator.
5. Use the Intersect feature of the calculator.
6. Use the Solver feature of the calculator.

Method 1 Change the WINDOW dimensions.
This method is described in Section B-8 Example 1 Method 1 of this document.
Method 2 Set the Zoom Factors and zoom in.
This method is described in Section B-8 Example 1 Method 2 of this document.
Method 3 Use the Zoom Box feature of the calculator.
This method is described in Section B-8 Example 1 Method 3 of this document.
Method 4 Use the Zero feature of the calculator.

Keystrokes	Screen Display	Explanation
ZOOM 6 :ZStandard		Graph the function.
2nd CALC 2 :zero		Get the zero feature.
4 or \square ENTER		Place the cursor at a point on the graph to the left of the x intercept and press ENTER. Place the cursor at a point on the graph to the right of the x
¢ or \triangle ENTER 4 or \square ENTER		intercept and press ENTER. Place the cursor near the point of intersection for the guess. Press ENTER to get the x intercept.

The x intercept is 2.80 .
Method 5 Use the Intersect feature of the calculator.
This method is described in Section B-8 Example 1 Method 4 of this document
Method 6 Use the Solver feature of the calculator
This method is described in Section B-8 Example 1 Method 5 of this document.

B-9 Determining the WINDOW Dimensions and Scale Marks

There are several ways to determine the limits of the x and y axes to be used in setting the WINDOW. Three are described below:

1. Graph using the default setting of the calculator and zoom out. The disadvantage of this method is that often the function cannot be seen at either the default settings or the zoomed out settings of the WINDOW.
2. Evaluate the function for several values of x. Make a first estimate of the window dimensions based on these values.
3. Analyze the leading coefficient and/or the constant terms.

A good number to use for the scale marks is one that yields about 20 marks across the axis. For example if the WINDOW is $[-30,30]$ for an axis then a good scale value is $\frac{30-(-30)}{20}$ or 3 .

Example 1 Graph the function $\mathrm{f}(x)=.2 x^{2}+\sqrt[3]{x}-32$.

Solution:

Method 1 Use the default setting and zoom out.

Method 2 Evaluate the function for several values of x. (See Section B-5 on how to evaluate a function at given values of x.)

x	$\mathrm{f}(x)$
-20	45.3
-10	-14.2
0	-32.0
10	-9.8
20	50.7

Analyzing this table indicates that a good WINDOW to start with is [-20,20]2 by [-50,50]5.
Note the scale is chosen so that about 20 scale marks will be displayed along each of the axes. The scale is chosen as 2 for the x axis since $\frac{20-(-20)}{20}=2$ and 5 for the y axis since
$\frac{50-(-50)}{20}=5$.

Method 3 Analyze the leading coefficient and constant terms.
Since the leading coefficient is .2 the first term will increase .2 units for each 1 unit x^{2} increases or 2 units for each 10 units x^{2} increases. This means that the first term will increase for every $\sqrt{10}$ (or about 3 units increase) in x. A first choice for the x axis limits can be found using:

$$
\frac{10 \times(\text { unit increase in } x)}{(\text { first term increase })}=\frac{10 \times 3}{2}=15
$$

A first choice for the scale on the x axis (having about 20 marks on the axis) can be found using $\frac{X \max -X \min }{20}=\frac{15-(-15)}{20}=1.5$ (round to 2). So the limits on the x axis could be $[-15,15] 2$.

A first choice for the y axis limits could be \pm (constant term).
The scale for the y axis can be found using $\frac{\text { Ymax-Ymin }}{20}$
$=\frac{32-(-32)}{20}=3.2$ (round to 4). So a first choice for the y axis limits could be $[-32,32] 4$. Hence a good first setting for the WINDOW is $[-15,15] 2$ by $[-32,32] 4$.

A good choice for the scale is so that about 20 marks appear along the axis.
This is $\frac{X m a x-X \min }{20}$ (rounded up to the next integer) for the x axis and $\frac{Y m a x-Y \min }{20}$ (rounded up to the next integer) for the y axis.

B-10 Piecewise-Defined Functions

There are two methods to graph piecewise-defined functions:

1. Graph each piece of the function separately as an entire function on the same coordinate axes. Use trace and zoom to locate the partition value on each of the graphs.
2. Store each piece of the function separately but include an inequality statement following the expression which will set the WINDOW of values on x for which the function should be graphed. Then graph all pieces on the same coordinate axes.

Example 1 Graph $\mathrm{f}(x)= \begin{cases}x^{2}+1 & x<1 \\ 3 x-5 & x \geq 1\end{cases}$

Solution:

Method 1
Keystrokes

\section*{| $\mathrm{Y}=$ | CLEAR | $\mathrm{X}, \mathrm{T}, \theta, n$ |
| :--- | :--- | :--- |
| 2 | + | 1 |
| | ENTER | |
| CLEAR | 3 | $\mathrm{X}, \mathrm{T}, \theta, n$ |}

| $-5 O O M$ | 6 | ZStandard |
| :---: | :---: | :---: | :---: |

Explanation

Store the functions. Graph. Both functions will be displayed. Use trace and zoom to find the point on the graphs where $x=1$. When drawing this curve on paper, place an open circle on as the endpoint of the piece of the graph not including $x=1$ and a closed circle as the endpoint of the piece of the graph including $x=1$.

Explanation

The logical statement $x<1$ will give a 1 when the value of x is less than 1 and a 0 when the value of x is greater than or equal to 1 . Hence the first part of the function is divided by 1 when $x<1$ and 0 when $x \geq 1$. The function will not graph when it is divided by 0 . Similarly for the logical statement $x \geq 1$ for the second part of the function. The 1 and 0 are not shown on the screen but are used by the calculator when graphing the functions.

B-11 Solving Equations in One Variable

There are three methods for approximating the solution of an equation:

1. Write the equation as an expression equal to zero. Graph $y=($ the expression). Find the x intercepts. These x values are the solution to the equation. This can be done using TRAC E and ZOOM or using the Solver from the MATH menu. See Section B-8 of this document.
2. Graph $y=$ (left side of the equation) and $y=$ (right side of the equation) on the same coordinate axes. The x coordinate of the points of intersection are the solutions to the equation. This can be done using TRACE and ZOOM or using intersect from the CALC menu.

Example 1 Solve $\frac{3 x^{2}}{2}-5=\frac{2(x+3)}{3}$.

Solution:

Method 1 Using TRACE and ZOOM

Write the equation as $\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right)=0$. Graph $y=\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right)$. Now we want to find the x value where the graph crosses the x axis. This is the x intercept.

Method 1 Using Solver

Method 2 Using TRACE and ZOOM
Graph $y=\frac{3 x^{2}}{2}-5$ and $y=\frac{2(x+3)}{3}$ on the same coordinate axes and find the x coordinate of their points of intersection.

Explanation
Store the two functions.

Find the points of intersection using trace and zoom.

Use trace and zoom to find the x values: $x \approx-1.95$ and $x \approx 2.39$.

A typical zoom box is shown on the graph at the left.

Method 2 Using Intersect
Graph $y=\frac{3 x^{2}}{2}-5$ and $y=\frac{2(x+3)}{3}$ on the same coordinate axes and find the x coordinate of their points of intersection.

Hence the approximate solutions to this equation are -1.95 and 2.39.

B-12 Solving Inequalities in One Variable

Two methods for approximating the solution of an inequality using graphing are:

1. Write the inequality with zero on one side of the inequality sign. Graph $y=$ (the expression). Find the x intercepts. The solution will be an inequality with the x values (x intercepts) as the cut off numbers. The points of intersection can be found using TRACE and ZOOM or using the SOLVER from the MATH menu.
2. Graph $y=$ (left side of the inequality) and $y=$ (right side of the inequality) on the same coordinate axes. The x coordinate of the points of intersection are the solutions to the equation. Identify which side of the x value satisfies the inequality by observing the graphs of the two functions.
The points of intersection can be found using TRACE and ZOOM or using intersect from the CALC menu.

Example 1 Approximate the solution to $\frac{3 x^{2}}{2}-5 \leq \frac{2(x+3)}{3}$. Use two decimal place accuracy.

Solution:

Method 1

Write the equation as $\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right) \leq 0$. Graph $y=\left(\frac{3 x^{2}}{2}-5\right)-\left(\frac{2(x+3)}{3}\right)$ and find the x intercepts. This was done in Section B-10 Example 1 Method 1.

The x intercepts are -1.95 and 2.39. The solution to the inequality is the interval on x for which the graph is below the x axis. The solution is $-1.95 \leq x \leq 2.39$.

Method 2 Graph $y=\frac{3 x^{2}}{2}-5$ and $y=\frac{2(x+3)}{3}$ on the same coordinate axes and find the x coordinate of their points of intersection. See Section B-10 Example 1 Method 2. The x coordinate of the points of intersections are -1.95 and 2.39. We see that the parabola is below the x line for $-1.95 \leq x \leq 2.39$. Hence the inequality is satisfied for $-1.95 \leq x \leq 2.39$.

To test this inequality, choose -2 as a test value. Evaluating the original inequality using the calculator yields a 0 which means the inequality is not true for this value of x . (See Section D-6 of this document.) Repeat the testing using 0 and 3. We see that the inequality is true for $x=0$ and not true for $x=3$. Hence the inequality is satisfied for $-1.95 \leq x \leq 2.39$.

B-13 Storing an Expression That Will Not Graph

Example 1 Store the expression $\mathrm{B}^{2}-4 \mathrm{AC}$ so that it will not be graphed but so that it can be evaluated at any time. Evaluate this expression for $\mathrm{A}=3, \mathrm{~B}=2.58$, and $\mathrm{C}=\sqrt{3}$.

Solution:

B-14 Permutations and Combinations

Example 1 Find (A) $\mathrm{P}_{10,3}$ and (B) $\mathrm{C}_{12,4}$ or $\binom{12}{4}$.
Solution (A):
The quantity can be found by using the definition $\frac{10!}{7!}$ or the built-in function $n P r$.

Solution (B):

The quantity can be found by using the definition $\frac{12!}{4!8!}$ or using the built-in function nCr .

B-15 Matrices

Example 1 Given the matrices
$A=\left[\begin{array}{rr}1 & -2 \\ 3 & 0 \\ 5 & -8\end{array}\right]$
$\mathrm{B}=\left[\begin{array}{rrr}2 & 1 & 5 \\ 3 & 2 & -1 \\ 0 & 8 & -3\end{array}\right]$
$C=\left[\begin{array}{c}1 \\ -5 \\ 10\end{array}\right]$
Find (A) $-3 B C$
(B) B^{-1}
(C) A^{T}
(D) $\operatorname{det} \mathrm{B}$

Solution (A):

Keystrokes	Screen Display	Explanation
2nd MATRX \triangle		Enter the matrix mode. Choose EDIT using the arrow keys.
1 : A] 3 \square ENTER \square 2 ENTER		Choose the A matrix. Enter the dimensions of the matrix.
1 ENTER $(-)$ 2 ENTER 3 ENTER 0 ENTER 5 ENTER $(-)$ 8 ENTER		Enter the matrix elements.
2nd MATRX \triangle etc.		Return to the matrix menu and repeat the procedure to enter matrix B and C.
2nd QUIT CLEAR $(-)$ 3 2nd MATRX 2 [B] 2nd MATRX $3:[\mathrm{C}]$	-3tB][C] ${ }^{\left[\begin{array}{c}{[-141]} \\ {[516]} \\ {[210]}\end{array}\right.}$	Return to the home screen to do calculations. Operations are entered as usual except use the matrix symbols from the MATRX NAMES menu.

Solution (B):

Solution (D):

Example 2 Find the reduced form of matrix $\left[\begin{array}{cccc}2 & 1 & 5 & 1 \\ 3 & 2 & -1 & -5 \\ 0 & 8 & -3 & 10\end{array}\right]$.

Solution:

There are two methods that can be used:

1. Use the row operations individually.
2. Use rref(from the MATRX MATH menu.

Method 1 Using row operations

Method 2 Using rref(from the MATRX MATH menu
Enter the elements in the matrix as done in Method 1.
Keystrokes

ALPHA B :rref(
2nd MATRX
1 : [A] $)$ ENTER

Explanation
Enter the matrix mode and choose MATH using the arrow keys. Select the rref(command and recall matrix A.
This command will give the rowechelon form of matrix A, which has the identity matrix in the first three columns and constants as the fourth column.

Hence if a system of equations is

$$
\begin{aligned}
2 x_{1}+x_{2}+5 x_{3} & =1 \\
3 x_{1}+2 x_{2}-x_{3} & =-5 \\
8 x_{2}-3 x_{3} & =10
\end{aligned}
$$

with augmented coefficient matrix

$$
\left[\begin{array}{cccc}
2 & 1 & 5 & 1 \\
3 & 2 & -1 & -5 \\
0 & 8 & -3 & 10
\end{array}\right]
$$

the solution, rounded to two decimal places, of the system of equations is

$$
\begin{aligned}
& x_{1}=-2.43 \\
& x_{2}=1.57 \\
& x_{3}=.86
\end{aligned}
$$

B-16 Graphing an Inequality

To graph an inequality:

- Change the inequality sign to an equals sign.
- Solve the equation for y.
- Enter this expression in the function list on the calculator. This is the boundary curve.
- Determine the half-plane by choosing a test point not on the boundary curve and substituting the test value into the original nequality. This can be done using paper and pencil.
- Graph the boundary curve using the lower shade option on the calculator to get a shaded graph.

Example 1 Graph $3 x+4 y \leq 12$.

Solution:

Changing the inequality sign to an equals sign yields $3 x+4 y=12$. Solving this equation for y yields $y=(12-3 x) / 4$. Determine the correct half-plane by substituting the point $(0,0)$ into the original inequality. We have $3(0)+4(0) \leq 12$, which is a true statement. Hence the point $(0,0)$ is in the solution set of the inequality.

B-17 Exponential and Hyperbolic Functions

Example 1 Graph $y=10^{0.2 x}$

Solution:

Example 2 Graph $y=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$.

Solution:

B-18 Scientific Notation, Significant Digits, and Fixed Number of Decimal Places

Example 1 Calculate $\left(-8.513 \times 10^{-3}\right)\left(1.58235 \times 10^{2}\right)$. Enter numbers in scientific notation.

Solution:

Keystrokes				Screen Display	Explanation
(-) 8.513	2 nd	EE $(-)$	3		Enter the first number. The number displayed is not in scientific notation. (It is not necessary to press ENTER at this point. This is done here to show how the numbers are displayed on the screen.) Multiply by the second number.
ENTER					
$\times 1.58235$	2 nd	EE 2			
ENTER					

Example 2 Set the scientific notation to six significant digits and calculate (351.892)(5.32815 $\left.\times 10^{-8}\right)$.

Solution:

Explanation

Select Sci using the arrow keys and press ENTER.
Select 5 decimal places using the arrow keys and press ENTER. Five decimal places will give six significant digits in scientific mode.
Return to the Home Screen. Enter the numbers.
Note the result is displayed in scientific notation with six significant digits.

Example 3 Fix the number of decimal places at 2 and calculate the interest earned on $\$ 53,218.00$ in two years when invested at 5.21% simple interest.

Solution:

Change the number of decimal places back to Float.

B-19 Angles and Trigonometric Functions

Example 1 Evaluate $f(x)=\sin x$ and $g(x)=\tan ^{-1} x$ at $x=\frac{5 \pi}{8}$.
Solution:

Example 2 Evaluate $f(x)=\csc x$ at $x=32^{\circ} 5^{\prime} 45^{\prime \prime}$.

Solution:

Explanation

Set the mode to Float.
Since the angle measure is given in degrees, set the calculator for degree measure before starting calculations. Return to the Home Screen using.
Use $\frac{1}{\sin x}$ to evaluate $\csc x$.

Change the minutes and seconds to decimal values while entering the angle measure.

Example 3 Graph $f(x)=1.5 \sin 2 x$.
Solution:

Explanation
Set MODE to Radian measure.

Store $f(x)$ as Y1.

Use the trigonometric option on the ZOOM menu to get tick marks set at radian measures on the horizontal axis since the angle measure is in radians. Press
WINDOW to see the
WINDOW dimensions are set
at
$[-6.15 \ldots, 6.15 \ldots] 1.57 \ldots$ by
$[-4,4]$.
Example 4 Graph $g(x)=3 \tan ^{-1}(.2 x)$.

Solution:

B-20 Polar Coordinates and Polar Graphs

Example 1 Change the rectangular coordinates $(-\sqrt{3}, 5)$ to polar form with $r \geq 0$ and $0 \leq \theta \leq 2 \pi$.

Solution:

Keystrokes	Screen Display	Explanation
2nd ANGLE $5: \mathrm{R} \bullet \operatorname{Pr}($		Get the angle menu. Choose rectangular to polar conversion that displays the r value.
$\begin{array}{\|l\|} \hline(-) \\ 2 \mathrm{nd} \\ \sqrt{2} \\ \hline \end{array}$	$\text { rFr- } 5,295622$	Enter the value of x and y coordinates. The displayed value
, 5 , ENTER	1.964269499	is r. Get the angle menu again.
2nd ANGLE 6 :R \bullet P $\theta($		Choose the rectangular to polar conversion that displays the value
$(-)$ 2nd $\sqrt{ }$ (3		of θ.
, 5 5 ENTER		Enter the value of x and y coordinates. The displayed value is θ.

Example 2 Change the polar coordinates $(5, / 7)$ to rectangular coordinates.

Solution:

$\underline{\text { Example } 3}$ Find the value of r for $r=5-5 \sin \theta$ at $\theta=\frac{\pi}{7}$.

Solution:

Keystrokes	Screen Display	Explanation
2nd $\pi \times \square \bigcirc$	T/r90 4487989505	Store $\frac{\pi}{7}$ as θ
ALPHA θ ENTER	2.830581364	θ is above the 3 .
$55_{5}^{5}-5$ SIN ALPHA		Enter $5-5 \sin \theta$ and evaluate.

Example 4 Graph $r=5-5 \sin \theta$

Polar equations can be graphed by using the polar graphing mode of the calculator.

In general the steps to graph a polar function are:

Step 1 Set the calculator in polar graph mode.
Step 2 Enter the function in the $\mathrm{Y}=$ list (This list now has $\mathrm{r}=$ as the function names.)
Step 3 Set the WINDOW FORMAT to PolarGC
Step 4 Graph using the standard graph setting ZOOM 6 :ZStandard and then the square setting of the calculator ZOOM 5 :ZSquare to get a graph with equal spacing between the scale marks.
Step 5 Zoom in to get a larger graph if you wish.

Solution:

Graph using the standard dimensions for the window. The graph on the standard screen is slightly distorted since the scale marks on the y axis are closer together than the scale marks on the x axis.
The square option on the Zoom Menu makes the scale marks the same distance apart on both axes. Press WINDOW to see how the window dimensions are changed.

