![]() ![]() The Factor Analysis procedure has several extraction methods for constructing a solution. For Data Reduction. The principal components method of extraction begins by finding a linear combination of variables (a component) that accounts for as much variation in the original variables as possible. It then finds another component that accounts for as much of the remaining variation as possible and is uncorrelated with the previous component, continuing in this way until there are as many components as original variables. Usually, a few components will account for most of the variation, and these components can be used to replace the original variables. This method is most often used to reduce the number of variables in the data file. For Structure Detection. Other Factor Analysis extraction methods go one step further by adding the assumption that some of the variability in the data cannot be explained by the components (usually called factors in other extraction methods). As a result, the total variance explained by the solution is smaller; however, the addition of this structure to the factor model makes these methods ideal for examining relationships between the variables. With any extraction method, the two questions that a good solution should try to answer are "How many components (factors) are needed to represent the variables?" and "What do these components represent?" |
|
Factor Analysis Methods |